
Platform-Aware Dynamic Configuration Support for Efficient
Text Processing on Heterogeneous System

Mi Sun Park†, Omesh Tickoo‡, Vijaykrishnan Narayanan†, Mary Jane Irwin†, Ravi Iyer‡

†The Pennsylvania State University ‡Intel Corporation
University Park, PA 16802 Hillsboro, OR 97124

{mup183, vijay, mji}@cse.psu.edu {omesh.tickoo, ravishankar.iyer}@intel.com

Abstract—Significant efforts have been made in accelerating computer
vision and machine learning algorithms by utilizing parallel processors
such as multi-core CPUs and GPUs. Although the suitability of GPU
is well-known for computer graphics and image processing applications
which require massively parallel floating-point computations, recent re-
search movement towards general purpose computing on-GPU (GPGPU)
makes it possible to take advantage of parallel processors to accelerate
text processing applications as well. However, how to fully leverage
different types of parallel processor architectures to obtain optimal
performance (especially with text) without making specific efforts to each
platform still remains a great challenge.

We applied performance and accuracy enhancements to Naive Bayes
algorithm to develop a practically sound implementation of text clas-
sification. A platform-aware dynamic configuration support automation
flow is also proposed to support the seamless execution of our work
across platforms. Experiments on various (integrated graphics, dedicated
multiple GPUs) platforms demonstrate that our proposed approach
improves both accuracy and performance of text classification.

I. INTRODUCTION

With the advent of the Internet and social media, the generation of
data has been growing exponentially. It is reported that we create
2.5 quintillion (1018) bytes of data every day and 90% of the
world’s data has been generated in the last two years alone [1]
[2]. The era of big data has driven great interest in data mining
and analysis to effectively extract information for user services. Due
to the size and amount of data, it becomes harder to perform real-
time text processing with general purpose CPUs. Further, although
the evolution of GPU architecture and parallel programming models
such as OpenCL [3] and CUDA [4] made it easier to accelerate
computationally intensive applications using GPU, real-time text
processing is still a great challenge. Especially the irregular nature
of non-fixed length strings and less involvement of parallel floating-
point computations have prevented text processing from taking full
advantage of massively parallel processors. Therefore, research and
development on an accelerator for real-time text classification will
provide valuable contributions to text processing domain by sharing
practical design and optimization techniques.

It should be noted that although CUDA (Compute Unified Device
Architecture) [4] has more mature features and tools than cross-
platform OpenCL (Open Computing Language) [3], it is specific to
NVIDIA GPUs. OpenCL is a framework for parallel programming
of heterogeneous systems that consist of multi-cores, GPUs and
other processors. Currently there are plenty of OpenCL support
hardware in the market. Major manufacturing companies such as
Intel, AMD, NVIDIA and ARM provide their own OpenCL SDK
to support for multi-core CPUs, desktop GPU and embedded GPU.
In general, there exist two types of GPU: a power-efficient integrated
(aka embedded) and a high-performance dedicated (aka discrete)
GPU. Dedicated GPU has its own independent memory that leads to
increased performance, but it is power-hungry and easily heat up. On
the other hand, the integrated GPU doesn’t have its own memory and
shares the small portion of system memory with CPU, and consumes
less power. In spite of the limited computing capability, the low-power
and low-heat characteristics make integrated GPU ideal especially for
embedded system including mobile devices.

There are over 100 existing GPU-accelerated applications [5] and
over 15 GPU vendors including mobile GPU area. Although various
applications of GPU have grown significantly, there is a portability
issue. Additionally, the performance gains in these applications are
hard to generalize because it heavily depends on a specific platform
and vendor. To overcome the limitation, we propose an OpenCL-
based platform-aware dynamic configurable automation flow that
helps seamless execution across platforms and provides optimal
performance. By leveraging the proposed automation flow, we were
able to make a fair performance comparison between the two different
(integrated and dedicated GPU) architectures. This provides valuable
insights into the characteristics of integrated GPU that has restricted
features and runs at lower frequency, compared to dedicated GPU.

In this paper, we focus on the analysis and optimization of Naive
Bayes algorithm and present a highly parallel Naive Bayes multiclass
classifier for real-time text classification. A wide range of text
classification applications include spam filtering, medical diagnosis,
automatic categorization of newspaper articles and language identi-
fication. Recent study on opinion mining and sentiment analysis of
SNS (social networking sites) such as Twitter and Facebook can also
benefit from this classifier.

This paper provides the following key contributions:

• A feedback loop enabled approach is presented to efficiently
process Naive Bayes text classification in practice.

• A OpenCL-based dynamic configurable automation flow, which
includes a data partitioning technique for concurrent computa-
tions on multiple devices, is proposed for cross-platform and
high performance.

We have incorporated these efforts in the development of a Naive
Bayes classifier for efficient text processing with several optimization
techniques from both algorithm and practical implementation per-
spectives. The experiment result of our GPU-enabled text classifier
demonstrates 7.3X speedup with accuracy improvement over CPU
platform.

II. RELATED WORK

Since CUDA was released from NVIDIA in 2007 [4], a variety of
GPU-based accelerators have been developed in across many research
areas including visual categorization for efficiently managing large
collections of images [6], automatic test pattern generation for high
quality transition faults [7], and term frequency-inverse document
frequency rank search engine for text mining [8], and executed on
NVIDIA discrete GPU(s). Further, some researchers made efforts in
designing OpenCL-accelerated applications of pattern classification,
genetic programming tree evaluation and vehicle detection [9] [10]
[11] to overcome the limitation of vendor-specific CUDA, while other
researchers compared the performance of OpenCL and CUDA models
[12] [13]. According to both the performance comparison studies
between the models [12] [13], it is informed that OpenCL can be a
good alternative to CUDA with portability on multiple architectures
and insignificant performance loss.

Particularly for mobile embedded systems, OpenGL for Embedded
Systems (OpenGL ES) programming model [14] and RenderScript

1503978-3-9815370-4-8/DATE15/ c©2015 EDAA

APIs [15] have been generally used to leverage the compute power of
the embedded GPU. OpenGL ES is originally designed for rendering
2D/3D computer graphics, not for general-purpose computing, and
RenderScript is designed only for Android platform. Recent research
[16] shows the expansion of OpenCL domain to mobile heteroge-
neous system. It introduces a first OpenCL-based accelerator for
image object removal algorithm on mobile GPU. This implies that our
work can be easily deployed to the domain of mobile GPU platform
as well.

Many efforts have been made to improve text classification algo-
rithms and conduct comprehensive evaluation of the algorithms [17]
[18] [19]. Although there is no one single algorithm in text classifica-
tion that is best-known, Naive Bayes is definitely one of them and has
proven to be efficient. Therefore, we revisit the algorithm, optimize it
from a practical perspective and maximize parallel execution for fast
computation. This paper presents a multiple GPUs-enabled highly
parallel Naive Bayes text classifier by leveraging an OpenCL-based
platform-aware dynamic configurable automation flow.

III. NAIVE BAYES CLASSIFIER

Naive Bayes (aka Naive Bayesian) classifier is a probabilistic
classifier based on Bayes’s theorem [20] with strong (naive) feature
independence assumption. It is one of the most commonly used text
classification algorithms. The goal of text classification (aka text
categorization) is to determine which class a given document belongs
to by finding the Maximum A Posterior (MAP) class. Naive Bayes
multiclass classifier can be represented as:

CMAP = argmax
c∈C

P (c|d) (1)

where C is a set of classes (c1, c2, ..., cm), d is a document rep-
resented as n features (x1, x2, ..., xn), and P (c|d) is the posterior
probability of a class given a document.

By applying Bayes’s theorem, P (c|d) = P (d|c)
P (d)

, and naive inde-

pendence assumption, P (x1, x2, ..., xn|c) = ∏
x∈X P (x|c), we can

now have the following equation:

CMAP = argmax
c∈C

∏

x∈X

P (x|c)P (c) (2)

where P (x|c) is the likelihood probability of each feature given a
class and P (c) is the prior probability of a class. After computing
posterior probability of each class for the given document, Naive
Bayes selects the most likely class which has the maximum posterior
probability.

A. Enhanced Naive Bayes

We apply performance and accuracy enhancements to the original
algorithm for more practical and reliable realization.

Performance: We applied Laplace smoothing and log-domain
conversion methods to improve performance. Laplace smoothing (aka
add-one smoothing) is an algorithm that simply adds one additional
value to each word count to avoid a zero probability. It is simple
but very effective, since a zero probability of any words eventually
drives a zero posterior probability of a class that makes difficult for
differentiating probabilities of classes and finding a MAP class.

Log-domain conversion is to perform addition instead of multipli-
cation operation to prevent underflow when multiplying many small
probabilities, as in the case of calculating likelihoods of rare words
in a large document which have many words. We also realized that
Naive Bayes uses argmax for comparing the posterior probability of
each class to find the most likely class. Thus, whichever technique we
apply to calculate posterior probabilities doesn’t significantly matter
as long as we apply the same technique for computing posterior
probabilities of all classes and compare them against each other. With
this knowledge, we apply log over log10 since the smaller base of

log can provide a wider dynamic range, which helps comparing with
single-precision representation.

Accuracy: The current calculation for prior probability is oblivious
of document size significantly. Larger documents have more words
that provide additional information beneficial for text classification.
The original formula for the prior computation for text classification
is P (c) = Nc

N
, where Nc is the number of documents in each class

and N is the total number of documents in training. However, in
practice, the size of documents varies significantly, therefore, we
modified the formula by using words counts instead of document
counts to avoid unbalanced document size as shown in Equation 3.

After applying all these optimizations, our final version of Naive
Bayes algorithm for text classification is represented in Equation 3.

CMAP = argmax
c∈C

{logP (c) +
∑

x∈X

logP (x|c)} (3)

where P (c) = count(c)∑
c∈C count(c)

and P (x|c) = count(x,c)+1
count(c)+|V | with that

|V | is the number of unique features in training.
We have implemented a Naive Bayes text classifier based on the

above equation. The performance and accuracy enhancements we
applied to the original algorithm help to achieve a better performance
over existing algorithms (as will be shown in Section V).

IV. GPU-ACCELERATED PARALLEL TEXT CLASSIFICATION

In this section, we describe details of design and optimization
techniques for efficient text processing on heterogeneous system.

A. Profiling

Figure 1 shows a work flow diagram of Naive Bayes multiclass
classifier for text classification with two distinct stages of off-
line training and on-line testing. It should be noted that this work
flow diagram is similar to most of the contemporary Naive Bayes
classifiers that are written sequentially. Based on the analysis and
profiling of existing implementations of Naive Bayes, it is found that
the step of computing likelihoods of features in the work flow takes
the most execution time (over 99%) when running on CPU, as shown
in Table I.

Fig. 1. Work Flow Diagram of Naive Bayes Classifier

1504 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 2. Data Flow of our suggested Practical Approach

TABLE I
PROFILING OF NAIVE BAYES CLASSIFICATION ON CPU (W/ 13KB FILE)

Functions Time (%)
(1) Read a test file into memory 0.03
(2) Preprocessing 0.67
(3) Compute likelihoods of features 99.13
(4) Compute priors 0.00
(5) Sort scores 0.17

Therefore, we restructured the sequential code to parallelize this
step along with the previous step of preprocessing for maximum
parallel execution. These two steps together take 99.8% of the exe-
cution time based on the profiling. The preprocessing step performs
natural language processing-oriented operations such as removing
stop-words, converting into lower cases, and omitting special charac-
ters/numbers from strings etc. Stop-words are words which contain
no significant meanings and contributions in classification. In our
case, we used a list of 517 English stop-words, and some examples
of stop-words are a, but, or, the, and what. This preprocessing takes
additional time to process, but it helps to improve accuracy of text
classification. The computation time of the computing likelihoods
step heavily depends on the number of words in a test file, the number
of classes and the size of training data, since we need to compute
likelihood of each word for each class and accumulate them, then we
add a prior of each class in the later step. When we deal with bigger
data, we can possibly obtain more performance gains by maximizing
parallel execution on this computationally intensive step.

After deciding which part of the algorithm should be parallelized,
we also tried to reduce the number of host-device data transfer
by recomputing intermediate functions directly on GPU without
returning to the host. Due to the nature of heterogeneous system
(host + device), minimizing host-device data transfer is an important
factor for optimal performance, especially for discrete GPUs which
communicate from/to host via PCIe. Since host-device data transfer
has much lower bandwidth than global memory access, one large
transfer is much better than many small ones. The blue dashed box on
Figure 1 represents the most important and computationally intensive
computations in the Naive Bayes algorithm, and now mapped on
GPUs with one invocation of GPU kernel execution.

B. Practical Approach

We suggest a feedback loop enabled approach to efficiently com-
pute Naive Bayes classification in practice. Figure 2 shows data flow
for the proposed approach.

1) Simplified Approach: Based on the analysis of Naive Bayes
algorithm and its exiting implementations, we observed that all of
them compute likelihood of each word and a prior probability of
each class on-the-fly during the test stage, regardless of utilizing pre-
counted words’ frequencies from the training stage. Since all the
data needed for computing likelihood and prior probabilities can be
obtained from the training stage, we decided to push computation
into off-line training stage as much as possible and perform minimal
process during on-line testing for high throughput.

This is the reason why we came up with a global dictionary. Figure
3 shows the sample of a global dictionary structure with pre-computed

Fig. 3. Global Dictionary Structure with probabilities

probability. The idea is to store all necessary information such as class
information (# of classes, a pair of class label and a prior), likelihood
information (a pair of word string and likelihood of each class) and
default likelihood for non-existent words etc. in the global dictionary
and retrieve associated data by doing string matching against the dic-
tionary when classifying a test documentation. The negative numbers
in Figure 3 are because of computing log with fraction numbers.
This simplified approach helps reducing classification computation
time. Loading the global dictionary into classifier object is a one-
time operation during initializing the classifier, therefore, it doesn’t
affect classification time.

2) Feedback Loop enabled Approach: Our simplified approach
has one downside: it is unable to dynamically update the dictionary
for fine tuning the classifier. In order to update the classifier, the
simplified approach must go through the training stage again to
generate a new global dictionary, which is usually time consuming.
To overcome this issue, we added on-line feedback loop to the
approach as shown in Figure 2. This feedback loop enabled approach
is somewhat similar to most of the contemporary approaches by
computing likelihood and prior probabilities on-the-fly, based on
pre-counted words frequencies from training. The global dictionary
used in this enhanced approach has words frequencies instead of
probabilities. The main purpose of the feedback loop is to avoid
redundant iterations of training stage and allows fine tuning of the
classifier. In practice, training stage usually takes a large amount
of time and how to train the classifier has a significant impact on
the classification accuracy. Also, users are often encountered to a
situation needed to add new classes or files to update the exiting
classes of the classifier. Our feedback loop enabled approach can
provide enough flexibility to satisfy these requirements.

Our flexible classifier supports both the approaches dynamically,
therefore, determining an approach type should be purely based on
user preference. Also after it classifies, it displays top 3 candidates
of classes in a descending order of scores.

a) Log Approximation Fixed-point: Owing to the modern GPU
architectures for fast floating-point computation with floating point
units (FPU), we don’t need to consider fixed-point computation seri-
ously. However, many small embedded system especially with low-
cost and low-power microprocessors don’t have FPU. The internal
GPU-like parallel processor, we are in early-stage design and plan to

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1505

use it as our final platform, doesn’t intend to have FPU due to ultra
low-power purpose. Therefore, we need to manipulate floating-point
representations accordingly.

With the analysis of our classifier, we found that we only perform
floating-point addition in the simplified approach, while we compute
floating-point addition and division followed by log computation in
the feedback loop enabled approach. In general, if we use floating-
point operations in our program and compile for those FPU-less
processors, it will use internal emulation libraries that are extremely
slow. Although fixed-point computation is not a major focus of this
research, it is good to consider what functions in our implementation
should be modified or optimized in case it deploys on these FPU-less
processors. We applied a computationally fast approximate logarithm
algorithm with fixed-point by leveraging [21] method to our Naive
Bayes implementation and analyzed effects on the execution time.

C. Automation Flow and Data Partitioning

As shown in Table II, there are generally recommended 12 basic
steps for heterogeneous OpenCL programming. Basically host CPU
builds up data on a device and then enqueues a kernel to execute on
the device using the data. All the 12 steps are done in the host side,
except the actual kernel execution after the host CPU deploys the
kernel and tells the device to execute it in step (10). The steps from
(1) to (7) are one-time OpenCL setup procedure that only execute
once during initialization. The rest of the steps from (8) to (12) is
device execution procedure for each test.

TABLE II
BASIC STEPS FOR OPENCL PROGRAMMING [3]

1 Obtain OpenCL platform
One-time

setup
2 Obtain devices id
3 Create context for device
4 Create command-queue for target device
5 Create program from source code
6 Build the program
7 Create kernel(s) from program functions
8 Allocate device memory

GPU
execution

9 Associate arguments to kernel with kernel object
10 Deploy kernel for device execution
11 Move output data to host memory
12 Release context/program/kernels/memory

By leveraging these steps, we propose a platform-aware dynamic
configurable automation flow based on the properties of a given
device/hardware and a target kernel. Particularly, we added two
important steps to support true concurrent computations on multi-
ple devices and provide optimal performance. The two steps are
(a) checking available device count and (b) querying maximum
kernel work group size for dynamic local work size assignment.
Our proposed OpenCL-based dynamic configurable automation flow,
shown in Figure 4, can be used for any application to support
high performance, cross-platform and true concurrent computations
on multiple devices. We initially applied two different methods to
support multiple GPUs. The first is to have one context across all
devices and one command-queue per device, while the second is to
have one context and one command-queue per device. According
to [22] of the performance comparison between the two methods,
the latter with multiple host threads (one thread per device) is an
ideal way to support true concurrent processing on multiple GPUs.
Therefore, we first count the number of devices on a given hardware
and automatically create the same number of contexts (one per
device) accordingly.

After OpenCL setup is done, we have to consider two important
execution configuration parameters for optimal performance: local
work size (aka local work group size or # of work-items in a work-
group) and global work size (aka total work-items). Choosing the
work size is important for maximizing performance, although there
is no rule of thumb. Local work size can be determined by querying
maximum kernel work group size permitted by OpenCL support
devices where work-items execute on. Since the maximum kernel

Fig. 4. Our proposed Dynamic Configurable Automation Flow

work group size is determined based on the resource requirements
of the kernel [3], it provides a proper configuration for the specific
kernel and the device. There is no constraint for global work size as
long as it is a multiple of the local work size, therefore, we simply
round up.

1) Data partitioning for multiple devices: We applied two ways
to partition input test data for multiple devices. The first coarse-grain
partitioning mechanism is to assign each test file to each device, since
we use multiple host threads for each thread to have its own context
and a test file to classify. This is simple but it has one disadvantage
that is the computation time is determined by the slowest worker due
to different file sizes. The second fine-grain method is to find proper
memory index after copying a file to for each device. Unlike image
pixels, words/strings have no fixed length. Therefore, we coarsely
divide the memory by the number of target devices and increase
memory index/address till it finds a space or carriage return or line
feed for the exact index. This method is suitable for a large test
file, otherwise, it would be better using one device from resource
utilization perspective.

D. Optimizations

In general, there are three optimization strategies to improve overall
performance in a heterogeneous system [4] [23]: (a) maximizing par-
allel execution, (b) optimizing memory access and (c) optimizing exe-
cution configuration. Maximizing parallel execution can be achieved
by exposing data parallelism in target algorithms and overlapping
memory transfer with computation. Memory optimization can be
obtained by minimizing host-device data transfer, coalescing global
memory access and maximizing the utilization of local memory that
is much faster than global memory. Lastly, optimizing execution
configuration is also important by finding the right parameters such
as local and global work size for different applications on different
GPU architectures to increase occupancy by hide latencies and keep
the hardware busy.

After profiling, we have parallelized over 99% of the sequential
program and executed the paralleled code on GPUs with only one
invocation of kernel execution meaning a single data transfer from
host CPU to the device GPUs. We also applied memory optimization
techniques [23] such as using pinned memory and coalescing global
memory access for optimal performance.

1506 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Pinned (aka page-locked) memory is the memory which prevents
from being paged-out by operating system and provides higher
bandwidth between host and device, since it allows the device to
use DMA-transfer over PCIe. But it is also noted that over-allocating
pinned memory might reduce overall system performance, because
it reduces the amount of memory available to operating system and
other programs. This default version of pinned memory is especially
useful when loading or storing the data multiple times with discrete
GPU. A different version, mapped pinned memory (aka zero-copy
memory), allocates pinned host memory, map device memory to the
pinned host memory and return the host pointer. In other words,
kernels read the data directly from the host memory without explicitly
copying the data from the host memory to the device memory. This
mapped memory is better when kernels read and write the data exactly
once with integrated GPU. Therefore, since each of these pinned
memory type heavily depends on applications and target hardware,
our implementation calls proper APIs dynamically after identifying
a platform (integrated or discrete) type.

Coalesced memory access, which is highly recommended by [23],
is for efficient global memory access on GPUs by combining multiple
memory accesses into a single aligned memory access. It can be
achieved when neighboring threads access neighboring locations in
memory.

Optimizing execution configuration is somewhat heuristic, since
it heavily depends on applications and GPU architectures. To avoid
time-consuming process of experiments, we added a new dynamic
parameter assignment step for finding proper configurations as our
proposed automation flow shows in Figure 4. This step provides
appropriate values of essential parameters dynamically based on the
resource requirements of the kernel and the target device properties.

V. EXPERIMENTAL RESULTS

We used two different (integrated and discrete) platforms and
the platform specifications are provided in Table III. The discrete
platform has a NVIDIA graphics card that contains two GPUs. Exper-
iments on these different platforms can help us to verify our proposed
dynamic configurable automation flow by dynamically configuring
execution configuration parameters based on the hardware properties
and kernels.

TABLE III
PLATFORM SPECIFICATION

#1: Integrated Platform #2: Discrete Platform
Intel
CPU

Intel
Graphics

Intel
CPU

NVIDIA
GPU

Model i7-4770 HD 4600 Xeon E5405 GTX 590
of 8 20 4 16

Compute Units x512 proc.
Freq. (GHz) 3.4 0.350 2 0.607
Memory (GB) 8 1.6 4 1.5
TDP (Watt) 84 80 365

A. Classification

Table IV shows the text classification accuracy of our Naive Bayes
classifier. This experiment is conducted with 20 newsgroups data
set [24] and cross-validation technique. The 20 newsgroups data set
has 20 classes/categories and a newsgroup article is classified as
belonging to one of the 20 newsgroups. The cross-validation is a
model evaluation method which randomly divides documents into
training and validation data and repeatedly test on the validation data
for estimating accuracy using the model of the training data. It is a
technique to predict how accurately a training model will perform in
practice. We also applied this method to existing implementations of
Naive Bayes and Linear SVMs classifier from CMU Bow toolkit [25]
for classification accuracy comparison, since we applied performance
and accuracy enhancements to the original Naive Bayes algorithm.
For this experiment, we used up to 20 classes with 200 documents
per each class and averaged out the results after 20 times of testing.

Table IV shows that our classifier performs better than the other two
existing implementations.

TABLE IV
TEXT CLASSIFICATION ACCURACY WITH UP TO 20 CLASSES

classes Our Naive Bayes Naive Bayes [25] SVMs [25]
20 87.50 % 86.15 % 77.05 %
18 89.89 % 88.37 % 78.13 %
16 89.81 % 88.58 % 79.99 %
14 90.79 % 89.14 % 78.40 %
12 91.42 % 91.51 % 78.71 %
10 92.70 % 91.89 % 79.06 %

B. Influence of Optimization Techniques

As the steps for OpenCL programming in Table II show, there are
three distinct processes: one-time setup, GPU execution and kernel
execution. The OpenCL setup from getting platform information
to creating the kernel is one-time execution and the time on our
integrated platform CPU takes about 154 ms. Since this is part of
initialization time, it doesn’t affect the throughput of our system.
The second process from allocating device memory to writing device
output back to host is considered as GPU execution, which operates
for each test file. The process of deploying kernel for device execution
is kernel execution that indicates pure computation time on GPU. For
measurement, we used OpenCL profiling events for kernel execution
and query performance counter API for GPU execution.

TABLE V
PERFORMANCE COMPARISON OF TWO APPROACHES ON THE INTEGRATED

PLATFORM (W/ 60,188 DICTIONARY WORDS, 517 STOP WORDS)

Test File Average Time (s) Simplified Approach Enhanced Approach
50KB Kernel Execution 0.193 0.195

GPU Execution 0.197 0.200
25KB Kernel Execution 0.111 0.113

GPU Execution 0.115 0.116
13KB Kernel Execution 0.065 0.067

GPU Execution 0.069 0.071

Table V shows the performance comparison of our simplified
approach and feedback loop enabled enhanced approach on the
integrated platform with different sizes of test files. The execution
time for both the approaches are similar, it is probably because GPU
performs floating-point calculation very fast using FPU. Compared to
the simplified version, the feedback loop enabled version computes
one additional floating-point division and logarithmic calculation. It
is observed that there is not much execution gap between the GPU
execution and kernel time. It is because we experimented on the
integrated platform meaning the host CPU and graphics reside on
the same die, therefore, the communication cost is relatively small.

TABLE VI
FLOATING- VS FIXED-POINT COMPUTATION IN OUR FEEDBACK LOOP

ENABLED APPROACH ON CPU

Log10 Log
floating fixed floating fixed

Computation Time (ms) 15.24 17.92 15.18 17.82

The effects of data types, floating and fixed-point, on the classifi-
cation time of 1KB test file are provided in Table VI. It is measured
on CPU with two different log bases. From the result, we can verify
that computation with fixed-point is faster than with floating-point. It
is also observed that using log takes slightly shorter time than using
log10. This further agrees with our decision of using log over log10,
since when analyzing the algorithm we found that using smaller
base of log results bigger difference between the numbers after log
computation that leads to help comparing the scores of each class.

Table VII shows the performance improvement using mapped
pinned memory (aka zero-copy memory) by mapping a buffer into
host memory, and loading data directly from the host without
allocating and transferring the data in advance. From experiment with
25KB test file, we gained 17% speed improvement with higher mem-
ory bandwidth by using mapped pinned memory on the integrated
platform. Intel Vtune Amplifier XE 2013 [26] is used for measuring
GPU OpenCL kernel performance on our Intel integrated platform.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1507

TABLE VIII
EXECUTION TIME (S) COMPARISON WITH VARIOUS LOCAL WORK SIZE (W/ 200KB TEST FILE)

Work Size Work Size Work Size Work Size Work Size Work Size Work Size
Local Global Local Global Local Global Local Global Local Global Local Global Local Global

16 27632 32 27648 64 27648 128 27648 256 27648 512 27648 1024 27648
Integrated Graphics 0.709 0.709 0.709 0.709 0.708 0.707 X
Discrete GPU 0.860 0.715 0.615 0.661 0.723 0.730 0.743
Discrete Two GPUs 0.457 0.382 0.326 0.354 0.388 0.393 0.377

TABLE VII
IMPROVEMENT USING MAPPED PINNED MEMORY ON THE INTEGRATED

PLATFORM

Computation Time

GPU Memory Bandwidth

(GB/sec)
(s) Read Write

Non-Mapped Pinned 0.115 1.212 0.130
Mapped Pinned 0.098 1.301 0.140

C. Comparison with Different Platforms

The performance comparison with various local work size for fine
tuning on integrated and discrete platforms is provided in Table VIII.
As we previously discussed, local and global work size are two
important factors to determine optimal performance. Since global
work size is a multiple of local work size, we changed local work size
and experimented on various platforms to see the effects on execution
time. One interesting result is observed that local work size doesn’t
severely affect on the integrated platform, while it has a significant
impact on the discrete platform. From the experiments, it is found
that the local size of 512 and 64 are optimal configuration to the
integrated and discrete platforms respectively. The test results also
show that our work on the discrete platform performs better than the
integrated platform. It is because the discrete GPUs run at higher
frequency than the integrated graphics, and consumes more power.

TABLE IX
PERFORMANCE COMPARISON OF TEXT CLASSIFICATION ON MULTI-CORE

CPUS AND GPUS (W/ 200KB TEST FILE)

Time (s)
Native Multithreaded Implementation on multi-core CPUs 2.734
Our OpenCL-based Implementation on a GPU 0.615
Our OpenCL-based Implementation on two GPUs 0.326

Table IX shows that our OpenCL-accelerated Naive Bayes classi-
fier on two GPUs and a single GPU provides 7.3X and 3.4X speedups
over native multithreaded implementation with 2 active threads on
multi-core CPUs respectively. Because of the portability of our work
and proper data partitioning for multiple devices, the performance
can further scale up with more number of GPUs.

VI. CONCLUSION

We applied performance and accuracy enhancements to Naive
Bayes algorithm for more practical and reliable implementation. A
feedback loop enabled approach is presented to efficiently process
text classification in practice. And, an OpenCL-based dynamic con-
figurable automation flow is proposed. This flow can help applica-
tions seamlessly executing across different platforms by dynamically
configuring parameters based on target hardware and kernels. Ex-
periments on various platforms have been performed to verify the
effectiveness of our text processing by executing the same code. The
experiment result shows our highly parallel text classifier provides
7.3X speedup over CPU implementation with accuracy improvement.

ACKNOWLEDGEMENT

This work was supported in part by grants from Intel and NSF
Expeditions in Computing Visual Cortex on Silicon 1317560.

REFERENCES

[1] “ViaWest Data Center.” [Online]. Available: http://www.viawest.com/
sites/default/files/asset/document/ViaWest Big Data Infographic.pdf

[2] “IBM Analytics - IT Business Intelligence.” [Online].
Available: http://www.ibm.com/smarterplanet/us/en/business analytics/
article/it business intelligence.html

[3] “OpenCL 1.2 Specification.” [Online]. Available: http://www.khronos.
org/opencl/

[4] “CUDA C Best Practices Guide.” [Online]. Available: http://www.
nvidia.com/

[5] “NVIDIA GPU Applications.” [Online]. Available: http://www.nvidia.
com/object/gpu-applications.html

[6] K. E. van de Sande, T. Gevers, and C. G. Snoek, “Empowering Visual
Categorization With the GPU,” Trans. Multi., vol. 13, no. 1, pp. 60–70,
Feb. 2011.

[7] K.-Y. Liao, S.-C. Hsu, and J.-M. Li, “GPU-based N-detect transition
fault ATPG,” in Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, 2013, pp. 1–8.

[8] Y. Zhang, F. Mueller, X. Cui, and T. Potok, “GPU-accelerated text
mining,” in Workshop on Exploiting Parallelism using GPUs and other
Hardware-Assisted Methods, 2009.

[9] D. Bharangar, A. Doeger, and Y. Mittal, “Implementation of Fast
Artificial Neural Network for Pattern Classification on Heterogeneous
System,” IJSER, 2013.

[10] D. A. Augusto and H. J. C. Barbosa, “Accelerated Parallel Genetic Pro-
gramming Tree Evaluation with OpenCL,” J. Parallel Distrib. Comput.,
vol. 73, no. 1, pp. 86–100, Jan. 2013.

[11] K.-M. Cheng, C.-Y. Lin, Y.-C. Chen, T.-F. Su, S.-H. Lai, and J.-K.
Lee, “Design of vehicle detection methods with opencl programming
on multi-core systems,” in Embedded Systems for Real-time Multimedia
(ESTIMedia), 2013 IEEE 11th Symposium on, Oct 2013, pp. 88–95.

[12] J. Fang, A. Varbanescu, and H. Sips, “A Comprehensive Performance
Comparison of CUDA and OpenCL,” in Parallel Processing (ICPP),
2011 International Conference on, 2011, pp. 216–225.

[13] C.-L. Su, P.-Y. Chen, C.-C. Lan, L.-S. Huang, and K.-H. Wu, “Overview
and comparison of OpenCL and CUDA technology for GPGPU,” in
Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference
on, 2012, pp. 448–451.

[14] “The Khronos Group, The OpenGL ES 3.0 Specification.” [Online].
Available: http://www.khronos.org/opengles/

[15] “Google Inc., RenderScript - Android Development Guide.” [On-
line]. Available: http://developer.android.com/guide/topics/renderscript/
compute.html

[16] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating Computer
Vision Algorithms Using OpenCL on the Mobile GPU ? A Case Study,”
in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), may 2013.

[17] G. Forman, “An Extensive Empirical Study of Feature Selection Metrics
for Text Classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305,
Mar. 2003.

[18] “Multinomial Naive Bayes for Text Categorization Revisited,” in AI
2004: Advances in Artificial Intelligence, ser. Lecture Notes in Computer
Science, G. Webb and X. Yu, Eds., 2005, vol. 3339.

[19] S. Pitigala, C. Li, and S. Seo, “A comparative study of text classification
approaches for personalized retrieval in PubMed,” in Bioinformatics and
Biomedicine Workshops (BIBMW), 2011 IEEE International Conference
on, 2011, pp. 919–921.

[20] T. Bayes, “An essay towards solving a Problem in the Doctrine of
Chances,” Philosophical Transactions of the Royal Society of London,
vol. 53, pp. 370–418, 1763.

[21] C. Turner, “A Fast Binary Logarithm Algorithm [DSP Tips Tricks],”
Signal Processing Magazine, IEEE, vol. 27, no. 5, pp. 124–140, 2010.

[22] “Single vs. Multiple contexts with multiple
GPUs.” [Online]. Available: https://devtalk.nvidia.
com/default/topic/473251/cuda-programming-and-performance/
single-vs-multiple-contexts-with-multiple-gpus/

[23] “OpenCL Best Practices Guide.” [Online]. Available: http://www.nvidia.
com/

[24] “20 Newsgroups Data set.” [Online]. Available: http://www.nvidia.com/
[25] A. K. McCallum, “Bow: A toolkit for statistical language modeling,

text retrieval, classification and clustering,” http://www.cs.cmu.edu/ mc-
callum/bow.

[26] “Intel VTune Amplifier XE 2013.” [Online]. Available: http://software.
intel.com/en-us/intel-vtune-amplifier-xe

1508 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

