
o
ig
s
o
t
s
e

n

s
e

h
.

ie

n
h
o

le
s
p
s

s
e
s
n
f

a
h
I

s

s
t

,
d,

est,

n
g
he
to
ism
ely.
nd

lly
er
he
in
all
cks
he
line
the

n
est
ny

d
ng

th
st
ou
re

5].
an
ion
is

art

An Integrated System-On-Chip Test Framework
Erik Larsson and Zebo Peng

Embedded Systems Laboratory
Department of Computer and Information Science,

Linköpings Universitet, Sweden.
 Abstract1

In this paper we propose a framework for the testing
system-on-chip (SOC), which includes a set of des
algorithms to deal with test scheduling, test acce
mechanism design, test sets selection, test parallelizati
and test resource placement. The approach minimizes
test application time and the cost of the test acce
mechanism while considering constraints on tests, pow
consumption and test resources. The main feature of o
approach is that it provides an integrated desig
environment to treat several different tasks at the same tim
which were traditionally dealt with as separate problem
Experimental results shows the efficiency and the usefuln
of the proposed technique.

1. Introduction

The increasing complexity of digital systems has led to t
need of extensive testing and long test application times
is therefore important to schedule the tests as concurren
as possible and to design an access mechanism for effic
transportation of test data in the system under test.

When developing the test schedule, conflicts a
limitations must be carefully considered. For instance, t
tests may be in conflict with each other due to the sharing
test resources; and power consumption must be control
otherwise the system may be damaged during te
Furthermore, test resources such as external testers sup
a limited number of scan-chains and have a limited te
memory which also introduce constraints on te
scheduling. For the test designer, it is also important to g
an early impression on the systems overall te
characteristics in order to develop an efficient test solutio

Research has been going on in developing techniques
test scheduling, test access mechanism design
testability analysis. For example, a technique to help t
designer determine the test schedule for SOC with Built-
Self-Test (BIST) is proposed by Bensoet al. [1]. In this
paper, we combine and generalize several approache
order to create a framework for SOC testing where:

1. This work has partially been supported by the Swedi
National Board for Industrial and Technical Developmen
(NUTEK).
f
n
s
n,
he
s
r

ur

e,
.
ss

e
It
tly
nt

d
e
f
d,
t.
ort
t

t
t
t
.
or
nd
e
n

in

h

 • tests are scheduled to minimize the test time,
 • a test access mechanism is designed and minimized
 • test sets for each block with test resource are selecte
 • test resources are floor-planned, and
 • tests are parallelized (i.e. long scan-chains are divided

into several scan-chains of shorter length).

Furthermore, the above tasks are performed under t
power consumption and test resource constraints.

The rest of the paper is organised as follows. After a
overview of related work in Section 2, a system modellin
technique is introduced in Section 3. Factors affecting t
test scheduling and an algorithm which takes them in
account in test scheduling and test access mechan
design are then presented in Section 4 and 5, respectiv
The paper is concluded with experimental results a
conclusions in Section 6 and 7.

2. Related Work

Zorian proposes a test scheduling technique for fu
BISTed systems where test time is minimized while pow
constraints are considered [2]. In order to reduce t
complexity of the test controller, tests are scheduled
sessions where no new tests are allowed to start until
tests in a session are completed. Furthermore, tests at blo
placed physically close to each other are grouped in t
same test session in such a way that the same control
can be used for all tests in a group. The advantage is that
routing of control lines is minimized.

In a fully BISTed system, each block has its ow
dedicated test generator (test source) and its own t
response evaluator (test sink); and there might not be a
conflicts among tests,i.e. the tests can be schedule
concurrently. However, in the general case, conflicts amo
tests may occur. Garget al. propose a test scheduling
technique where test time is minimized for systems wi
test conflicts [3] and for core-based systems a te
scheduling technique is proposed by Chakrabarty [4]. Ch
et al. propose an analytic test scheduling technique whe
test conflicts and power constraints are considered [
Another test scheduling approach is proposed by Mures
et al. where constraints among tests and power consumpt
are also considered [6]. In the latter approach, favour
given to reduce the test time by allowing new tests to st

f

,

;

;

e
is

in

C

ime
ts.
ata

sic
to
In

re
even if all tests in a session are not completed. The draw-
back is the increasing complexity of the test controller. Note
also that in the approaches by Chouet al. and by Muresan
et al., the systems to be tested are not restricted to fully
BISTed systems.

The conflicts among tests can be reduced by using a
wrapper such as Boundary scan [7], TestShell [8] or P1500
[9]. These techniques are all developed to increase test
isolation and to improve test data transportation.

Usually, several test sets can be used to test a block in the
system under test. Sugiharaet al. propose a technique for
selecting test sets where each block may be tested by one
test set from an external tester and one test set from a
dedicated test generator for the block [10].

The effect on test application time for systems tested by
one test set per core using various design styles for test
access with the TestShell wrapper is analysed by Aerteset
al. [11]. Furthermore, the impact on test time using scan-
chain parallelization is also analyzed by Aerteset al. [11].

The use of different test resources may entail constraints
on test scheduling. For instance, external testers have
limitations of bandwidth due to that a scan chain operates
usually at a maximum frequency of 50 MHz [12]. External
testers can usually only support a maximum of 8 scan
chains [12], resulting in long test application time for large
designs. Furthermore an external tester’s memory is limited
by its size.

3. System Modelling

An example of a system under test is given in Figure 1
where each core is placed in a wrapper in order to achieve
efficient test isolation and to ease test access. Each core
consists of at least one block with added DFT technique and
in this example all blocks are tested using the scan
technique. The test access port (tap) is the connection to an
external tester and the test resources,test generator1, test
generator2, test response evaluator1 and test response
evaluator2, are implemented on the chip.

The system is tested by applying several set of tests
where each test set is created at some test generator (source)
and the test response is analysed at some test response
evaluator (sink).

The system in Figure 1 can be modelled as adesign with
test, DT = (C, Rsource, Rsink, pmax, T, source, sink, core,
block, constraint, memory, bandwidth), where:

C = {c1, c2,..., cn} is a finite set of cores; each core
consists of a finite set of blocks,ci = {bi1, bi2,..., bnm}. Each
core consists of at least one block and each blockbij∈B is
characterized by:

pidle(bij): idle power,
parmin(bij): minimal parallelization degree, and
parmax(bij): maximal parallelization degree;

Rsource= {r1, r2,..., rp} is a finite set of test sources;

Rsink= {r1, r2,..., rq} is a finite set of test sinks;
pmax: maximal allowed power at any time;
T = { t1, t2,..., to} is a finite set of tests, each consisting o

a set of test vectors. Several tests form ablock tests(BT).
And each block,bij , is associated with several block tests
BTijk (k=1,2,...,l). Each testti is characterized by:

ttest(ti): test time at parallelization degree 1,par(ti)=1,
ptest(ti): test power at parallelization degree 1,par(ti)=1,
tmemory(ti): memory required for test pattern storage.

source: T→Rsource defines the test sources for the tests
sink: T→Rsinkdefines the test sinks for the tests;
core: B→C gives the core where a block is placed;
block: T→Β gives the block where a test is applied;
constraint: T→2Bgives the set of blocks required for a test
memory(ri): memory available at test sourceri∈Rsource;
bandwidth(ri): bandwidth at test sourceri∈Rsource.
In the above definitions, test time,ttest, test power

consumption, ptest, idle power, pidle, and memory
requirement,tmemory, are given for each of the tests. Th
maximal and minimal degree of parallelization for a test
given byparmax andparmin which determine how much a
scan-chain may be divided. For instance, ifparmax(b31)=2
andparmin(b31)=1 for block 1 at core 3 in Figure 1, then the
scan flip-flops are connected into a single scan-cha
(par(b31)=1) or two scan-chains (par(b31)=2).

4. The SOC Test Issues

In this section the different issues considered by our SO
test framework are discussed.

4.1 Test Scheduling

Scheduling the tests means that the start time and end t
for each test is determined in order to satisfy all constrain
In our approach, the test bus used to transport the test d
is also determined by the scheduling algorithm. The ba
difference of our scheduling approach compared
previously proposed approaches is illustrated in Figure 2.
the approaches by Zorian [2] and Chouet al. [5] no new
tests are allowed to start until all tests in a session a

Figure 1. An illustrative example.

Test Response

Test Generator 2

core 1
wrapper

block 1
scan-chain 1

block 2
scan-chain 2

tap

Test Generator 1

Test Response

scan-chain 3

core 2
wrapper

block 1
scan-chain 1

core 4
wrapper

block 1
scan-chain 1

block 2
scan-chain 2

scan-chain 3

core 3
wrapper

block 1

scan-chain 1

scan-chain 2
Evaluator 2Evaluator 1

ith

ld

st
h a
l

r
er
e

e

completed. In their approaches test3 and test4 would not be
allowed to be scheduled as in Figure 2. However, in the
approach proposed by Muresanet al. [6], test3 is allowed to
be scheduled as in Figure 2 if it is completed no later than
test1. It means that test4 is still not allowed to be started
beforetest1 finishes.

In our approach it is optional if tests may start before all
tests in a session are completed or not. If it is allowed, test3
and test4 can be scheduled as in Figure 2, which gives more
flexibility, but entails usually a more complex test
controller.

Let a scheduleS be an ordered set of tests such that:

where S(ti) defines the position of testti in S; tstart(ti)
denotes the time when testti is scheduled to start, and
tend(ti) its completion time:

For each test,ti, the start time and the bus for test data
transportation have to be determined before it is inserted
into the schedule,S.

Let the Boolean functionscheduled(ti, time1, time2) be
true if testti is scheduled in such a way that the test time
overlaps with the time interval [time1, time2], i.e.,

An example to illustrate the functionscheduledfor a set
of scheduled tests is shown in Figure 3.

The Boolean functionscheduled(ri, time1, time2) is true
if a sourceri is used by a testtj betweentime1 andtime2, i.e.:

A similar definition is used if a sinkri is scheduled (used
by any test) betweentime1 andtime2.

The Boolean functionscheduled(constraint(ti), time1,

time2) is true if:

The Boolean functionscheduled(wi, time1, time2) is true
when a wirewi is used betweentime1 to time2:

wherebus(tj) is the set of wires allocated for testtj.

4.2 Power Dissipation

In this paper, an additive model used by Zorian [2], Chouet
al. [5] and Muresanet al. [6] for power consumption is
assumed. Letpsch(time1, time2) denote the peak power
betweentime1 to time2, i.e.:

wherescheduled(ti, time)=scheduled(ti, time, time).
As an example, applying the functionpsch(time1, time2)

on the schedule for a system with 4 tests as in Figure 2, w
time1 andtime2 as indicated in the figure, returnsptest(test1)
+ ptest(test3) + pidle(block(test2))+pidle(block(test4)) since it
gives the peak power consumption betweentime1 andtime2.

In our approach, the maximal power consumption shou
not exceed the power constraint,pmax, for a schedule to be
accepted. That is,psch(0, ∞) ≤ pmax.

4.3 Test Source Limitations

A test generator may use a memory for storing the te
patterns. In particular, external test generators use suc
memory with a limited size which may lead to additiona
constraints on test scheduling [12].

The functionmemoryalloc(ri, time1, time2) gives the peak
allocated memory betweentime1 and time2 for a given
sourceri, i.e.:

A test resource may have a limited bandwidth. Fo
instance, external tester may only support a limited numb
of scan chains at a time or there could be a limit in th
available pins for test. This information is given in th
attribute bandwidth for each test resource.

The functionbandwidthalloc(ri, time1, time2) gives the
maximal number of buses allocated betweentime1 and
time2 for a given sourceri, i.e.:

Figure 2. Example of test scheduling.

time

power

test1

test2 test3 test4

time1 time2

power limit

S ti() S tj()< tstart ti() tstart t j()≤ i j≠ ti∀ S∈ t j S∈∀, , ,{ },

tend ti() tstart ti() ttest ti()˙̇ .+=

ti S∈ tend ti() time1< tstart ti() time2>∨()¬∧{ }.

Figure 3. The function scheduled .
time1 time2

test3

test1
test2

test4
test5

time

¬(tend(testi)<time1 ∨ tstart(testi)>time2)

i= 1: ¬(True∨ False) → False
i= 2: ¬(False∨ False) → True
i= 3: ¬(False∨ False) → True
i= 4: ¬(False∨ False) → True
i= 5: ¬(False∨ True) → False
i= 6: ¬(False∨ False) → True

test6

t j S∈∃ r
i

source tj()= scheduled tj time1 t, ime2,() }.∧{

t j S∈ block tj() constraint ti()∈ ∧∃{

scheduled tj time1 time2, ,() }.

t j S w∈∃
i

bus tj()∈ scheduled tj time1 time2, ,() },∧{

max ptest ti() pidle block ti()()– +
ti scheduled ti t ime,()∀

∑

pidle bij() time time1 time2,[]∈,
bi j, B∈∀
∑

,

max tmemory
t j scheduled tj t ime,() r i source tj()=∧∀

∑ t j()

,

time time1 time2,[] }.∈

max tbus t j()
t j scheduled tj t ime,() r i source tj()=∧∀

∑

,

time time1 time2,[] }.∈

It
and

:
d

h,

to

in

test
the

n-

test
y be
y-
hell
test

ed
ed

is
hm

,

4.4 Test Floor-planning

In the general case it is not feasible to assume that all cores
can be tested with only one BIST structure. A block may be
tested by several test sets produced and analyzed at different
test resources. Furthermore, test resources may be shared
among several blocks at different cores. It is therefore
important to consider the routing of the test data access
mechanism. And an efficient placement of test resources in
the system under test must be created in order to minimize
the routing cost associated with the test access mechanism.

4.5 Test Set Selection

Each test set is defined by a test source and a test sink. For
a test set, its test power consumption, test memory
requirement and test application time are defined as
discussed in Section 3. We assume that an arbitrary number
of test sets can be used to test a block.

Due to that the test resources are defined for each test set
it is possible to make a comparison of different test sets not
only in terms of the number of test vectors but also in
respect to test resources and test memory requirement. This
information should be taken into account in our algorithm.

4.6 Test Parallelization

The test time for a test may be reduced if it is parallelized.
This is because dividing a scan-chain into several scan-
chains of shorter length will shorten the test application
time. Formulas for calculating the test time for scan-based
designs are defined by Aerteset al. [11]. Similar to Aertes
et al. we assume that the scan-chain may be divided into
equal portions. To simplify the problem, the degree of
parallelization is assumed to be linear with respect to test
time and test power consumption. The test timet’ test(ti) for
a testti after parallelization is given by:

where ttest(ti) is the test time when parallelization=1 and
par(block(ti)) is the degree of parallelization for the block
whereti is applied.

Assuming that the producttime×poweris constant, we let
the test powerp’test(ti) for a testti after parallelization be
given by:

whereptest(ti) is the test power when parallelization=1.
The parallelization at a block can not be different for

different test sets; the original scan-chain can not be divided
into n chains at one moment and tom chains at another
moment wherem≠n. The function par(bij) denotes the
common parallelization degree at blockbij .

4.7 Test Access Mechanism

A test infrastructure transports, and controls the

transportation of, test data in the system under test.
transports test patterns from test sources to the blocks
the test response from the blocks to the test sinks.

The test designer faces mainly two problems, namely
 • designing and routing the test access mechanism an
 • scheduling the test data transportation.

The system can be modelled as a directed grap
G=(V,A), whereV consists of the set of blocks,B, the set of
test sources,Rsource, and the set of test sinks,Rsink, i.e.
V=B∪Rsource∪Rsink.

An arc ai∈A between two verticesvi andvj indicates a
test access mechanism (a wire) where it is possible
transport test data fromvi to vj. Initially no test access
mechanism exists in the system,i.e. A=∅. However, if the
functional infrastructure may be used, it can be included
A initially.

When adding a test access mechanism between a
source and a core or between a core and a test sink, and
test data has to pass through another core,ci, several routing
options are possible:
1. through the logic of coreci using the transparent mode

of the core;
2. through an optional bypass structure of coreci; and
3. around coreci where the access mechanism is not co

nected to the core.
The advantage of alternatives 1 and 2 above is that the
access mechanism can be reused. However, a delay ma
introduced when the core is in transparent mode or its b
pass structure is used. A test wrapper such as the TestS
has a clocked by-pass structure and the impact on the
time using it is analyzed by Aertes et al. [11].

In the following, we assume that by-pass may be solv
by a non-delay mechanism or that the delay due to clock
by-pass is negligible.

A test wire wi is a path of edges {(v0,v1),.,(vn-1,vn)}
wherev0∈Rsourceandvn∈Rsink.

Let ∆yij be defined as and∆xij as
, where x(vi) and y(vi) are thex-placement

respectively they-placement for a vertexvi.
Initially, the test resources may not be placed. In th

case, their placement must be determined by our algorit
described in the next section.

The distance between vertexvi and vertexvj is given by:

The information of the nearest core in four direction
north, east, southandwest, are stored for each vertex and
the functionsouth(vi) of vertexvi gives the closest vertex
south ofvi and it is defined as:

t'test ti() ttest ti()
par block ti()()
------------------------------------- ,=

p'test ti() ptest ti() par block ti()()× ,=

y vi() y vj()–
x vi() x vj()–

dist vi vj,() yij∆()2
xij∆()2

.+=

south vi()
yij∆
xij∆

--------- 1>
yij∆
xij∆

--------- 1–<∨
 ,

=

y vj() y vi()< i, j≠ min dist vi vj,(){ }.,

the
ed.
ted
ism

ing

d
on
.

ts

,
rder
nly
be
The functionsnorth(vi), east(vi) andwest(vi) are defined in
similar ways. The functioninsert(vi, vj) inserts a directed arc
from vertexvi to vertexvj if and only ifthe following is true:

The functionclosest(vi, vj) gives a vertex,vk, which is in
the neighbourhood ofvi and has the shortest distance tovj.
The functionadd(vi, vj) adds arcs fromvi to vj in the following
way: (1) findvk=closest(vi, vj); (2) add a wire fromvi to vk;
(3)if vk = vj, terminate otherwise letvi=vk and go to (1).

5. The Algorithm

In this section the issues discussed above are combined into
an algorithm. The algorithm assumes that the tests are
initially sorted according to a keyk which characterizes
power(p), test time(t) or power×test time(p×t).

Let P be an ordered set with the tests ordered based on the
keyk. If new tests are allowed to be scheduled even if all tests
in a session are not completed the functionnexttime(told)
gives the next time where it is possible to schedule a test:

otherwise functionnexttime(told) is defined as:

The algorithm is depicted in Figure 4 and it can basically be
divided into four parts for:
 • constraint checking,
 • test resource placement,
 • test access mechanism design and routing, and
 • test scheduling.

A main loop is terminated when there exists a block test (BT)
for all blocks where all tests within the BT are scheduled. In
each iteration of the loop over the tests inP a testcur is
checked.

If the parallelization degreeis fixed for the block,i.e.some
tests have been scheduled for the block,par=par(bij)
otherwise it is computed:

which is the minimum among the available power and the
available bandwidth of the test source.

A check is also made to determine if all constraints are
fulfilled, i.e. it is possible to schedule testcur at time:
 • ¬∃tf (tf∈BTijk∧tf ∈S∧cur∉BTijk) checks that another

block test set for current block is not used,
 • par≥parmin(bij) checks that the current parallelization

degree is larger than the minimal level,
 • ¬scheduled(va, time, tend) checks that the test source is

not scheduled duringtime to tend,
 • ¬scheduled(vc, time, tend) checks that the test sink is not

scheduled duringtime to tend,
 • ¬scheduled(constraint(cur), time, tend) checks that all

blocks required forcur are not scheduled duringtime to

tend, and
 • the available memory test sourceva is checked to see if:

memory(va)>tmemory(cur)+memoryalloc(va, time, tend).

Then the placement of the test resources are checked. If
test resources are placed it is checked if they are to be mov

When the placement of the test resources for the selec
test is determined, the corresponding test access mechan
is designed and routed. The basic question is if some exist
wires can be used or new wires must be added.

If no routed connection is available connecting all require
blocks, the distance for adding a completely new connecti
is re-calculated due to a possible moving of test resources

Theextend wirestep in the algorithm extends needed par
to connect the test resources and block with a given wire.

The computational complexity for the above algorithm
where the test access mechanism design is excluded in o
to make it comparable with other approaches, comes mai
from sorting the tests and the two loops. The sorting can
performed using a sorting algorithm atO(n×log n). The worst

south vi vj,() north vi vj,() west vi vj,() east vi vj,()∨ ∨ ∨{ }.

tend ti() min tend ti()() told tend ti() ti S∈∀,<,{ },

tend ti() max tend ti()() told tend ti() ti∀ S∈,<,{ }.

par min parmax bij() pmax psch time tend,()–() p cur()⁄, ,{=

bandwidth va time tend, ,() bandwidthalloc va time tend, ,(),–

Sort T according to the key (p, t or p×t) and store the result in P;
S=∅, time=0;
until ∀bpq∃BTpqr∀ts∈S do

for all cur in P do
bij=block(cur); va=source(cur);
vb=ci; vc=sink(cur);
par=determine parallelization degree;
tend=time+ttest(cur)/par;
ptest(cur)=ptest(cur)×par;
if all constraints are satisfied then

¬scheduled(va, 0, tend) floor-plan va at vb;
¬scheduled(vc, 0, tend) floor-plan vc at vb;
for all required test resources

new=length of a new wire wj;
u=number of wires connecting va, vb and vc, and are not

scheduled from time to tend;
v=number of wires connecting va, vb and vc;
for all min(v-u,par) wj

extend=extend+length of an available wire(wj);
if (par>u)

extend=extend+new×(par-u);
move=par(va) × min{ dist(va, vb),dist(vb, vc)};
if (move≤min{ extend, new× par})

vx, vy=min{ dist(va, vb), dist(vb, vc)} , dist(va, vb)>0,
dist(vb,vc)>0

add par(va) wires between vx and vy;
if (vx=source(cur)) then floorplan va at vb;
if (vy = sink(cur)) then floorplan vc at vb;

set parallelization;
for r = 1 to par

if there exists a not scheduled wire during time to tend
connecting va, vb and vc it is selected

else
if (length of a new wire < length of extending a wire wj)

wj=add(va, vb) + add(vb, vc);
else extend wire;

schedule cur and remove cur from P;
time = nexttime(time).

Figure 4. The system test algorithm.

e
tter

3
its

e

n
sor

d
re
er
n
the
case for the loops occurs when only one test is scheduled in
each iteration resulting in a complexity given by:

The total worst case execution time isn×log + n2/2 +n/2
which is ofO(n2). For instance, the approach by Garget al.
[3] and by Chakrabarty [4] both have a worst case
complexity ofO(n3).

6. Experimental Results

We have performed experiments to show the efficiency of
the proposed algorithm.

6.1 Benchmarks

We have used the System S presented by Chakrabarty [4],
and ASIC Z design presented by Zorian [2] with added data
made by Chouet al. [5] (see the floor-plan in Figure 5). We
have also used one design consisting of 10 test presented by
Muresan et al. [6] and an industrial design with
characteristics given in Table 1. The power limitation for the
industrial design example is 1200 mW and only one test
may use the test bus or the functional pins (fp) at a time.
Furthermore block-level tests may not be scheduled
concurrently with top-level tests.

6.2 Test Scheduling

We have compared our algorithm using initial sorting based
on power(p), time(t) and power×time(p×t) with the
approaches proposed by Zorian [2] and Chouet al. [5]. We
have used the same assumptions as Chouet al. and the
results are in Table 2. Our approaches results, in all cases, in
a test schedule with three test sessions (ts) at a test time of
300 time units which is 23% better than Zorian’s approach
and 9% better than the approach by Chouet al.

In System S, no power constraints are given and therefore
only test scheduling using initial sorting of tests based on
time is performed. Our approach finds the optimal solution,
see Table 3.

We have also compared our technique with the technique
proposed by Muresanet al.[6]. In this case we use the same
assumption as Muresanet al.which assumes that new tests

can start even if all tests are not fully completed in th
current test session. In all cases our technique achieve be
solutions, see Table 3.

Finally, the results on an industrial design are in Table
where the industrial designer’s solution is 1592 time un
while our test scheduling achieve a test time of 1077 tim
units in all sorting variations which is 32.3% better

All solutions using our technique were produced withi
a second on a Sun Ultra Sparc 10 with a 450 MHz proces
and 256 Mbyte RAM.

6.3 Test Resource Placement

In the ASIC Z design all blocks have their own dedicate
BIST structure. Let us assume that all ROM blocks sha
one BIST structure and all RAM memories share anoth
BIST structure; the rest of the blocks have their ow
dedicated BIST structure. Using our placement strategy
test resources in ASIC Z will be placed as in Figure 5.

P i–()
i 0=

P 1–

∑ n
2

2
----- n

2
---+=

Figure 5. ASIC Z floor-plan.

RAM 2

(i)

(f)

(c)

(d) (e)

tg.ram

sa.ram
sa.rf

tg.rf

tg.rl1 sa.rl1

(10,20)

(30,10)

(40,10) (50,10)

(40,30)

RL 2
(g)tg.rl2 sa.rl2(40,20)

RL 1

tap
(50,20)

RFRAM 1RAM 4ROM 2

(b)

sa.rom

(20,10)

ROM 1

(a)

tg.rom

(10,10)

RAM 3

(h)(20,20)

Test Block Test Test
time

Idle
power

Test
power

Test
port

B
lo

ck
-le

ve
l t

es
ts

A Test A 515 1 379 scan

B Test B 160 1 205 testbus

C Test C 110 1 23 testbus

E Test E 61 1 57 testbus

F Test F 38 1 27 testbus

I Test I 29 1 120 testbus

J Test J 6 1 13 testbus

K Test K 3 1 9 testbus

L Test L 3 1 9 testbus

M Test M 218 1 5 testbus

To
p-

le
ve

l
te

st
s

A Test N 232 1 379 fp

N Test O 41 1 50 fp

B Test P 72 1 205 fp

D Test Q 104 1 39 fp

 Table 1. Characteristics of the industrial design.

ts
Zorian Chouet al. Our algorithm

Blocks Time Blocks Time Blocks Time

1 RAM1,
RAM4,RF 69 RAM1, RAM3,

RAM4, RF 69 RL2,RL1,
RAM2 160

2 RL1, RL2 160 RL1, RL2 160 RAM1,ROM1,
ROM2 102

3 RAM2, RAM3 61 ROM1, ROM2,
RAM2 102 RAM3,

RAM4, RF 38

4 ROM1, ROM2 102

Test time: 392 331 300

 Table 2. ASIC Z test scheduling.

m
ue
e
are
the
a

nd
to

A

s,

I

g,

,

0/.
r

e

6.4 Test Access Mechanism Design

Assume the floor-planning of ASIC Z as in Figure 5 where
each block is placed according to its (x, y) coordinates. For
instance, RAM2 is placed at (10,20), which means that the
center of RAM2 has x-coordinate 10, and y-coordinate 20.
Assume that all tests are scan-based tests applied with an
external tester allowing a maximum of 8 scan chains to
operate concurrently.

In this experiment we allow a new test to start even if all
tests are not completed, see results in Table 4.

The test schedule and the test bus schedule achieved with
initial sorting of tests according to power×time and
considering idle power is in Figure 7. The total test access
mechanism length is 360 units and it is routed as in
Figure 6. All solutions were produced within a second on a
Sun Ultra Sparc 10 with a 450 MHz processor and 256
Mbyte RAM.

7. Conclusions

For complex systems such as SOCs, it is a difficult proble
for the test designer to develop an efficient test solution d
to the large number of factors involved. In this paper w
propose a framework where several test-related factors
considered in an integrated manner in order to support
test designer to develop an efficient test solution for
complex system. An algorithm has been defined a
implemented, and experiments have been performed
show its efficiency.

References
[1] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y. Zorian,

High-Level EDA Environment for the Automatic Insertion of
HD-BIST Structures,JETTA,Vol.16.3,pp179-184,June 2000.

[2] Y. Zorian, A distributed BIST control scheme for complex
VLSI devices,Proc. of VLSI Test Symp., pp. 4-9, April 1993.

[3] M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C. Majithia,
A New Test Scheduling Algorithm for VLSI Systems,Proc.
of the Symp. on VLSI Design, pp. 148-153, November 1999.

[4] K. Chakrabarty, Test Scheduling for Core-Based System
Proc. of Int. Conf on CAD, pp. 391-394, January 1991.

[5] R. Chou, K. Saluja, V. Agrawal, Scheduling Tests for VLS
Systems Under Power Constraints,IEEE Trans. on VLSI
Systems, Vol. 5, No. 2, pp. 175-185, June 1997.

[6] V. Muresanet al., A Comparison of Classical Scheduling
Approaches in Power-Constrained Block-Test Schedulin
Proc. of Int. Test Conf., pp. 882-891, 3-5 October 2000.

[7] H. Bleekeret al., Boundary-Scan Test:A Practical Approach
Kluwer Academic Publishers,ISBN 0-7923-9296-5, 1993.

[8] E. J. Marinissenet al., A Structured and Scalable Mechanism
for Test Access to Embedded Reusable Cores,Proc. of
International Test Conf.,pp 284-293, October 18-23, 1998.

[9] IEEE P1500 Web site. http://grouper.ieee.org/groups/150
[10] M. Sugihara, H. Date, H. Yasuura, A Test Methodology fo

Core-Based System LSIs, IEICE Trans. on Fund.vol. E81-
A, No. 12, pp. 2640-2645, December 1998.

[11] J. Aerts, E. J. Marinissen, Scan Chain Design for Test Tim
Reduction in Core-Based ICs,Proceedings of the
International Test Conference, pp 448-457, 1998.

[12] G. Hetheringtonet al., Logic BIST for Large Industrial
Designs: Real Issues and Case Studies,Proceedings of the
International Test Conference,pp.358-367, 1999.

Design Approach Test time Improvement

Chakrabarty’s

design case [4]

Chakrabarty 1204630 -

ours(t) 1152810 4.3%

Muresan’s

design case

[6]

Muresan 29 -

ours(p) 28 3.4%

ours(t) 28 3.4%

ours(p×t) 26 10.3%

Industrial

design

designer 1592 -

ours(p) 1077 32.3%

ours(t) 1077 32.3%

ours(p×t) 1077 32.3%

 Table 3. Results on the designs by Chakrabarty and
Muresan as well as the industrial design.

Initial sorting Test time Test access mechanism

power 300 360

time 290 360

power×time 290 360

 Table 4. Results on ASIC Z.

Figure 6. ASIC Z with test data access mechanism.

i h

f

a b c ed

tap

g

(2)

(4)(3)

(1)

Figure 7. Test schedule for ASIC Z.

time

power/test bus

(a)

(b)(c)

(d)(e)

(g)

(f)

(h)

(i)

power limit

134 160 236 290

1

2

3

4

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

