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Abstract

We present the formal verification of the floating-point
multiplier in the Intel IA-32 Pentium

�
4 microprocessor.

The verification is based on a combination of theorem-
proving and BDD based model-checking tasks performed
in a unified hardware verification environment. The tasks
are tightly integrated to accomplish complete verification
of the multiplier hardware coupled with the rounder logic.
The approach does not rely on specialized representations
like Binary Moment Diagrams or its variants.

1 Introduction

We describe a formal verification effort addressing the
input-output correctness of the multiplier unit in the Intel
IA-32 Pentium

�
4 microprocessor with respect to its IEEE

specification. The verification is based on a combination of
theorem-proving and symbolic trajectory evaluation using
binary decision diagrams (BDDs).

Traditional state-based approaches and model-checking
techniques based on BDDs do not perform well on multi-
plier circuits. Bryant in [3] proved that BDDs for multi-
pliers grow exponentially in size regardless of the variable
order. Several alternate solutions have been proposed but
have met with limited success [4, 5, 6, 15, 20]

Mechanical theorem proving of multiplier circuits pro-
vides an alternative to automatic model checking. How-
ever, techniques based purely on reasoning have seen lim-
ited application due to the effort and user ingenuity involved
in verifying even a small to medium-sized design [14, 19].
Verification of industrial strength hardware have so far been
limited to abstract RTL descriptions [21].

Complementing a theorem prover with a model checker
allows mechanical verification of designs that are difficult
or infeasible to verify using either approach on its own.
Kurshan and Lamport [16] did some verification of large
multipliers constructed by simple recursive procedures us-
ing COSPAN and the TLP theorem prover [7]. Aagaard
and Seger reported a verification effort on a small-scale

multiplier circuit [1] in the Voss [22] verification system.
O’Leary et al. [17] verified IEEE compliance of floating-
point hardware for the Pentium Pro processor using a com-
bination of word-level model-checking and theorem prov-
ing.

Our verification approach handles all flavors of multi-
plication supported by the Pentium 4 hardware. In this
paper we present the verification of the extended preci-
sion floating-point operation with IEEE rounding, flags and
faults.

The verification was carried out in the Forte verification
environment - a combined model-checking and theorem-
proving system [10]. The interface language to Forte is FL,
a lazy strongly-typed functional language in the ML fam-
ily [18]. Model checking in Forte is done via symbolic tra-
jectory evaluation (STE) [23]. Theorem proving is done in
the ThmTac proof tool.

2 Proof Framework

We use a variant of the traditional pre-postcondition
framework for formulating temporal aspects of our speci-
fication statements. One main reason for introducing the
pre-postcondition framework was to enable reasoning about
the flow of computation in a well-structured manner.

The theory of pre-postcondition triples is a standard
framework for specification (see e.g. [8, 13]). In this ap-
proach, statements about programs are triples

�����������	�
,

where
�

and
�

are logical properties, and
�

is a program.
Such a triple formalizes the statement precondition

�
guar-

antees postcondition
�

after running
�

, or more accurately
for any possible execution of program

�
, if the execution

starts in a situation satisfying
�

, then it terminates in a fi-
nite time and leads to a situation satisfying

�
.

In STE, trajectory evaluation correctness statements
are called trajectory assertions and are written as:
 �

ckt ��
���� ��������� ����� . The (ant)ecedent gives an initial state
and input stimuli to the circuit

��� � , while the (cons)equent
specifies the desired response of the circuit. Formally, the
meaning of


 �
ckt � 
!��� �����"��� ����� is: all sequences that are
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// A float f is the triple �����������	����

�
input: float:

���
,

���
, � ������������� �"! � ��� 
�� ��� 

�$#�%����������� �

output: float: &
multiply (

��� 
 � ��� 
 )& 
(' �*),+.- ' �/)0+21 ' �*)0+
3 ��� 
(' �547686:9�; <%=7>�6 ?@< � �A� 
 � ; /* encoding */

while
1 #*B

do /* generate partial products */� � C ' � ��� 
ED 3 ��� 
 � 1 � +F1 ' �*1HGE��+
od
while

- #IB
do /* shift partial products and add */
// product mantissa
& 
J' � � � �@K D ��L �

K
� G & 
 +M- ' �*-:G*��+

od

&N� :=
��� �PO:Q�R �P� � ; // sign&N� := ��� � G ��� � ; // exponent&TSVU%W := round �X&Y� ; // rounded result

Figure 1. Multiplier High-level Algorithm

in the language of the circuit and that satisfy the ant will
also satisfy the cons.

Consider a circuit Z\[^] , and assume that a trajectory as-
sertion ]�R K U8��O:� binds a vector O of Booleans to some input
signals of Z_[`] at the times the inputs are read by the circuit,
and that a vector

1
is similarly bound to some output sig-

nals by trajectory assertion ]�Rbadc�e_� 1 � . If a formula f K U8��O:�
expresses the precondition the input is supposed to meet,
and f aXc�e ��O@� 1 � the postcondition the circuit is supposed to
produce, the statement precondition f K U guarantees post-
condition f adc�e can be expressed by the formulag -�h�i f K U8� -�h �kj ��l0Q�m%] i � 
 � ckt � ]�R K U8� -�h � ����� ]�Rnadc�e���Q�m%]�� � ���o � g Q�m%] i � 
 � ckt � ]�R K U � -�h � ����� ]�R adc�e ��Q�m%]�� � �jpf8adc�e�� -�h �qQ�m�]��V�
we write

� f K U � �r]�R K U:��Z\[^]n�X]�R�aXc�eX� � f8aXc�e � as a shorthand for
the above formula.

Our proof framework also includes a library of formally
verified bit-vector integer arithmetic operations in order to
support reasoning of the model-checked results in a mathe-
matical domain.

3 Multiplier Circuit

Figure 1 depicts a high–level view of the multiplication
algorithm and Figure 2 a high-level block diagram of the
Pentium 4 multiplier. The multiply function accepts the
mantissas of the two source operands and generates the
mantissa of the unrounded product. The sign and expo-
nents of the product are calculated next and the the R�Q�m h8s
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Figure 2. Multiplier Block Diagram

function is applied to the complete product. The source
mantissas are assumed to be bound by a function of some
constant B which is known a priori. The booth encode
function is a Radix-

� L
modification of the classic Booth

encoding scheme [2]. It accepts an n-bit multiplier operand��� U �@� �A� U �8t ��� U �vu i�ini �A� � �A��w
and generates a suitable

encoding bS1 by viewing S1 as a combination of
-

slices and
invoking the Booth function recursively on every slice.47686v9�; <%=7>�6 ?@< � ��� � �

Booth(M, S1) � Booth (M-1, S1). . .
Booth (i, S1) x df �d� ���H� � D S1 ����� K �y� � � G

��z �e�{ t �	�|� e D S1 ���}� K ��� e � G ��� L �\� K � �V���@�
For floating point multiplication, the mantissas of the

multiplier and the multiplicand are the inputs to the mul-
tiplier circuit. The exponents are summed up separately.
Depending on the rounding mode, the product mantissa
and exponent are then rounded appropriately by the rounder
logic to produce the final result.

The Wallace tree of the multiply unit is large enough to
allow pipelined execution of all precision multiply opera-
tions except extended-precision, which in turn can only be
executed every other clock cycle. Floating-point multipli-
cation is a two pass operation. It requires doing multiplies
with full precision (64x64) and since the Pentium 4 multi-
plier does not have a full 64x64 multiplier array, two passes
are needed for full evaluation of all these multiplies. There-
fore, the lower order bits of the multiplication result are gen-
erated in the first pass. This intermediate result is then fed
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back into the adder network to be combined with the more
significant partial products to generate the full product. For
a given rounding mode and precision mode, this result is
then rounded in the rounder logic to generate the final prod-
uct of the mantissa. The exponents of the input operands
are added and based on the range of the full product, are ad-
justed appropriately by a separate logic. For more details,
please refer to [9].

4 Floating-Point Numbers and Rounding

Our proof framework includes a general-purpose defi-
nition and theorem library for floating-point numbers and
rounding. The library supports floating-point numbers and
rounding at the bit-vector level for model-checking, and
at the mathematical level for reasoning. Furthermore, the
mathematical level is divided into a bottom and top layer:
the bottom layer deals with floating-point numbers as sign-
exponent-mantissa triples, and the top layer deals with the
real numbers encoded by the triples. We represent a binary
floating-point number as a triple � � ������������� where � is
the sign bit, � is the exponent bit-vector and � is the man-
tissa bit-vector. The real number r ���:� encoded by this triple
is �d� � � � � D � � � �	�

K�
 � D
�� D �%� manln� � , where �O is the integer
encoded by the bit vector O , and

3 -�� � is some fixed expo-
nent bias. Here the mantissa � has intuitively manln � �
fraction bits and one bit to the left of the binary point, so
� always encodes a value strictly less than 2. Currently
our framework only supports integers. As a work-around,
when converting a floating-point triple � to a number, we
do not convert it to a real as in r ���:� above, but to an integer
that corresponds to the real value multiplied by a big num-
ber, as follows: ri ���v� � �d� � � � � D � � � ���

K�
 � ��� � D��� , where
� � �������^��� � . The number ��� is chosen to be sufficiently
large so that every real number that is representable as a
floating-point triple and every half-point of two such num-
bers maps to an integer when multiplied by

� � � . In this
case all the reasoning related to rounding can be carried out
with integers.

For example, Figure 3 contains definitions for round-
ing to positive infinity for floating-point triples in the lower
mathematical level. The bit-vector level definitions are
obtained from these by replacing mathematical operations
with bit-vector ones. Figure 4 contains definitions for
rounding to positive infinity dealing with the numbers en-
coded by floating-point triples. A correspondence theorem
between the levels states that ri � round pinffp �AR	���.��� �
round pinfS K �:R�� ri ���:� � for all normal floating-point triples
� . A similar framework is in place for the other three IEEE
rounding modes: round to zero, round to negative infinity
and round to nearest.

5 Verification Overview

An intuitive specification for IEEE floating-point mul-
tiplication can be given as follows:

IF a floating-point multiplication operation is
started AND the inputs to the circuit are

���
and���

AND expected internal constraints to the cir-
cuit hold initiallyAND expected environment con-
straints hold throughout the execution of the oper-
ation, THEN at the time the circuit produces out-
put & , the equation

� & � R�Q�m h8s � ���� D ���� � holds.

� O denotes the arithmetic equivalent of the bit-vector O and
the function R�Q�m h8s captures the conceptual notion of round-
ing the product.

The details of the internal and environment constraints
and the mechanism for starting an operation may be depen-
dent on the implementation and the protocol it enjoys with
the hardware around it. For instance, these constraints could
include the behavior of reset, unit clock, when the operation
is initiated, legal ranges for the input sources etc.

prevfp
����� �"!$#%�

sgn
�&�'!(�

exp
�&�'!(�

man
�&�"!*),+ len - .�/�0'1 �2�3!

prop nextfp
����� �"!
#4�

sgn
�&�'!(�

exp
�&�'!(�

man
�&�"!*),+ len - .�/�0'16587 �	�3!

EQfp
�&���	9,!
#%�

sgn
�&�"!:#

sgn
��9,!*!	;<�

exp
�&�'!6#

exp
��9,!*!*;

�
man

�&�"!'=>+ len -�?�/ # man
��9,!'=�+ len - .�/ !

is normal
�,�@!
#4��+ len - .�/BA man

�&�'!*!';��
man

�&�'!BCD+ len - .�/�E�F !
norm down

�&�"!
#
is normal

�&�'!HG
�$I3�

sgn
�&�"!(�

exp
�&�'! 5J7 � man

�&�'!*)K+L�
len

�&�'!*!(M
nextfp

����� �"!
#4�
EQfp

�&�	�
prevfp

�����N�O!*!HG
prevfp

���P�N�'!6IQ�
norm down

�
prop nextfp

���P�N�'!*!
round pinffp

����� �"!
#
sgn

�&�'!$G
prevfp

�����R�'!:I
nextfp

����� �"!

The argument R to the rounding function reflects the num-
ber of significant fraction bits after rounding. The notationini�i j ini�i�
_i�ini

denotes the if-then-else construct. Note thatS
, D , � U etc. are integer operations.

Figure 3. Round to Positive Infinity for
Floating-point Triples

prev 1*T ����� �"!$#4�&�"),+�U V*WPX - .�/�0'1 !'=�+PU V*W3X - .�/�0'1
prop next 1*T ����� �"!$#4�&�"),+ U V*W X - .�/�0'1 5J7 !�=Y+ U V*W X - .�/�0'1
next 1*T ���P�N�'!H#4�&�H#

prev 1*T ����� �"!*!$G
prev 1*T ���P�N�'!I
prop next 1*T ���P�N�'!

round pinf 1*T ����� �"!$#4�&�
CDZR!HG[�*\
prev 1*T �����BI �]I !*!I

next 1*T �����YI �2I !

Figure 4. Round to Positive Infinity for Reals
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The structure of the multiplication algorithm and the cir-
cuit suggests a natural decomposition: First verify sepa-
rately the generation of each partial product, and then verify
that the rounded summation of these partial products equals
the output ie. If we verify for each partial product

-
that the

following holds �
�N� � - � �

Booth � - � ���� � D ����
and that � & � R�Q�m h8s ��R�� � �\�
where, R is the precision mode and

�
is the arithmetic

equivalent of a floating-point triple ���^���^����� with an addi-
tional mantissa fraction length

�
such that

� �
sgn � �A� � - �V� XOR sgn � ��� � - �V�

� �
exp �

�
�A� � - �_� G exp �

�
�P� � - �_�@� 3 -�� �

� ��� K
�
�N�@� - � D � L �

K

where the summation is over all partial products, and the
Booth-encoding is done to radix

�^�
.

We decompose the verification tasks into four distinct
steps:

A For each partial product, verify that the expected bit-
vector relation holds between it and the input sources

B Verify that the expected bit-vector relation holds between
the partial products and the rounded product at the out-
put of the rounder logic.

C Show that the bit-vector relations in A and B imply the
corresponding mathematical relations

D Show that the mathematical relations between the in-
puts and the partial products, and the relation between
the partial products and the output imply the expected
mathematical relation between the input and the output

Different kinds of reasoning are required for these steps:
[A] and [B] involve model-checking, step [C] requires rea-
soning about the correspondence between bit-vector and
mathematical relations, and step [D] applies reasoning con-
cerning arithmetics and the flow of computation. Steps [C]
and [D] are performed in the theorem proving domain using
the ThmTac proof tool.

Verification of the actual multiplier hardware followed
the above decomposition idea closely. Nevertheless, map-
ping the abstract decomposition idea into the actual hard-
ware was not trivial. Due to efficiency considerations, a
conceptually clear algorithm tends to become considerably
more fudged as we get closer to its circuit details. For exam-
ple, some computations may be either advanced or deferred
from their logical place, abstract values may be represented
by combinations of signals, and local optimizations may
make it hard to follow the progress of computation in the
circuit.

6 Verifying Floating-Point Multiplication

The overall input-output correctness relation for IEEE
floating-point multiplication can be stated as follows:

IOSPEC � - �qQ��7x df l ��i � ri � ��� � - ��� D ri � �P� � - �V� � � D � � � �o � ri �d& ��Q���� �
round S K ��R�� � �

��� � - � , ��� � - � and & ��Q�� are functions extracting slices cor-
responding to the individual input and output data values.
R specifies the number of significant fraction bits in the
rounded result, and round S K depends on the intended round-
ing mode for the operation. The extra entity

�
in this def-

inition, intuitively denoting the unrounded result, is needed
because of the lack of real numbers in our current proof
framework.

The top-level correctness predicate for the multiplier is
formally stated as a pre-postcondition triple.

�
INIT

� �r]�R K U ��Z\[^]n�X]�R aXc�e � � IOSPEC
�

INIT represents the conjunction of the initial constraints on
the input sources and the environment constraints on the tra-
jectory that binds the control signals to the multiplier. The
trajectory assertion ]�R K U8� - � binds

��� � - � and
��� � - � to input

data signals, and a vector Z�] � � - � of control values to rele-
vant control signals at the time the operation is started, and]�Rnadc�e���Q�� binds & ��Q�� similarly to output signals at the time
the output is ready. Intuitively ]�R K U8� - � and ]�R�adc�e_��Q�� asso-
ciate the input and output states

-
and Q with particular sig-

nal values at particular times in the circuit. Informally, the
statement specifies that the execution of the multiplier logic
begun in any state satisfying the precondition predicate INIT
would terminate in a state satisfying the postcondition pred-
icate IOSPEC. The trajectory function ]�R K U , binds the input
sources and control signals to symbolic boolean values at
the precise instant when the multiplier circuit is expected to
read them. Similarly, ]�R aXc�e is the corresponding trajectory
function on the multiplier output and binds it to symbolic
boolean values at the time when the output is ready. The
hardware, Z_[`] includes the multiplier logic, the the rounder
logic and associated control circuitry.

The first step in the verification (proof step [A]) estab-
lishes the correctness statement for the Booth encoder and
the partial product generator.
g [8� ) ! [ # B i��

INIT
� �r]�R K U ��Z\[^]n�X]�R������n� � PPSPEC 	 �

(1)

Here B is the maximum number of partial products gen-
erated during the multiplication operation, and ]�R ��� � binds
values corresponding to partial product [ to the relevant
signals. The postcondition PPSPEC 	 captures the speci-
fication of partial product

� � 	 as a function of the input
sources:

PPSPEC 	 � - ��Q�� x df



� � 	 ��Q�� �

B Q�Q\]��@�
�
�A� � - ���q[0� D

�
��� � - �
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We model-checked the B predicates in Formula (1) sep-
arately. No significant tool capacity issues were encoun-
tered during this exercise. The exercise cumulatively took
just

�^)
minutes to run on a Pentium 4 system and con-

sumed around
����)

MBytes of memory1 Using a library of
verified transformation rules discussed in Section 2, equiv-
alent arithmetic statements were derived from these model-
checked results.

Next we model-checked a side relation involving the last
partial product.

�
INIT

� � ]�R K U �qZ_[^]n�d]�R �����|� � AUX
�

(2)

where AUX � - �qQ�� x df � � # � 

� � � ��Q��}# ��� �

where � � and
� � are bounds for the potential values of

the partial product. The relevance of this will become clear
later in the proof flow.

We then establish the relation between the partial prod-
ucts and the rounded product at the output of the rounder
logic (Proof Step [B]).
�
INIT

o
AUX

o
RANGE

� � ]�R ��� �qZ_[^]n�d]�Rnadc�e�� � ADDSPEC
�

(3)

ADDSPEC � - �qQ��7x df �
�

fp �X& ��Q��\�7� roundfp ��R��n�������^��� �V�V���
w �	��RR��� � �

sgn � ��� � - ��� XOR sgn � ��� � - ���
� �

exp � ��� � - ��� G exp � ��� � - ���7� 3 -�� �
� � z �	 { �



�N� 	v� - � D � L �\� 	 � �V�

The relation given in Equation 3 is model-checked after
disconnecting the signals in the hardware that logically map
to the partial products from their fan-in. This has the effect
of model-checking the relation against the portion of the
multiplier that comprises the pipelined Adder network, the
rounder logic, and the control circuitry. The precondition
needs to be appropriately strengthened by AUX and RANGE
in order to constrain the partial product vectors to legal val-
ues. We also know a priori that the final unrounded mantissa
after multiplication is a floating-point number in the inter-
val [1, 4). The precondition RANGE captures this notion by
constraining the range of the product mantissa to be in the
bounded interval

�	��! � # ���
� � tq� . The verification of Re-
lation 3 involves a fairly significant model-checking effort.
You may recall from the circuit description in Section 3 that
floating-point multiplication operations describe two itera-
tions of the CSA Wallace network. The model-checking
effort included the entire adder network plus the feedback
logic and furthermore, subsumed the entire rounding logic
as well. The verification of Relation 3 thus involved some� �

million BDD nodes and the model-checking took about� )
minutes on a

�^i 

GHz Pentium 4 machine using about��i��

GBytes of memory.
In our efforts to compose the above model-checked re-

sults to imply the overall correctness statement, we go

1A significant portion of which is used to load the circuit alone

through an intermediate step (Proof Step [C]) to transform
the model-checked relations specified in the bit-vector do-
main using BDDs to the mathematical domain so that it is
amenable to reasoning in a theorem–proving environment.
We developed a library of bit-vector integer arithmetic op-
erations to help us bridge this gap and formally verify the
transformations to be sound.

As a preliminary sub-task in Proof Step [D], we com-
bined the B different model-checked results given by rela-
tion (1) to imply the correctness of the entire partial product
generation algorithm. We achieved this by applying a post-
condition conjunction inference rule2.�

INIT
� � ]�R K U8�qZ_[^]n�d]�R ��� � � PPSPEC

�
(4)

PPSPEC x df

��
	 { � PPSPEC 	

Verifying the above composite relation is beyond the capac-
ity of model-checking but since it only requires reasoning
about conjuncted results that have been individually model-
checked, we were able to easily discharge the obligation in
the theorem proving domain using ThmTac.

Next, we use a postcondition conjunction rule to com-
bine relations 2 and 4�

INIT
� �r]�R K U ��Z\[^]n�X]�R������ � AUX

o
PPSPEC

�
(5)

Formulas 3 and 5 with the help of an appropriate collec-
tion of lemmas ought to imply the high-level correctness
statement. In fact, much of the resulting theorem prov-
ing effort is involved in stating and verifying lemmas and
connect them up appropriately in order to discharge the top
level theorem. You may recall that in verifying Formula 3,
we had to disconnect the circuit at the partial product gen-
eration stage. The theorem proving effort essentially serves
to “stitch together” the apparently disjoint relations by con-
necting the partial products back up to the input sources. We
use ThmTac to help us bridge this gap and ultimately estab-
lish a condition that relates the unrounded product,

�
(see

definition in Section 5) to the input sources. We formally
state this requirement as

� INIT
o

PPSPEC � j MULT (6)

where MULT is the equality relation �� � ���� D ���� . From the
definition of

�
, the mantissa component of the unrounded

product � is defined in terms of the partial products. We
would like to instead specify it directly in terms of the input
sources and the relation given by Formula 6 is crucial to
bridging this gap. The resulting proof is fairly involved and
essentially boils down to verifying the correctness of the
booth encoding algorithm.

PPSPEC j � K
�
� � � - � D � L �

K � ���� D � K
Booth � - � ���� �

2For a general formulation of the inference rules, see [11]
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From Formulas 4 and 6 and a pre-post transfer inference
rule, we get

�
INIT

� � ]�R K U �qZ_[^]n�d]�R������ � PPSPEC
o

MULT
�

(7)

Based on Formulas 3 and 6, and using a pre-condition
strengthening inference rule, we next establish
�
AUX

o
RANGE

o
PPSPEC

o
MULT

� � ]�R����:��Z_[`]n�X]�R aXc�e ��
ADDSPEC

�
Using a pre-post condition transfer inference rule, we get
�
AUX

o
RANGE

o
PPSPEC

o
MULT

� � ]�R����:��Z_[`]n�X]�R aXc�e ��
ADDSPEC

o
MULT

�
(8)

We next establish that the correct range for the mantissa
product is correctly implied by the partial product specifi-
cation PPSPEC and the relation MULT that connects the
partial product sum to the product of the source inputs.

� INIT
o

PPSPEC
o

MULT � j RANGE

With this, and the relations given by Formulas 5 and 7, we
can now state the following

�
INIT

� �r]�R K U8��Z_[`]n�X]�R ��� �
�
AUX

o
RANGE

o
PPSPEC

o
MULT

�
(9)

With an additional statement that relates the three condi-
tions ADDSPEC, MULT and IOSPEC, we are ready to com-
pose the input-output correctness relation.

ADDSPEC
o

MULT j IOSPEC (10)

Here IOSPEC is the top-level IEEE specification for float-
ing point multiplication. Observe that ADDSPEC is de-
scribed with round � � while IOSPEC is defined in terms
of the mathematical notion of rounding. The translation
from round � � to round S K , is achieved by applications of the
rounding theorem library discussed in Section 4.

The input-outputcorrectness relation follows quite easily
from the Formulas 8,9 and 10.

�
INIT

� �r]�R K U8��Z_[`]n�X]�R�aXc�e�� � IOSPEC
�

(11)

In addition to the rounding specification, the functions
round� � and round S K also incorporate the specification for
flags and faults.

Relations specified by Formulas 1, 2 and 3 were estab-
lished using the STE model-checker. The three separate
model-checking runs cumulatively took about an hour to
complete on a Pentium 4 machine. Composing the model-
checked results and stating and verifying the rest of the re-
lations was done using the ThmTac proof tool. A total of ���
theorems and lemmas were stated and verified during the
proof development.

7 Discussion

The input-output statement captures the IEEE specifica-
tion for floating-point multiplication. This includes check-
ing for the correctness of the rounded result and the right
generation of flags and faults. The specification assumes
that the input sources are normal and denormals are han-
dled in software.

The input-output specification for the multiplier checked
for the correctness of the rounded result and the gen-
eration of flags and faults. The verification was com-
pleted for all 4 IEEE rounding modes and the 3 precision
modes: single, double and extended. It took three per-
son months to develop the complete proof framework and
verify the Pentium 4 multiplier against its IEEE floating-
point specification. The underlying libraries supporting bit-
vector integer arithmetic operations and the theory of pre-
postcondition triples were already in place at the time, and
thus significantly reduced the proof development time.

The STE model-checking effort is BDD based. BDDs
are well understood and there has been considerable activ-
ity in academic and industrial circles to research and de-
velop better and more efficient BDD packages. Therefore
it is conceivable that BDD model-checking techniques can
benefit more readily from these advances than most other
approaches [4, 17].

An observation about the model-checking effort stated
in Proof Step [B] in Section 6. At the outset, we had lim-
ited our scope to verifying the relation between the partial
products and the unrounded product at the output of the
Adder network. We were then hoping to establish as a sep-
arate model-checking exercise, the relation between the un-
rounded product and the rounded result at the output of the
rounding logic. However, this proved to be an extremely
challenging task. The BDD representation for the sum and
carry that make up the unrounded result was complicated
and grew exponentially as the size of the multiplication op-
eration. Including the rounding logic in the model-checking
exercise much to our surprise, allowed for fairly compact
BDD representations and we were able to quite easily es-
tablish rather straightforwardly the relation in Proof Step
[B]. The benefits of this were twofold - the model-checking
specification could now be expressed in a more natural way
and secondly,much of the logic and the signal timing issues
internal to the adder network and rounder logic could now
be easily abstracted away. In contrast model-checking tech-
niques based on BMDs in particular, cannot take advantage
of this. The rounder logic cannot be efficiently represented
using BMDs and therefore such techniques use a mix of
BMDs and BDDs to complete the verification and subse-
quently the resulting specification tends to have its fair share
of implementation details.

Underlying our verification methodology is the philo-
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sophical belief that verifying hardware systems is an activ-
ity analogous to software programming. It involves orga-
nizing primitive proof steps, each of which can be mechan-
ically verified, into a cohesive solution that establishes the
intended high-level specification. Based on this view, our
trust in being able to complete a verification task is based
primarily on our decomposition skills and the robustness
of the underlying primitive verification steps. To be sure,
push-button automation has its place in this activity but it
can only serve as a supplement to the above mentioned,
when tackling a hard verification problem. For more dis-
cussion please see [12].

The success of our approach is particularly significant in
an industrial setting. It is well known that success of any
formal verification effort is particularly sensitive to the way
hardware is described. Most work in multiplier verification
that we come across, either involve verifying designs that
have been tailored for verification or are at a sufficiently
high level of abstraction so that much of the challenging
problems arising due to design size and complexity are not
even encountered. We started work on the Pentium 4 multi-
plier logic fairly late in the CPU design project after much
of the design was already in place. As a result, we could not
provide any input to the design team to make the RTL logic
more verification friendly. The design was implemented in
all its detail with performance criteria like throughput, area,
power consumption etc. being the primary concerns. This
compounded our verification problem. Decomposing our
model-checking tasks purely based on functionality of the
hardware was not feasible anymore since quite often logic
related to a certain functionality was now spread across the
design. Furthermore, we did not have the luxury of being
able to modify the design when it severely stressed our ver-
ification tools. Instead, we had to investigate alternate ap-
proaches to specifying and verifying these portions of the
design. Presence of complex testability logic, power sav-
ing mechanisms and close interaction with other hardware
logic added to our verification woes. The multiplier circuit
is in itself a challenging verification problem. The presence
of these additional circuitry adds a significant dimension to
our verification effort.

Our proof for floating-point multiplication includes the
multiplier, the rounder logic and the associated control cir-
cuitry. We apply our proof technique to the actual hardware
model that makes it to silicon, thus increasing our confi-
dence in the correctness of the final product. The multi-
plier RTL implementation exceeds

�
�
)^)

state elements and
has approximately

� ��) � )^)�) gates. The floating-point mul-
tiplier resides in a tightly integrated RTL environment that
includes the divider, square root and the rounder logic. This
description spans some

� ) � )�)�) HDL lines. In our experi-
ence, no single technique, either state-based model check-
ing or theorem proving would be able to pragmatically han-

dle such a large verification exercise. Verification claims
based solely on either of these approaches appear to make
limiting assumptions about the design or verify only an ab-
stracted view, later synthesized to hardware.

Our verification approach is primarily characterized by
three attributes: 1) Completeness, 2) Ease of re-use and 3)
Scalability. The advantages of our approach are manifold.
The input-output correctness relation is both succinct and
complete, free from implementation details. This makes it
easier to review the correctness of the specification and fur-
thermore, by distancing ourselves from the design, we avoid
mimicking its behavior in our proofs. Our approach ensures
complete verification, in that we work on a representation of
the actual circuit and our proof decomposition is guaranteed
to be sound by the underlying deductive engine. With rela-
tively minor effort, we have been able to apply our general
proof framework to the verification of the entire family of
multiplication operations performed by the Pentium 4 mul-
tiplier. Writing specifications at a high-level of abstraction
permits us to do this. For instance, the 2 pass nature of
the floating-point operation discussed in Section 3 and later
in Section 6 had no significant impact on the verification
and the same model-checking framework could be used to
verify the other multiplication operations. None of the rea-
soning developed using the ThmTac proof tool involves any
references to circuit details. The deductive framework is
thus quite robust evidenced by the ease with which they
have been ported to multiplier proofs for other Intel CPU
design proliferations.

No report on a Formal verification approach is really
complete without saying a few words on its bug detecting
capabilities. We started this effort rather late in the project
design cycle after a considerable amount of time and effort
had already been invested in traditional simulation–based
testing and other formal verification techniques. As a result,
no additional errors surfaced during our verification effort.
However, we have had a lot of success when we ported the
entire proof framework to newer design proliferations and
quickly isolated hard to detect corner cases that were being
violated in the implementation.

Formal Verification proofs are notorious for getting out-
of-date with designs changes and it usually requires some
effort to keep them in synchronization with live industrial
circuits. On the other hand, feasibility of any formal veri-
fication technique employed in an industrial setting, is pri-
marily governed by its capacity to handle large and arbitrary
complex hardware and the support it provides to proof de-
velopment so as to resist obsolescence in the face of contin-
ual design changes. Our proof framework is robust enough
to handle the frequent and non-trivial functional changes
made to the Multiplier RTL hardware. One of the primary
reasons for this is that the verification environment allows
us to verify large portions of the hardware while making
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sparing assumptions on the design environment and keeping
our references to the internal logic to a minimum. More-
over, we crafted the specifications carefully so as to capture
the intended behavior without paying much attention to the
actual implementation.

8 Conclusion

We presented a formal verification case study of an
industrial-strength floating-point multiplier circuit, using a
combination of theorem-proving and BDD-based model-
checking techniques. By performing the entire verification
under a unified framework, we eliminate the possibility of
introducing a whole class of errors that may arise from in-
correct translation or unsound assumptions, into our proofs.
We believe our approach has the added benefits of provid-
ing a sound framework for tight integration of the verifica-
tion techniques and a mechanization for the formal proof of
correctness of an industrial strength multiplier logic.
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