A Model for Describing Communication between Aggregate Objects in the
Specification and Design of Embedded Systems

Kjetil Svarstad Gabriela Nicolescu, Ahmed A. Jerraya
SINTEF Telecom and Informatics TIMA Laboratory, SLS group
Signal Processing and Systems Design group 46, Avenue Elix Viallet
N-7465 Trondheim, Norway 38031 Grenoble CEDEX, France

e-mail: Kjetil.Svarstad@informatics.sintef.no e-mail: Gabriela.Nicolescu@imag.fr

Abstract In [10] we presented a communication model for a
higher level system description, especially useful for object-
The elevation of design description abstractions is a well oriented specifications and descriptions. The novel ap-
accepted technique for handling the complexity and short- proach to communication abstractions was caltegned
ening the design time of modern embedded systems. It isommunicatiorand realizes a most abstract way of think-
shown that abstractions for communication are as impor- ing about the communication, the idea of the connectionless
tant as for behaviour for specification and system level ab- service level. Objects have service access points defined
stractions, and an extension on a novel higher level com- by names, and other objects may call on these services by
munication mechanism which has features for supporting these names. In terms of description, it closely resembles
the description of complex aggregate associations betweerhigh level specifications. This theory and communication
objects in specifications such asiL is investigated. The primitives has been extended to thggregate named com-
communication primitives have been implemented as extenmunicationpresented in this paper, and this is meant to offer
sions to SystemC, and a comprehensive example ftima the easy mapping and description of complex named asso-
specification through functional specification down to an ciations between aggregate classes and objects such as rela-
executable SystemC decription is included. tions in the standardized object-oriented specification nota-
tion umL [9].
In the area of communication and interface synthesis the
: communication models play an important role. Examples
1. Introduction are found in [7], [12], [3], [4], and [2].

Higher abstraction levels in the description of embedded 2. Abstraction levels in communication
systems enable the handling of complexity, reuse of descrip-

tions and modules, and also a design starting point which is
closer to the initial system specification. These are all im-
portant solutions to closing the productivity gap, decreasing
development time and cost, and increasing product quality
while lowering production cost.

In terms of the domains the systems are described with
regard to, the predominant ones for lending themselves to
abstraction is time, behaviour and communication. b&e
haviour domaincan be broken down into several subdo-
mains depending on typing possibilies such as type struc-
tures and data encapsulation. Time domainwill move
from the continuum of time through discrete time, higher
level events and cycles, up all the way to where time is
just local ordering, and a global order is at best partial.
We will concentrate on the communication abstractions,
though, and they are introduced in the following section. e at the register transfer level(RTL), communication

The basic properties of the abstraction levels for com-
munication are shown in Table 1. Do note that what is
labeledDriver level Message leveland Service levehll
constitute what is normally (e.g. as in [1]) denoted the sys-
tem level. The reason for differentiating them according to
communication abstractions is a matter of the specification
and design process—in the specification phase a require-
ment specification and also a top-level functional specifica-
tion will typically entail servicesrendered to the user and
the system environment. An executable specification at this
level should thus enable the modeling of such service and
their requests.

The main characteristics of the abstraction levels can be
summarized by:

Abstraction Communication Encapsulation Description Typical primitive
Level
Media | Data type | Behaviour
Service Type-resolved | Universal name| Routing Classes Specification request(print,device,file)
dynamic net spaces + con- (objects), Pack-| languages
crete and alge- ages
braic datatypes
Message Active Concrete Protocol Dynamic SDL, MSC Send(data,disk)
channels with| generic conversion process blocks
infinite FIFO or | datatypes
mailbox
Driver Logical inter- | Fixed enumer-| Driver-level Static Cossap, CSP} Write(data,port)
connections ated datatypes | protocol process blocks,| SpecCharts, Wait until x=y
modules SystemC 1.1
Register Binary Fixed binary | Transmission Modules, VHDL, SystemC | Set(value,port)
Transfer signals data representa; entities 0.9-1.0, Verilog | Wait(clock)
tion

Table 1. Communication abstraction levels

is modeled by physical signals (e.g. shared buses
or point-to-point communication) and communication
primitives are consequently set/reset of signals and
data are instantaneouslyransmitted in binary repre-
sentation. At this level interrupt management and ad-
dress decoding will be explicitly defined. Communi-
cation time is based on the clock cycle, and processes
correspond to finite state machines where each transi-
tion take a clock cycle.

are based on the remote procedural ceitd mech-
anism. The basic modules’ behaviour will be de-
scribed by tasks communicating by sending and re-
ceiving messages. Communication time is non-zero
and non-predictable since data are represented as struc-
tured terms and have no determinate size.

e at the ultimate abstraction level, tkervice levelthe
communication is seen as a combination of requests
and services. A process can request a service from
another (unknown) process, and the underlying proto-
col, connection structure, and essential timing issues
are completely abstracted away. We focus on the mod-
eling of this abstraction level and the necessary and
sufficient communication primitives and their seman-
tics.

e at thedriver level communication is modeled by log-
ical interconnections encapsulating driver level pro-
tocols (e.g. hand shake or finiteros). The prim-
itive communication on the modules’ ports are the
reading and writing of fixed data types in confor-
mity with a certain protocol (e.g. redtandshake or
write_handshake). Communication time is non-zero
and predictable due to data having determinate size.3. Specification level communication
The behaviour of basic modules is described by pro-
cesses realizing calculation steps and communication In the sw community object-oriented methods have
operations. At this level processes correspond to ex-gained a lot of trust because of increased quality and fewer
tended finite state machinesréM) where each tran- errors in thesw products. Also, the reuse of functional-
sition may hide a complex calculation taking several ity through sw components are easier when using object-
clock cycles. oriented descriptions in conjunction with interfaces to mid-

dleware likecorBA andcom. Specification descriptions (or

e at the message levethe different modules of the npotations) such asmL are now standardized, tools offer
system communicate through abstract communicationa short way from a reasonably abstract class specification
channels (active channels). No assumption about com-gown to executable programs. Few-sw codesign, how-
munication implementation is made. Hence, the ac- ever, such a process is not that easy. Synthesiﬁj\ngom
tive channels ensure independent protocol communi-the methods of a simple class may be easily solved through
cation of concrete generic data types by providing ab- pehavioural synthesis, or, as shown in [13], an object-
stract level communication primitives (e.g. send, re- griented description with pre-determined inter-object func-
ceive, put, or get). Such primitives encapsulate all the tjon calls may be synthesised into a distributed embedded
communication details, and the underlying semantics system. However, synthesising from a specification descrip-

1in the respect that there is no functional delay caused by any underly- fion with several classes and their complex and abstract re-

ing protocol, the only delay is due to the physical character of the wires. lationships (or associations), have not been addressed yet.

3.1. Aggregate named communication where7 denotes the type of the port. This means that
when the service group,G,., has been chosen for the port,
Thenamed communicatiotieory [10] is useful for de- a corresponding service from that grouyy;, must be fixed
scribing an executable communication semantic for simple for the function of the port. A port with an empty service

named associations in specifications suchmais. Since all will be called a request port, while a port associated with
associations must be uniguely instantiated in the communi-a service is a service port. Now we can defindratexed
cation types, the use will normally be restricted to: requestas:

e one-to-onelass associations with a unique name. Rz = <NPI, Ny, T, P7>

e many-to-oneclass associations with no callback or NP, is a request port, and the request will be for the
client dependent functionality. named servic&V; of the service groug'G,; associated with
the portN P,. 7 is theindexfor which the request will be

The last restriction is caused by the fact that a number made, andP; is the parameteP of type 7~ that will be
of classes may use a specific named service, but the namef|;rthered onto the requested service.

service itself has no way of deciding which of these classes conversely, aindexed services defined as:

are the actual requesting class. This is too restrictive for

most realistic cases such as the one in Fig. 1 which speci- Ssx=(NP,,J,K,F(P))

fies the class relations in a rather simple access control sys-) .) .

tem. Take for example the association between the unique . WhereJ < K define the index interval for which the ser-
Central class and the unrestricted numberiatess Point vice will respond F(P) is the function of the service ba_sed
classes. Theheck relation models the checking of a re- ©n the parameteP of type 7. A request-service resolution

questing key or id at thelccessPoint, and the access will 1S the pairing:

be granted or not by th€entral. However, it will be neces-

sary for theCentral to know whichAccessPoint is actually Rz :Ssx = (SGnp, = SGyp.,
requesting the access since access rights may be different NT— N

from point to point. This exact problem will also be the y — NP

case between the uniqgue comm®imer resource and the J<I<K)

Door and Light classes. Hence, the aggregate named com-
munication should also include straight forward description
of:

i.e. the signal group of the request and service ports are
equal, and the requested service is equal to the type signa-
ture of the service port, and the requested index is in the
k index interval defined for the service. The resolution *”

signifies a port or process shift, in this case from por,

to N P,, which may be ports of different processes. Tée
e one-to-manylass associations. sponses the function performed on the parametef$P).

The type resolution behind the “;” forms the semantics of
named communication. If resolution is possible betwRen
andS in R : S, then control is passed to the procé&sshe
service procedure executed, and the control passed back to
the proces.

e many-to-onelass associations with possible callbac
and client dependent behaviour.

e many-to-manylass assocations with possible callback
and client dependent behaviour.

This is made possible by including in the named requests
and services a unique identifying index within each service- o)
request namespace. Named communication resembles thiealculus [8] in

Formally we will define the aggregate named communi- (€ Dasic passing of names. Thecalculus works on a
cation as such (the definition is an extension of the namedmu,Ch more fundamental Igve! of communlcatlc_)n,. however,
communication in [10]): while the named communication constitutes primitives on a

The communication spacgs,, ,, is made out of, ser- more practical and descriptive level. Lee et. al. argue in [5]
n,m

vice groupsSG,, andm named portsV P,,. Each service and [6] fo_r the use of higher communication_apstractions in
groupSG; is composed of; services, the description of embedded systems, but limit them to the

message level.
SG;={Ni,...,N}.} o .
! 3.2. Aggregate named communication in specifica-
while the ports are just associated with one possible (in- tion
coming) service each:
In order to illustrate the principle of named communica-
NP; = <SGI, Ny, T> tion, consider the example of an access control system like

check = 1

red>
access 1| open> green”
1 1 1

Key Door Light 4| Timer

Central

~timeout timer=

Figure 1. UML class specification of access Figure 2. Service level UML specification of
control system access control system

description can be mapped into executable code in several;, .. for the actual timer service andneout for the call-
different ways depending on the interpretation of the rela- pack services that the timer should acknowledge upon a spe-
tions between classes. In order to generate for example &ific timeout. Given these types the system modelled with
Java or C++ executable, the named associations must bgervices and requests will look like Fig. 2. The respective

mapped upon deterministic member function calls. The ag-service and request ports of the classes are set according to
gregate mode afiamed communicatigon the other hand, 5 simple specification of the system.

allows the use of simple type definitions instead of deter- every named association in Fig. 1 there will be a re-

ministic function calls, and the functions to be called (ser- 4,65t port at the source and a service port at the destination.
vices) are resolved at run time and not at compile time. For g, example, in Fig. 2, theréd” and “green” associations

the access control example we use the following type def-\,o e the classiceessPoint as source andight as desti-
initions to capture the essential service level behaviour of \o+ion The first level of communication synthesis estab-

the system: lishes a ‘red” and “green” request port forAccessPoint,

type KeyOp = access and two individual fed” and “green” service ports for the
ggg éggfossqupzzefkclose Light class. The fed” and “green” requests are both im-
type LightOp = green | red | off plemented by one single request pprtoftypghtOp since
type TimerOp = timer | timeout request ports span over all possible values of the corre-

sponding type.

The following is a highly functional specification of the
Door class. Although undefined and not yet executable, this
functional description should be easy to understand.

The typeKeyOp represents the service offered to some
reader of the key cards, while thicessOp represents the
service of actually checking the access according to the id of
the key. DoorOp and Light Op directly models the possible
states of the lock and the lightpanel, respectively. Two timer class Door (open, TimerOp, timeout) where

sc.int id, sc_signal<DoorOp> lock The commonCentral class services theheck requests

service open id . = and checks whether the key id is valid.
lock (open)
request timer id (3000, open) class Central (check) where
service timeout id open= lock (close) service check id=
if valid id then return True
The Door class has local state variables for an indéx else return False

and thelock state. The first declared service of typgen
responds to anypen request with the appropriatd, and
the result is opening thiack and requesting &mer event
for its specific id. The latter service is for the callback of
the timeout event, and theéock is then closed.

This was the functional specification of the Access Con-
trol system. At the time being this is an informal descrip-
tion, we have no simulator for this kind of description.
However, the specification is easily transformed into a de-
scription based on aggregate named communication prim-

Thenght clas_s IS S'm."f"“ to théoor class with its twq itives implemented in SystemC as we shall see in the next
services for any id-specific requests for green or red light. section

Both services also request timer events after setting the

light. The timeout event service then turns off the lights.

_ , , 4. Modeling and simulation example
class Light (green, red, TimerOp, timeout) where

int id, LightOp light

service green id True = In order to simulate systems described with aggregate
light (green) named communication, we implemented some classes for

servriiguf;; ti'dm_‘?:ue'd:(woo' green) the respective request and service ports under SystemC.
light (red) These classes can be used to define specific classes for the
request timer id (3000, red) service types in the application along with SystemC (see

service timeout id . = light (off) [11]) descriptions of the behaviour itself. The requests and

In the Timer class there is a service for théner re- services are connected to a behind-the-scehjgxt request

quests which queues the requests with their preferred mesProker (ORB) which takes care of the run-time resolution of
sage parameter and the calling id. When the requested timdequests to services. The classes will be shown in the fol-

arrives, atimeout request is made with the stored id and 1OWing example of the Access Control system. L
message parameter. We define types for the request and service names like in

the specification thus:
class Timer (TimerOp, timer) where

TimeQ timeQ= makeQ typedef enum {open, close} DoorOp;
service timer 0 63 id (time, para) = typedef enum {red, green, off} LightOp;
enterQ timeQ (time, id, para) typedef enum {timer, timeout} TimerOp;
process checkQ (askQ timeQ = typedef enum {card} KeyOp;
let (t, i, p) = getQ timeQ in typedef enum {check} AccessOp

if p th tti ti o . . .
'h P then request imeout 1 p This is exactly the same types as in the functional speci-

When a key is inserted in the reader, a request is madefication. The similarity between specification and the ag-

for whether access will be granted or not. gregate named communication model is remarkably high
for the class declarations also. Take theor class be-
class Key (KeyOp) where
int id low. The OpenDoor local class definition imDoor inherits
process checkKey (keyNr) = the sc_iservice class which is predefined for the underly-
request access id keyNr ing semantics of a single index service. The template pa-

rametersDoorOp and void are the service type and the

The AccessPoint class receivesiccess requests, and X >Vl
parameter type, respectively. The_iservice constructor

check these by a request to tHecessOp request port. If , . w
the access is granted, a requestdpen the lock and turn which must be called for any inheriting classes needs pa-

the light green is made, while denied access requestsda rameters for defining the value of the service type (in this
light. ' caseopen) and the value of the single index. Any service
specific behaviour must be defined in the virtual member

class AccessPoint(AccessOp DoorOp, function iservice which receives as parameters the index

LightOp, access where

int id of the requester and also the parameter itself (in this case
service access id key= void). Likewise, theCloseDoor class also inherits a prede-
if request check id keythen fined service class. However, thi&meOut class is prede-
request open id () fined to be of service typ&imer and of the specific value
request green id True . .
else timeout, and the parameter of type void (see below for def-

request red True inition of TimeOut class). As can be seen, the typing sys-

tem is more restricted for the C++-based SystemC descrip-
tion than for the functional-language based specification.

We can not send along the preferred return-parameter to the

Timer since template parameters must be static and known
at compile time. This fact makes the SystemC based de-
scription a little bit more complex than the functional spec-
ification, and in addition the C++-based language is much
more verbose than the specification.

class Door {

class OpenDoor :

public sc_iservice<DoorOp, void> {
OpenDoor (char *, char =, int);
virtual bool iservice (void);

} = openDoor,

class CloseDoor :
public Timeout {
CloseDoor (int, Door x);
virtual bool iservice (int);
} % closeDoor;

TimerRequestx timer;
bool Open ();
bool Close ();
o}

The TimerRequest class that is instantiated in thiéner
pointer is defined below, and it inherits the irequest class
which defined the underlying semantics of an indexed re-

class Light {

class RedLight :

public sc.iservice<LightOp, void> {
RedLight (char %, char =%, int);
virtual bool iservice (void);

} % redLight;

class GreenLight :

public sc.iservice<LightOp, void> {
GreenLight (char %, char *, int);
virtual bool iservice (void);

} % greenLight;

class OffLight :
OffLight (int);
virtual bool iservice (int);
} * offLight;

public Timeout{

TimerRequestx timer;
bool Set (LightOp);
private :

b

The Light class uses service and request classes for ports
in exactly the same way as thHeoor class, only there are
three service ports of typ€ightOp to capture theyreen,
red, andoff light services. Hence we show no details of the
member functions, the principle is the same as forither
class.

class TimerRequest:

guest port. There is no need to define a local class since public sc_ireques&TimerOp, Timer::dint> {

request classes have no virtual functions to be defined in
order to work. They can readily be used as is.

Now we can define the local services as implemented in
the local service classesservice member function. The
OpenDoor service calls a define@pen member function
in the encapsulatin@oor class, and th&loseDoor class
the inversely equivalentiose function.

bool Door::OpenDoor::iservice (void) {
return Open (); }

bool Door:: CloseDoor::iservice (int code) {
if ((DoorOp) code == close) {
return Close (); }
else return false; }

bool Door::Open () {
if (door) return true ;
else {
Timer::dint p = {3, (int) open};
door = true;
return timer—>irequest (timer, id, d); } }
bool Door:: Close () {
door false;
return true ; }

The use of al'imer request is seen in th@pen member
function of the Door class. It is exactly equivalent to the
functional specification, the verbosity is due to the SystemC
base C++ as mentioned.

TimerRequest(int); }

class Timeout :
public sc_iservice<TimerOp, int> {
Timeout (int); }
TimerRequest and TimeOut as expected by th®oor
and Light classes are an indexed request and an indexed
service class, respectively. They are both of fhewerOp
type.

class Timer {
typedef struct {int time, code} dint;

class TimerS :
public sc_iservicesxTimerOp, dint> {

TimerS (int, int);

virtual bool iservices (int, dint);
} % ts;
TimerRequests tr;

.}

Since the commofimer needs to service an aggregate
number of Doors and Lights, it uses a local service class
inherited from thesc_iservices class. This class uses an
index interval in the definition, and the underlying seman-
tics is that itsiservices member class will be called for all
requests to the proper type and value with an index in the
service interval. Thaservices member will at call time
know the requester’s index, and can use this for eventual

callback functions if appropriate. For example, below is the | Model Specification | Named Behavioural
Timer service port function. It adds the timer value to a ;"g‘;g“”'ca“o” model
queue along with the requester’s index. When the timeout is Toren
reached as tested by théck function, a requestis made to | yjng
the assumed’imeOut port of the original requesting pro- | system 20 85 210
cess. Access
Timer:: TimerS::iservices (int ix, Timer::dint p) { control 50 260

addTQ (p.time, p.code, ix); } system 500°
void Timer:: Tick () { . . .

while (t = chkTQ (t)) Table 2. Size of models using different ab-

if (tr—>irequest (timeout, t—>index, t—>code)) stractions
rmTQ (t); }

The Key class is simply a frontend class for calling
the simulation model and test it out. Th&urd member
function requests entry by thi€eyOp type with theaccess else
value. return lightReg->request (red, id, 0); }
class Key {))

Key (int); Access requests are services by tieckCard service

;K‘ﬂl’ ((:)Jd o of the Central class. This is an interval service of the

priovoate ard (int); AccessOp type since all possible aggregated indexes must

sc.irequeskKeyOp, int> = keyRequest be taken into account. For simplicity, we grant all keys with

int id; }; id from 1 to 5 access, and all others are denied.
bool Key::Card (int code) { class Central {

return keyRequest>request (access, id, code); }

) . class CheckCard :
The ACC@SSPOZTLt C|aSS haS one SerVIC@aTdSeT’UGT fOf pub“c sc_iserviceKAccessOp int > {

the KeyOp type andaccess value. On incoming requests CheckCard (int, int);
on this service, an access request will be made on the bOOrll 'SkeCrVIceS (int, int);
accessReq port. Ifthe resultis an access grant, theroaan } * checkCard

door and ajreen light request is made, elserad light re- Central (int, int);
quest is made. This is implemented in tG&éeck member “Central ();
function below. bool Access(int, int); };
class AccessPoint{ bool Central:: CheckCard: :iservices
(int ix, int card) {
class CardServer: return Access(ix, card); }
public sc_iservice<KeyOp, int> {
CardServer (int); Central:: Access(int door, int card) {
virtual bool iservice (int); if (card > 0 and card < 6) return true ;
} = cardServer, else return false; }

sc.irequeskDoorOp, void> x doorReg

sc.irequestLightOp, void> x lightReq: Fig. 3 shows the results of a simple simulation run with

sc.irequeskAccessOp int> % accessReq three different access points. At time 5 a key with id 3 is
requesting access at point 2. This is granted, and door 2 is
f‘:ggzzz’sm;(ti(r)‘?): opened and light 2 set to green. After 3 seconds the door
bool Check (int) is closed and the light turned off as expected from the timer
private : request of 3000 milliseconds. Overlapping this at time 7 a
int id; } key with id 4 is requesting access at point 3. This is also

. . . granted, and door 3 opened and light 3 set to green. At time

bool AccessPoint: CardServer.:iservice L . . .

(int cid) { 12, however, a key with id 7 is requesting access at point 1.
return Check (cid); } This is not granted, and the door stays closed while the red

light is lighted for 3 seconds. The expected behaviour has

bool AccessPoint:Check (int cid) { been validated

if (accessReg>request (check, id, cid))
return doorReg>request (open, id, 0)
&& lightReg—>request (green, id, 0); 2Estimated from incomplete model

4.1. Comparative results

Acknowledgments— The research was partly financed

by a grant from the Norwegian Research Council through
the Codever project.

Table 2 sums up the results from the two models tested
at the named communication level of description. The To-
ken Ring system was described in [10]. As can be seen, th
SystemC based description with nhamed communication is
2-3 times larger than the functional description. This is a
consequence of the restrictions on template typing in C++,
and also the fact that C++ offers lower abstractions on func-
tionality than the functional-language-based specification.
Also, C++ is much more verbose with lots of redundant re-
declarations of class members in and out of class declaration
scope because of the need to include class declarations with
each other.

From the named communication based description and
to a straight forward behavioural description there is typi-
cally a 3—4 times increase in the size of the models. We
think this a prominent side-effect of the higher level of com-
munication abstractions. In addition, the simulations have
uniformly shown a doubling in execution time when mov-
ing from named communication to the behavioural level—
even though the request-service resolution takes place at
run-time and not at compile time which normally penalizes
execution time. Yet the compactness of the communication
more than evens this out.

5. Conclusion and further work

The named communication abstraction and primitives of
request and service realizes a client-server like communica-
tion pattern which is independent of any explicitly defined

interconnections. It lends itself to powerful abstractions in [10]

system-level descriptions which are close to the assump-
tions and requirements in a system-level specification. The
implementation of request-service communication upon the

SystemC platform shows that it is a viable and useful com- [11]
1

munication abstraction, and the simulated examples show
that the description of communication intensive systems can
easily and compactly be described using the named commu-
nication primitives.

Further work on named communication will focus on
request-service primitives with additional capabilities. A
guarded variant of named communication will be re-
searched in order to realize non-deterministic request-
service communication using commited guard function res-
olution. And a hierarchical service name type system will
be investigated for specifically describing dispatch func-
tionality between requests and services. This will increase
the flexibility with regard to typing and polymorhism. Also,
it will be important to show how communication synthesis
can take place from named communication abstractions.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(13]

2]

KReferences

D. D. Gajski, F. Vahid, S. Narayan, and J. Gor&pecifica-
tion and Design of Embedded Systeidgentice Hall, 1994.

M. Gasteier and M. Glesner. Bus-based communication syn-
thesis on system level ACM Transactions on Design Au-
tomation of Electronic System#(1):1-11, Jan 1999.

J. D. Kleinsmith and D. D. Gajski. Communication synthe-
sis for reuse. Technical Report ICS 98-06, Department of
Information and Computer Science, University of Califor-
nia, Irvine, Feb 1998.

P. Knudsen and J. Madsen. Integrating communication
protocol selection with hardware/software codesi¢fBEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits, 18(8):1077-1095, Aug 1999.

E. A. Lee. Embedded software—an agenda for research.
Technical Report UCB ERL Memorandum M99/63, Univer-
sity of California at Berkeley, Dec 1999.

E. A. Lee and Y. Xiong. System-level types for component-
based design. Technical Report UCB/ERL M00/8, Univer-
sity of California at Berkeley, Feb 2000.

B. Lin and S. Vercauteren. Synthesis of concurrent system
interface modules with automatic protocol conversion gen-
eration. InProceedings of the International Conference on
Computer Aided DesignEEE, Nov 1994.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, part | and Il. Technical Report ECS-LCFS-89-
85 and -86, Computer Science Department, University of
Edinburgh, Jun 1989.

Object Management Group. OMG Unified Model-

ing Language SpecificationJun 1999. Available at
http://www.omg.org/.

K. Svarstad, N. Ben-Fredj, G. Nicolescu, and A. A. Jerraya.
A higher level system communication model for object-
oriented specification and design of embedded systems. In
Proceedings of ASP-DAC 2001an 2001.

Synopsys, CoWare, Frontier DesigB8ystem-C Version 1.0
User Guide 2000. Available at http://www.systemc.org/.

S. Vercauteren and B. Lin. Hardware/software communi-
cation and system integration for embedded architectures.
Design Automation for Embedded Syste(3—4):359—-382,
May 1997.

W. Wolf. Object-oriented cosynthesis of distributed embed-
ded systems ACM Transactions on Design Automation of
Electronic Systemd(3):301-314, Jul 1996.

File Edit Search Time Markers View Help
Y CD loaded successiully. £ Zoom Fage - (Fetch - [Disc hift 5 5 Maximum Time
[10] facilities faund | jp | w—| 4| 4| - rofm:|0 sec 18 sec
[56] regions found gy | iy | ey ey i To:[15 sec Current Tite
/ 4 380
Signals Waves
Time 6 zec 2 zec 12 sec 15 sec 18 se [T
SystemC.door-1 [cloze
SystemC.door-2 cloze Jopen Jeloze [open [cloze
SystemC.door-3 close [open Jelose
SystemC key-id-1 © 7 B}
SystemC key-id-2 [[E [o |EX 5
SystemC key-id-3 [|E3 [o
SystemClight-1 ||| e Tred B3
SystamC light-2 oFF Tereen ToFr Tereen E=3
SystemC.light-3 oFf [ereen [oFF
SystemC.tick | | [1 1 [1
| S | N =]

Figure 3. Simulation of access control system

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

