
A Model for Describing Communication between Aggregate Objects in the
Specification and Design of Embedded Systems

Kjetil Svarstad
SINTEF Telecom and Informatics

Signal Processing and Systems Design group
N-7465 Trondheim, Norway

e-mail: Kjetil.Svarstad@informatics.sintef.no

Gabriela Nicolescu, Ahmed A. Jerraya
TIMA Laboratory, SLS group

46, Avenue F́elix Viallet
38031 Grenoble CEDEX, France

e-mail: Gabriela.Nicolescu@imag.fr

Abstract

The elevation of design description abstractions is a well
accepted technique for handling the complexity and short-
ening the design time of modern embedded systems. It is
shown that abstractions for communication are as impor-
tant as for behaviour for specification and system level ab-
stractions, and an extension on a novel higher level com-
munication mechanism which has features for supporting
the description of complex aggregate associations between
objects in specifications such asUML is investigated. The
communication primitives have been implemented as exten-
sions to SystemC, and a comprehensive example from aUML

specification through functional specification down to an
executable SystemC decription is included.

1. Introduction

Higher abstraction levels in the description of embedded
systems enable the handling of complexity, reuse of descrip-
tions and modules, and also a design starting point which is
closer to the initial system specification. These are all im-
portant solutions to closing the productivity gap, decreasing
development time and cost, and increasing product quality
while lowering production cost.

In terms of the domains the systems are described with
regard to, the predominant ones for lending themselves to
abstraction is time, behaviour and communication. Thebe-
haviour domaincan be broken down into several subdo-
mains depending on typing possibilies such as type struc-
tures and data encapsulation. Thetime domainwill move
from the continuum of time through discrete time, higher
level events and cycles, up all the way to where time is
just local ordering, and a global order is at best partial.
We will concentrate on the communication abstractions,
though, and they are introduced in the following section.

In [10] we presented a communication model for a
higher level system description, especially useful for object-
oriented specifications and descriptions. The novel ap-
proach to communication abstractions was callednamed
communicationand realizes a most abstract way of think-
ing about the communication, the idea of the connectionless
service level. Objects have service access points defined
by names, and other objects may call on these services by
these names. In terms of description, it closely resembles
high level specifications. This theory and communication
primitives has been extended to theaggregate named com-
municationpresented in this paper, and this is meant to offer
the easy mapping and description of complex named asso-
ciations between aggregate classes and objects such as rela-
tions in the standardized object-oriented specification nota-
tion UML [9].

In the area of communication and interface synthesis the
communication models play an important role. Examples
are found in [7], [12], [3], [4], and [2].

2. Abstraction levels in communication

The basic properties of the abstraction levels for com-
munication are shown in Table 1. Do note that what is
labeledDriver level, Message level, andService levelall
constitute what is normally (e.g. as in [1]) denoted the sys-
tem level. The reason for differentiating them according to
communication abstractions is a matter of the specification
and design process—in the specification phase a require-
ment specification and also a top-level functional specifica-
tion will typically entail servicesrendered to the user and
the system environment. An executable specification at this
level should thus enable the modeling of such service and
their requests.

The main characteristics of the abstraction levels can be
summarized by:

• at the register transfer level(RTL), communication

Abstraction
Level

Communication Encapsulation Description Typical primitive

Media Data type Behaviour

Service Type-resolved
dynamic net

Universal name
spaces + con-
crete and alge-
braic datatypes

Routing Classes
(objects), Pack-
ages

Specification
languages

request(print,device,file)

Message Active
channels with
infinite FIFO or
mailbox

Concrete
generic
datatypes

Protocol
conversion

Dynamic
process blocks

SDL, MSC Send(data,disk)

Driver Logical inter-
connections

Fixed enumer-
ated datatypes

Driver-level
protocol

Static
process blocks,
modules

Cossap, CSP,
SpecCharts,
SystemC 1.1

Write(data,port)
Wait until x=y

Register
Transfer

Binary
signals

Fixed binary
data representa-
tion

Transmission Modules,
entities

VHDL, SystemC
0.9–1.0, Verilog

Set(value,port)
Wait(clock)

Table 1. Communication abstraction levels

is modeled by physical signals (e.g. shared buses
or point-to-point communication) and communication
primitives are consequently set/reset of signals and
data are instantaneously1 transmitted in binary repre-
sentation. At this level interrupt management and ad-
dress decoding will be explicitly defined. Communi-
cation time is based on the clock cycle, and processes
correspond to finite state machines where each transi-
tion take a clock cycle.

• at thedriver level, communication is modeled by log-
ical interconnections encapsulating driver level pro-
tocols (e.g. hand shake or finiteFIFOs). The prim-
itive communication on the modules’ ports are the
reading and writing of fixed data types in confor-
mity with a certain protocol (e.g. readhandshake or
write handshake). Communication time is non-zero
and predictable due to data having determinate size.
The behaviour of basic modules is described by pro-
cesses realizing calculation steps and communication
operations. At this level processes correspond to ex-
tended finite state machines (EFSM) where each tran-
sition may hide a complex calculation taking several
clock cycles.

• at the message levelthe different modules of the
system communicate through abstract communication
channels (active channels). No assumption about com-
munication implementation is made. Hence, the ac-
tive channels ensure independent protocol communi-
cation of concrete generic data types by providing ab-
stract level communication primitives (e.g. send, re-
ceive, put, or get). Such primitives encapsulate all the
communication details, and the underlying semantics

1In the respect that there is no functional delay caused by any underly-
ing protocol, the only delay is due to the physical character of the wires.

are based on the remote procedural call (RPC) mech-
anism. The basic modules’ behaviour will be de-
scribed by tasks communicating by sending and re-
ceiving messages. Communication time is non-zero
and non-predictable since data are represented as struc-
tured terms and have no determinate size.

• at the ultimate abstraction level, theservice level, the
communication is seen as a combination of requests
and services. A process can request a service from
another (unknown) process, and the underlying proto-
col, connection structure, and essential timing issues
are completely abstracted away. We focus on the mod-
eling of this abstraction level and the necessary and
sufficient communication primitives and their seman-
tics.

3. Specification level communication

In the SW community object-oriented methods have
gained a lot of trust because of increased quality and fewer
errors in theSW products. Also, the reuse of functional-
ity through SW components are easier when using object-
oriented descriptions in conjunction with interfaces to mid-
dleware likeCORBA andCOM. Specification descriptions (or
notations) such asUML are now standardized, tools offer
a short way from a reasonably abstract class specification
down to executable programs. ForHW-SW codesign, how-
ever, such a process is not that easy. SynthesisingHW from
the methods of a simple class may be easily solved through
behavioural synthesis, or, as shown in [13], an object-
oriented description with pre-determined inter-object func-
tion calls may be synthesised into a distributed embedded
system. However, synthesising from a specification descrip-
tion with several classes and their complex and abstract re-
lationships (or associations), have not been addressed yet.

3.1. Aggregate named communication

Thenamed communicationtheory [10] is useful for de-
scribing an executable communication semantic for simple
named associations in specifications such asUML . Since all
associations must be uniquely instantiated in the communi-
cation types, the use will normally be restricted to:

• one-to-oneclass associations with a unique name.

• many-to-oneclass associations with no callback or
client dependent functionality.

The last restriction is caused by the fact that a number
of classes may use a specific named service, but the named
service itself has no way of deciding which of these classes
are the actual requesting class. This is too restrictive for
most realistic cases such as the one in Fig. 1 which speci-
fies the class relations in a rather simple access control sys-
tem. Take for example the association between the unique
Central class and the unrestricted number ofAccessPoint
classes. Thecheck relation models the checking of a re-
questing key or id at theAccessPoint , and the access will
be granted or not by theCentral . However, it will be neces-
sary for theCentral to know whichAccessPoint is actually
requesting the access since access rights may be different
from point to point. This exact problem will also be the
case between the unique commonTimer resource and the
Door andLight classes. Hence, the aggregate named com-
munication should also include straight forward description
of:

• many-to-oneclass associations with possible callback
and client dependent behaviour.

• one-to-manyclass associations.

• many-to-manyclass assocations with possible callback
and client dependent behaviour.

This is made possible by including in the named requests
and services a unique identifying index within each service-
request namespace.

Formally we will define the aggregate named communi-
cation as such (the definition is an extension of the named
communication in [10]):

The communication spaceCSn,m is made out ofn ser-
vice groupsSGn andm named portsNPm. Each service
groupSGi is composed ofki services,

SGi =
{
N i

1, . . . , N
i
ki

}
while the ports are just associated with one possible (in-

coming) service each:

NPj =
〈
SGx, N

x
y , T

〉

whereT denotes the type of the port. This means that
when the service group,SGx, has been chosen for the port,
a corresponding service from that group,Nx

y , must be fixed
for the function of the port. A port with an empty service
will be called a request port, while a port associated with
a service is a service port. Now we can define anindexed
requestas:

RI =
〈
NPx, N

x
y , I, PT

〉
NPx is a request port, and the request will be for the

named serviceNx
y of the service groupSGx associated with

the portNPx. I is the indexfor which the request will be
made, andPT is the parameterP of type T that will be
furthered onto the requested service.

Conversely, anindexed serviceis defined as:

SJ ,K = 〈NPz,J ,K,F(P)〉

whereJ ≤ K define the index interval for which the ser-
vice will respond.F(P) is the function of the service based
on the parameterP of typeT . A request-service resolution
is the pairing:

RI : SJ ,K = 〈SGNPx = SGNPz ,

Nx
y = NNPz ,

J ≤ I ≤ K〉

i.e. the signal group of the request and service ports are
equal, and the requested service is equal to the type signa-
ture of the service port, and the requested index is in the
index interval defined for the service. The resolution “:”
signifies a port or process shift, in this case from portNPx
toNPz, which may be ports of different processes. There-
sponseis the function performed on the parameters,F(P).
The type resolution behind the “:” forms the semantics of
named communication. If resolution is possible betweenR
andS in R : S, then control is passed to the processS, the
service procedure executed, and the control passed back to
the processR.

Named communication resembles theπ-calculus [8] in
the basic passing of names. Theπ-calculus works on a
much more fundamental level of communication, however,
while the named communication constitutes primitives on a
more practical and descriptive level. Lee et. al. argue in [5]
and [6] for the use of higher communication abstractions in
the description of embedded systems, but limit them to the
message level.

3.2. Aggregate named communication in specifica-
tion

In order to illustrate the principle of named communica-
tion, consider the example of an access control system like

red
green

AccessPoint Central

Key Door Light

1

1 1..*

Timer

check

1

openaccess

timer

1**

*

timeout

1

1

Figure 1. UML class specification of access
control system

the one depicted in Fig. 1. As already described, thisUML-
description can be mapped into executable code in several
different ways depending on the interpretation of the rela-
tions between classes. In order to generate for example a
Java or C++ executable, the named associations must be
mapped upon deterministic member function calls. The ag-
gregate mode ofnamed communication, on the other hand,
allows the use of simple type definitions instead of deter-
ministic function calls, and the functions to be called (ser-
vices) are resolved at run time and not at compile time. For
the access control example we use the following type def-
initions to capture the essential service level behaviour of
the system:

type KeyOp = a c c e s s
type AccessOp= check
type DoorOp = open | c l o s e
type LightOp = green | red | o f f
type TimerOp = t i m e r | t i m e o u t

The typeKeyOp represents the service offered to some
reader of the key cards, while theAccessOp represents the
service of actually checking the access according to the id of
the key.DoorOp andLightOp directly models the possible
states of the lock and the lightpanel, respectively. Two timer

:service

:request :service

:request :request :service

:service

:service:request

:requestKey Door

AccessPoint

"check"

Timer

1

1 1

"timeout" "timer"

1

1

1

1 1

1..*

1

1

1 32

1

1 3

1

Central

1

*

"access" "open"

"timeout"

"timer"

"access"

"timeout"

"red"

"green"

"timer"

Light

"red"

"green"

"check"

"open"

1

1

Figure 2. Service level UML specification of
access control system

services are also included in the typeTimerOp, namely
timer for the actual timer service andtimeout for the call-
back services that the timer should acknowledge upon a spe-
cific timeout. Given these types the system modelled with
services and requests will look like Fig. 2. The respective
service and request ports of the classes are set according to
a simple specification of the system.

For every named association in Fig. 1 there will be a re-
quest port at the source and a service port at the destination.
For example, in Fig. 2, the “red ” and “green” associations
have the classAccessPoint as source andLight as desti-
nation. The first level of communication synthesis estab-
lishes a “red ” and “green” request port forAccessPoint ,
and two individual “red ” and “green” service ports for the
Light class. The “red ” and “green” requests are both im-
plemented by one single request port of typeLightOp since
request ports span over all possible values of the corre-
sponding type.

The following is a highly functional specification of the
Door class. Although undefined and not yet executable, this
functional description should be easy to understand.

c l a s s Door (open, TimerOp, t i m e o u t) where

s c i n t i d , s c s i g n a l<DoorOp> l o c k
s e r v i c e open id =

l o c k (open)
reques t t i m e r id (3 0 0 0 , open)

s e r v i c e t i m e o u t i d open = l o c k (c l o s e)

TheDoor class has local state variables for an indexid
and thelock state. The first declared service of typeopen
responds to anyopen request with the appropriateid , and
the result is opening thelock and requesting atimer event
for its specific id. The latter service is for the callback of
thetimeout event, and thelock is then closed.

TheLight class is similar to theDoor class with its two
services for any id-specific requests for green or red light.
Both services also request timer events after setting the
light. Thetimeout event service then turns off the lights.

c l a s s L i g h t (green, red , TimerOp, t i m e o u t) where
i n t i d , LightOp l i g h t
s e r v i c e green id True =

l i g h t (green)
reques t t i m e r id (3 0 0 0 , green)

s e r v i c e red id True =
l i g h t (red)
reques t t i m e r id (3 0 0 0 , red)

s e r v i c e t i m e o u t i d = l i g h t (o f f)

In the Timer class there is a service for thetimer re-
quests which queues the requests with their preferred mes-
sage parameter and the calling id. When the requested time
arrives, atimeout request is made with the stored id and
message parameter.

c l a s s Timer (TimerOp, t i m e r) where
TimeQ timeQ = makeQ
s e r v i c e t i m e r 0 6 3 i d (t ime , para) =

enterQ timeQ (t ime , i d , para)
process checkQ (askQ timeQ) =

l e t (t , i , p) = getQ timeQ i n
i f p then reques t t i m e o u t i p

When a key is inserted in the reader, a request is made
for whether access will be granted or not.

c l a s s Key (KeyOp) where
i n t i d
process checkKey (keyNr) =

reques t a c c e s s id keyNr

The AccessPoint class receivesaccess requests, and
check these by a request to theAccessOp request port. If
the access is granted, a request foropen the lock and turn
the lightgreen is made, while denied access requests ared
light.

c l a s s A c c e s s P o i n t (AccessOp, DoorOp,
LightOp , a c c e s s) where

i n t i d
s e r v i c e a c c e s s id key=

i f r eques t check id key then
reques t open id ()
reques t green id True

e l s e
reques t red True

The commonCentral class services thecheck requests
and checks whether the key id is valid.

c l a s s C e n t r a l (check) where
s e r v i c e check id =

i f v a l i d id then re turn True
e l s e re turn Fa lse

This was the functional specification of the Access Con-
trol system. At the time being this is an informal descrip-
tion, we have no simulator for this kind of description.
However, the specification is easily transformed into a de-
scription based on aggregate named communication prim-
itives implemented in SystemC as we shall see in the next
section.

4. Modeling and simulation example

In order to simulate systems described with aggregate
named communication, we implemented some classes for
the respective request and service ports under SystemC.
These classes can be used to define specific classes for the
service types in the application along with SystemC (see
[11]) descriptions of the behaviour itself. The requests and
services are connected to a behind-the-scenesobject request
broker (ORB) which takes care of the run-time resolution of
requests to services. The classes will be shown in the fol-
lowing example of the Access Control system.

We define types for the request and service names like in
the specification thus:

t ypede f enum { open, c l o s e} DoorOp;
t ypede f enum { red , green, o f f } LightOp ;
t ypede f enum { t i m e r , t i m e o u t} TimerOp;
t ypede f enum { card } KeyOp;
t ypede f enum { check} AccessOp;

This is exactly the same types as in the functional speci-
fication. The similarity between specification and the ag-
gregate named communication model is remarkably high
for the class declarations also. Take theDoor class be-
low. TheOpenDoor local class definition inDoor inherits
the sc iservice class which is predefined for the underly-
ing semantics of a single index service. The template pa-
rametersDoorOp and void are the service type and the
parameter type, respectively. Thesc iservice constructor
which must be called for any inheriting classes needs pa-
rameters for defining the value of the service type (in this
caseopen) and the value of the single index. Any service
specific behaviour must be defined in the virtual member
function iservice which receives as parameters the index
of the requester and also the parameter itself (in this case
void). Likewise, theCloseDoor class also inherits a prede-
fined service class. However, theTimeOut class is prede-
fined to be of service typeTimer and of the specific value
timeout , and the parameter of type void (see below for def-
inition of TimeOut class). As can be seen, the typing sys-

tem is more restricted for the C++-based SystemC descrip-
tion than for the functional-language based specification.
We can not send along the preferred return-parameter to the
Timer since template parameters must be static and known
at compile time. This fact makes the SystemC based de-
scription a little bit more complex than the functional spec-
ification, and in addition the C++-based language is much
more verbose than the specification.

c l a s s Door {

c l a s s OpenDoor :
pub l i c s c i s e r v i c e<DoorOp , vo id> {
OpenDoor (char ∗ , char ∗ , i n t) ;
v i r t u a l bool i s e r v i c e (vo id) ;

} ∗ openDoor;

c l a s s CloseDoor :
pub l i c Timeout {

CloseDoor (i n t , Door ∗) ;
v i r t u a l bool i s e r v i c e (i n t) ;

} ∗ c loseDoor;

T imerReques t∗ t i m e r ;
bool Open () ;
bool Close () ;
. . .} ;

TheTimerRequest class that is instantiated in thetimer
pointer is defined below, and it inherits thesc irequest class
which defined the underlying semantics of an indexed re-
quest port. There is no need to define a local class since
request classes have no virtual functions to be defined in
order to work. They can readily be used as is.

Now we can define the local services as implemented in
the local service classes’iservice member function. The
OpenDoor service calls a definedOpen member function
in the encapsulatingDoor class, and theCloseDoor class
the inversely equivalentClose function.

bool Door : : OpenDoor: : i s e r v i c e (vo id) {
re turn Open () ; }

bool Door : : CloseDoor: : i s e r v i c e (i n t code) {
i f ((DoorOp) code = = c l o s e) {

re turn Close () ; }
e l s e re turn f a l s e; }

bool Door : : Open () {
i f (door) re turn t rue ;
e l s e {

Timer : : d i n t p = { 3 , (i n t) open} ;
door = t rue ;
re turn t i m e r−>i r e q u e s t (t i m e r , i d , d) ; } }

bool Door : : Close () {
door = f a l s e ;
re turn t rue ; }

The use of aTimer request is seen in theOpen member
function of theDoor class. It is exactly equivalent to the
functional specification, the verbosity is due to the SystemC
base C++ as mentioned.

c l a s s L i g h t {

c l a s s RedL igh t :
pub l i c s c i s e r v i c e<LightOp , vo id> {

RedL igh t (char ∗ , char ∗ , i n t) ;
v i r t u a l bool i s e r v i c e (vo id) ;

} ∗ r e d L i g h t ;

c l a s s GreenL igh t :
pub l i c s c i s e r v i c e<LightOp , vo id> {

GreenL igh t (char ∗ , char ∗ , i n t) ;
v i r t u a l bool i s e r v i c e (vo id) ;

} ∗ g r e e n L i g h t;

c l a s s O f f L i g h t : pub l i c Timeout {
O f f L i g h t (i n t) ;
v i r t u a l bool i s e r v i c e (i n t) ;

} ∗ o f f L i g h t ;

T imerReques t∗ t i m e r ;
bool S e t (LightOp) ;

p r i v a t e :
. . .} ;

TheLight class uses service and request classes for ports
in exactly the same way as theDoor class, only there are
three service ports of typeLightOp to capture thegreen,
red , andoff light services. Hence we show no details of the
member functions, the principle is the same as for theDoor
class.

c l a s s T imerReques t :
pub l i c s c i r e q u e s t<TimerOp, Timer : : d i n t> {

T imerReques t(i n t) ; }

c l a s s Timeout :
pub l i c s c i s e r v i c e<TimerOp, i n t > {

Timeout (i n t) ; }

TimerRequest andTimeOut as expected by theDoor
and Light classes are an indexed request and an indexed
service class, respectively. They are both of theTimerOp
type.

c l a s s Timer {

t ypede f s t r u c t { i n t t ime , code} d i n t ;

c l a s s TimerS :
pub l i c s c i s e r v i c e s<TimerOp, d i n t> {

TimerS (i n t , i n t) ;
v i r t u a l bool i s e r v i c e s (i n t , d i n t) ;

} ∗ t s ;
T imerReques t∗ t r ;
. . . } ;

Since the commonTimer needs to service an aggregate
number of Doors and Lights, it uses a local service class
inherited from thesc iservices class. This class uses an
index interval in the definition, and the underlying seman-
tics is that itsiservices member class will be called for all
requests to the proper type and value with an index in the
service interval. Theiservices member will at call time
know the requester’s index, and can use this for eventual

callback functions if appropriate. For example, below is the
Timer service port function. It adds the timer value to a
queue along with the requester’s index. When the timeout is
reached as tested by theTick function, a request is made to
the assumedTimeOut port of the original requesting pro-
cess.

Timer : : TimerS: : i s e r v i c e s (i n t i x , Timer : : d i n t p) {
addTQ (p . t ime , p . code, i x) ; }

vo id Timer : : T ick () {
whi le (t = chkTQ (t))

i f (t r−>i r e q u e s t (t i m e o u t , t−>i nd ex , t−>code))
rmTQ (t) ; }

The Key class is simply a frontend class for calling
the simulation model and test it out. TheCard member
function requests entry by theKeyOp type with theaccess
value.

c l a s s Key {
Key (i n t) ;
˜ Key () ;
bool Card (i n t) ;

p r i v a t e :
s c i r e q u e s t<KeyOp, i n t > ∗ keyReques t;
i n t i d ; } ;

bool Key : : Card (i n t code) {
re turn keyReques t−>r e q u e s t (a c c e s s, i d , code) ; }

TheAccessPoint class has one serviceCardServer for
the KeyOp type andaccess value. On incoming requests
on this service, an access request will be made on the
accessReq port. If the result is an access grant, then anopen
door and agreen light request is made, else ared light re-
quest is made. This is implemented in theCheck member
function below.

c l a s s A c c e s s P o i n t{

c l a s s CardServer :
pub l i c s c i s e r v i c e<KeyOp, i n t > {

CardServer (i n t) ;
v i r t u a l bool i s e r v i c e (i n t) ;

} ∗ c a r d S e r v e r;

s c i r e q u e s t<DoorOp , vo id> ∗ doorReq;
s c i r e q u e s t<LightOp , vo id> ∗ l i g h t R e q;
s c i r e q u e s t<AccessOp, i n t > ∗ accessReq;

A c c e s s P o i n t (i n t) ;
˜ A c c e s s P o i n t () ;
bool Check (i n t) ;

p r i v a t e :
i n t i d ; }

bool A c c e s s P o i n t: : CardServer: : i s e r v i c e
(i n t c i d) {

re turn Check (c i d) ; }

bool A c c e s s P o i n t: : Check (i n t c id) {
i f (accessReq−>r e q u e s t (check, i d , c i d))

re turn doorReq−>r e q u e s t (open, i d , 0)
&& l i g h t R e q−>r e q u e s t (green, i d , 0) ;

Model Specification Named
communication
model

Behavioural
model

Token
ring
system 20 85 210

Access
control
system 50 260 5002

Table 2. Size of models using different ab-
stractions

e l s e
re turn l i g h t R e q−>r e q u e s t (red , i d , 0) ; }

Access requests are services by theCheckCard service
of the Central class. This is an interval service of the
AccessOp type since all possible aggregated indexes must
be taken into account. For simplicity, we grant all keys with
id from 1 to 5 access, and all others are denied.

c l a s s C e n t r a l {

c l a s s CheckCard :
pub l i c s c i s e r v i c e s<AccessOp, i n t > {
CheckCard (i n t , i n t) ;
bool i s e r v i c e s (i n t , i n t) ;

} ∗ checkCard;

C e n t r a l (i n t , i n t) ;
˜ C e n t r a l () ;
bool Access (i n t , i n t) ; } ;

bool C e n t r a l : : CheckCard: : i s e r v i c e s
(i n t i x , i n t card) {

re turn Access (i x , card) ; }

C e n t r a l : : Access (i n t door , i n t card) {
i f (card > 0 and card < 6) re turn t rue ;
e l s e re turn f a l s e; }

Fig. 3 shows the results of a simple simulation run with
three different access points. At time 5 a key with id 3 is
requesting access at point 2. This is granted, and door 2 is
opened and light 2 set to green. After 3 seconds the door
is closed and the light turned off as expected from the timer
request of 3000 milliseconds. Overlapping this at time 7 a
key with id 4 is requesting access at point 3. This is also
granted, and door 3 opened and light 3 set to green. At time
12, however, a key with id 7 is requesting access at point 1.
This is not granted, and the door stays closed while the red
light is lighted for 3 seconds. The expected behaviour has
been validated.

2Estimated from incomplete model

4.1. Comparative results

Table 2 sums up the results from the two models tested
at the named communication level of description. The To-
ken Ring system was described in [10]. As can be seen, the
SystemC based description with named communication is
2–3 times larger than the functional description. This is a
consequence of the restrictions on template typing in C++,
and also the fact that C++ offers lower abstractions on func-
tionality than the functional-language-based specification.
Also, C++ is much more verbose with lots of redundant re-
declarations of class members in and out of class declaration
scope because of the need to include class declarations with
each other.

From the named communication based description and
to a straight forward behavioural description there is typi-
cally a 3–4 times increase in the size of the models. We
think this a prominent side-effect of the higher level of com-
munication abstractions. In addition, the simulations have
uniformly shown a doubling in execution time when mov-
ing from named communication to the behavioural level—
even though the request-service resolution takes place at
run-time and not at compile time which normally penalizes
execution time. Yet the compactness of the communication
more than evens this out.

5. Conclusion and further work

The named communication abstraction and primitives of
request and service realizes a client-server like communica-
tion pattern which is independent of any explicitly defined
interconnections. It lends itself to powerful abstractions in
system-level descriptions which are close to the assump-
tions and requirements in a system-level specification. The
implementation of request-service communication upon the
SystemC platform shows that it is a viable and useful com-
munication abstraction, and the simulated examples show
that the description of communication intensive systems can
easily and compactly be described using the named commu-
nication primitives.

Further work on named communication will focus on
request-service primitives with additional capabilities. A
guarded variant of named communication will be re-
searched in order to realize non-deterministic request-
service communication using commited guard function res-
olution. And a hierarchical service name type system will
be investigated for specifically describing dispatch func-
tionality between requests and services. This will increase
the flexibility with regard to typing and polymorhism. Also,
it will be important to show how communication synthesis
can take place from named communication abstractions.

Acknowledgments— The research was partly financed
by a grant from the Norwegian Research Council through
the Codever project.

References

[1] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specifica-
tion and Design of Embedded Systems. Prentice Hall, 1994.

[2] M. Gasteier and M. Glesner. Bus-based communication syn-
thesis on system level.ACM Transactions on Design Au-
tomation of Electronic Systems, 4(1):1–11, Jan 1999.

[3] J. D. Kleinsmith and D. D. Gajski. Communication synthe-
sis for reuse. Technical Report ICS 98–06, Department of
Information and Computer Science, University of Califor-
nia, Irvine, Feb 1998.

[4] P. Knudsen and J. Madsen. Integrating communication
protocol selection with hardware/software codesign.IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits, 18(8):1077–1095, Aug 1999.

[5] E. A. Lee. Embedded software—an agenda for research.
Technical Report UCB ERL Memorandum M99/63, Univer-
sity of California at Berkeley, Dec 1999.

[6] E. A. Lee and Y. Xiong. System-level types for component-
based design. Technical Report UCB/ERL M00/8, Univer-
sity of California at Berkeley, Feb 2000.

[7] B. Lin and S. Vercauteren. Synthesis of concurrent system
interface modules with automatic protocol conversion gen-
eration. InProceedings of the International Conference on
Computer Aided Design. IEEE, Nov 1994.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, part I and II. Technical Report ECS-LCFS-89-
85 and -86, Computer Science Department, University of
Edinburgh, Jun 1989.

[9] Object Management Group. OMG Unified Model-
ing Language Specification, Jun 1999. Available at
http://www.omg.org/.

[10] K. Svarstad, N. Ben-Fredj, G. Nicolescu, and A. A. Jerraya.
A higher level system communication model for object-
oriented specification and design of embedded systems. In
Proceedings of ASP-DAC 2001, Jan 2001.

[11] Synopsys, CoWare, Frontier Design.System-C Version 1.0
User Guide, 2000. Available at http://www.systemc.org/.

[12] S. Vercauteren and B. Lin. Hardware/software communi-
cation and system integration for embedded architectures.
Design Automation for Embedded Systems, 2(3–4):359–382,
May 1997.

[13] W. Wolf. Object-oriented cosynthesis of distributed embed-
ded systems.ACM Transactions on Design Automation of
Electronic Systems, 1(3):301–314, Jul 1996.

Figure 3. Simulation of access control system

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

