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Abstract—CMOS technology and its sustainable scaling have 

been the enablers for the design and manufacturing of computer 
architectures that have been fuelling a wider range of 
applications. Today, however, both the technology and the 
computer architectures are suffering from serious challenges/ 
walls  making them incapable to deliver the right computing 
power at pre-defined constraints. This motivates the need of 
exploring new architectures and new technologies; not only to 
maintain the economic benefit of scaling, but also to enable the 
solutions of emerging computer power and data storage hungry 
applications such as big-data and data-intensive applications. 
This paper discusses the emerging memristor device as 
complementary (or alternative) to CMOS device and shows how 
this device can enable new ways of computing that will at least 
solve the challenges of today’s architectures for some 
applications. The paper shows not only the potential of 
memristor devices in enabling new memory technologies and new 
logic design styles, but also their potential in enabling memory 
intensive architectures as well as neuromorphic computing due to 
their unique properties such as the tight integration with CMOS 
and the ability to learn and adapt.  

I. INTRODUCTION 
Today’s and emerging applications are extremely demanding 
in terms of storage and computing power. Data-intensive/big-
data applications and internet-of-things (IoT) will transform 
the future; they will not only impact the all aspects of our life, 
but also change a lot in the IC and computer world. Emerging 
applications require computing power which was typical of 
supercomputers a few years ago, but with constraints on size, 
power consumption and guaranteed response time which are 
typical of the embedded applications [1]. Both today’s 
computer architectures and device technologies (used to 
manufacture them) are facing major challenges making them 
incapable to deliver the required functionalities and features. 
Computers are facing the three well-known walls  [2]: (1) The 
memory wall due to the increasing gap between processor and 
memory speeds, and the limited memory bandwidth making 
the memory access the killer of performance and power for 
memory access dominated applications; e.g. big-data; (2) The 
Instruction Level parallelism (ILP) wall due to the increasing 
difficulty in finding enough parallelism in software/code that 
has to run on  the parallel hardware being the mainstream 
today; (3) The power wall as the practical power limit for 
cooling is reached, meaning no further increase in CPU clock 
speed. On the other hand, nanoscale CMOS technology, which 
has been the enabler of the computing revolution, also faces 
three walls: (1) The Reliability wall as technology scaling 

leads to reduced device lifetime and higher failure rate [1], (2) 
The Leakage wall as the static power is becoming dominant at 
smaller technologies (due to volatile technology and lower 
Vdd) and may even be more than the dynamic power [3]; (3) 
The Cost wall as the cost per device via pure geometric 
scaling of process technology is plateauing [4]. All of these 
have led to the slowdown of the traditional device scaling. In 
order for computing systems to continue deliver sustainable 
benefits for the foreseeable future society, alternative 
computing architectures and notions have to be explored in 
the light of emerging new device technologies. Resistive 
computing, quantum computing, molecular computing, and 
neuromorphic computing are couple of alternative computing 
notions, while memristor devices, quantum dots, spin-wave 
devices are couple of emerging device technologies [5]. 
Memristor device is a promising candidate to complement 
and/or replace traditional CMOS (at  least in some 
applications) due to many advantages including CMOS 
process compatibility, zero standby power, great scalability 
and high density, and its potential to implement high density 
memories [6-10] and different logic design styles [11-14], 
enabling new computing paradigms [15-21]. 
             In this paper, we will explore the potential of 
memristor devices in building memories, logic functions, and 
new computer architectures. First the paper provides a brief  
overview on the memristor device, including its main 
properties. Second, it discusses the potential of these devices 
to enable the new generations of non-volatile memories as 
well as new generation of logic design styles. Third, the paper 
shows how the unique properties of memristor devices can 
enhance the concept of Memory Intensive Architecture, which 
makes use not only of bigger and faster on-die memories, but 
also of new micro-architectures and memristor devices as 
memory elements; two architecture examples will be 
demonstrated.  The first uses a novel memory structure called 
the multistate register to store instruction states locally; while 
the second uses local nonvolatile memory elements to 
construct nonvolatile processors that can be efficiently 
powered-on and powered-off.  Fourth, the paper discusses 
how the memristor offer a compelling solution for the 
realisation of neuromorphic architectures, including non- 
spiking neural networks as well spiking (artificial) networks; 
memristors encode the synaptic weights for spiking neural 
networks, while they encode the weight of the neurons for 
artificial networks. Finally, the paper highlights the major 
challenges for CMOS-memristor system integration.  
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(a) The four fundamental elements (b) Memristor pinched hysteresis loop (c) Memristor structure (d) Symbols  
 

Fig. 1. Main characteristics  of a memristor device 
 

 

II. MEMRISTOR: WHAT IS IT ABOUT? 
Memristor, or more generically a memristive device, is 
basically a fourth class of fundamental two-terminal electrical 
element, joining the resistor, the capacitor, and the inductor. It 
was initially proposed in 1971 by the nonlinear circuit theorist 
Leon Chua [22]. He noticed that there is still one missing 
relationship between flux and charge as shown in with the 
dashed line in Fig.1(a). Theoretically, Memristor is a passive 
element that maintains a relationship between the time 
integrals of current and voltage across a two terminal element, 
while considering the internal state variable of the device; 
hence, a memristor can be equivalently expressed either by a 
function of charge q or a function of flux . The beauty of the 
memristor lies in its ability to remember its history (i.e., the 
internal state). An important fingerprint of a memristor is the 
‘pinched hysteresis loop’ current-voltage characteristic as 
illustrated in Fig.1(b); for a memristor excited by a periodic 
signal, when the voltage v(t) is zero, the current i(t) is also 
zero and vice versa. Another signature of the memristor is that 
the ‘pinched hysteresis loop’ shrinks with the increase in the 
excitation frequency f. Fig.1(c) shows a typical memristor 
device consisting of two metallic electrodes that sandwich a 
thin dielectric Insulating layer (I-layer) serving as permanent 
storage medium making its leakage current close to zero. The 
exact mechanism differs significantly among the different 
materials being used, but the common link among all 
memristive devices is an electric field causes ionic movements 
and local structural changes in the storage medium, which in 
turn causes a measurable change of the device resistance. 
Fig.1(d) shows the two symbols typically used to denote a 
memristor; the black square represents the positive terminal.  
 
It is just in 2008 that the memristor became famous, after a 
silent period of more than 30 years; the first physical 
memristor device was manufactured and demonstrated by HP 
Laboratory [23]. HP built a metal-insulator-metal device using 
titanium oxide as insulator and identified the memristive 
behaviour over its two-terminal node as described by Leon 
Chua. The device modulates its resistance by controlling 
positive charged oxygen vacancies in the insulator layer using 
different voltages. After the first memristor device was 
fabricated, several memristor devices based on different type 
of materials have been proposed such as spintronic [24], 
amorphous silicon [25], and ferroelectric memristors [26]. 

III. MEMRISTOR FOR LOGIC AND MEMORY 
Researchers have been exploring the use of memristor devices 
for the implementation not only of the non-volatile memories, 
but also different logic styles. 

A. Memristor for memories  
All 2-terminal non-volatile memory devices based on 
resistance switching are memristors, regardless of the device 
material and physical operating mechanisms  [9]; they all 
exhibit a distinctive “fingerprint” characterized by a pinched 
hysteresis loop confined to the first and the third quadrants of 
the v–i plane whose contour shape in general changes with 
both the amplitude and frequency of any periodic “sine-wave-
like” input voltage source, or current source.  
 
Memristive based memory devices, also referred to as 
resistive memory devices, are one of the most promising 
candidates for next generation NVM because of their faster 
write time, large resistance ratio Roff/Ron, and smaller write 
power consumption [27]. Resistive memories can be either 
single-level cell or multiple Multi-level cell; multi-level 
operation can be easily realised e.g., by modifying the current 
through the cell.  It is expected that resistive memories  will be 
capable of storing up to 1TB of data on a single chip, thanks to 
the ability of “3D-stacking” multiple cells in different 
configurations in order to save space while still upping the 
storage limits [17]. All of this can fit into a tight, tiny space, 
which could then fit into mobile devices and  would 
essentially replace NAND flash memory, which is the current 
standard in the gadget industry, and pretty much all 
smartphones and tablets use it.  
 
Resistive memory devices, can be classified based on their 
dominant physical operating mechanism into three classes 
[27]: Phase Change Memories (PCM), Electrostatic/ 
Electronic Effects Memories (EEM), and Redox memories. 
The physical mechanism for switching resistance states for 
PCM is purely thermal (e.g., an electrical power can induce 
Joule heating and involve the formation and disruption of 
some localized conduction paths in an insulating material), 
while that of EEM is purely based electronic effects (e.g., 
charge injection and trapping, ferroelectric polarization 
reversal, Mott metal-insulator transition). On the other hand, 
Redox memories are memories where the physical mechanism  
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for switching is based on reduction/oxidation (Redox)-related 
chemical effects. The category of “Redox RAM” encompasses 
a wide variety of Metal-Insulator-Metal (MIM) structures; the 
electrochemical mechanisms driving the resistance state (from 
high to low or the reverse) can operate in the bulk I-layer, 
along conducting filaments in the I-layer, and/or at the I-
layer/metal contact interfaces in the MIM structure.  

B. Memristor for logic   
Several memristor based logic design have been proposed; 
these can typically classified, based on the nature of the logic 
designs, into three classes: Boolean Logic [12, 13, 28, 29, 30]. 
Implication Logic [31, 32, 33], and Threshold/Majority [34, 
35]; they are briefly discusses next. 

 
Boolean Logic  
Boolean Logic provides the conventional mathematical 
algebra primitives such as  conjunction (AND), the disjunction 
(OR), and the negation (NOT) applied to values of variables.  
Four different implementation families were proposed: 
  CMOS-Like Memristor based logic design (CLM) [28]:  
This can implement any arbitrary Boolean functions by 
replacing the pull-up and pull-down network as used in 
CMOS gates with  memristors. E.g., a CLM two-input 
NAND gate consists of two parallel memristors in the pullup 
network (with the positive terminals connected to Vdd), and 
two serial memristors in the pull-down network (with the 
positive terminals oriented to GND).  
  Memristor Ratioed Logic (MRL) [29]: This is hybrid 
CMOS-memristive logic family. In this logic, OR and AND 
logic gates are based on memristive devices, and CMOS 
inverters are added to provide a complete logic structure and 
signal restoration. The top part of Fig. 2(a) illustrates a two 
input NAND gate. When input x1x2=01, the current flows 
from memristor M2 to M1 causing them to switch to Ron, 
respectively, Roff; see also Fig 1(b). As a result, the voltage 
Vx is close to 0 resulting in Vout= Vdd. A two-input NOR is 
shown in bottom part of Fig. 2(a); note that the polarity of 
the memristors is the only structural difference. 

  MAGIC Logic [12]: this is a memristor-only logic family. In 
each logic gate, memristors serve as inputs with previously 
stored data, and an additional memristor serves as an output. 
The applicability of such logic to  memristor-based crossbar 
is straightforward in case of NOR gate, while it requires an 
additional resistor within each row in case of other gates. 
 Crossbar memristor based logic [13, 30]: This is also a 
memristor-only logic family;  using appropriate controlling 
signals and procedure to the crossbar, inverting and non-
inverting gates, and even latches and sum-of-product logic 
functions can be implemented. It has been shown even that 
any Boolean function can be implemented in seven steps 
irrespective of its size/minterms and complexity [13]. Hence, 
multiple memristor crossbars may be combined to implement 
complex computational systems. 

 
Implication Logic 
Implication Logic provides primitive logic operations on 
typically two propositions; examples are material implication, 
converse implication, and material non-implication. Two 
families of memristor based implication logic are proposed.  
  Stateful Logic [31, 32]. In this memristive logic family, each 
memristor is used as an input, output, computational logic 
element, and latch in different stages of the computing 
process. The logical state is determined by the resistance of 
the memristor. This logic family can be integrated within a 
memristor-based crossbar, commonly used for memory. Fig. 
2(b) illustrates the working principal for “if p then q” (p q) 
in case p is TRUE and q is FALSE. First p and q are 
programmed to Ron, respectively, Roff by providing 
appropriate voltages to the control signals (bit lines and the 
wordline). E.g., top part of Fig. 2(b) shows how to program 
Ron by applying  Vp=Vw and Vq=Vh, where Vw>Vth is the 
writing voltage (Vth is the threshold voltage to switch the 
memristor), and Vh=Vw/2<Vth used to prevent non-selected 
memristors from switching. Note that the voltage across Mp 
is Vw>Vth; hence Mp is set to Ron. In a similar way, Mq can 
be programmed to Roff. Next,  a computing step is executed, 
as shown in the bottom part of Fig. 2(b); it applies Vp=Vh, 
Vq=Vw, and keeps the wordline floating, resulting in Vx Vh, 

   

   
(a) Memristor Ratioed Logic (b) Stateful Logic (c) Progr.CMOS/Memristor logic  

 

Fig. 2. Examples of memristor based logic designs 
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which forces the output memristor Mq to remain in its Roff  
state (i.e. FALSE). 
 

  Complementary Resistive Switch (CRS) Logic [33]: this 
implementation is based on the use complementary resistive 
switches (i.e., two antiserial memristive elements) in order to 
enable the selection of designated cell(s) within a passive 
crossbar array without interference from sneak-path currents 
through neighbouring cells. Note that the CRS concept can 
be also used to build Boolean logic.  

 
Threshold/Majority 
 

Threshold logic provides threshold gates in which the output 
value depends on whether the arithmetic sum of values of its 
weighted inputs exceeds a certain threshold. Majority logic is 
actually a subset of threshold logic with the constraint that the 
inputs are all binary and the weights are all equal. These non-
traditional styles enables e.g. neuromorphic computing. Three 
implementation families of such logic are proposed.  
  Programmable CMOS/Memristor Logic [34, 35]. In this 
family, memristive devices implement ratioed diode-resistor 
logic, while CMOS circuitry is used for signal amplification 
and inversion; this logic is even in-field configurable. The 
top part of Fig. 3(c) illustrates a three-input threshold logic 
gate implemented with four parallel memristors connected to 
a pull down resistor and a CMOS D flip-flop. The three 
voltage inputs are first weighed by the conductance of 
memristors which are actually transferred to currents; these 
are summed up, and transferred to a voltage Vx by Rs. If 
Vx>Vth of the D flip-flop, then the output is set to 1. The top 
part of Fig. 3(c) shows the case when the output result is 1 
and the bottom part when the output is 0, assuming that 
Vth=Vdd/2 and Rs=2Ron of the memristor.  
 

  Hybrid Current Mirror Logic [34]: For this implementation, 
the weights of a threshold function are represented with 
memristance such that Ohm’s Law is used to convert voltage 
signal inputs into weighted inputs represented by currents.  
The currents determined for all inputs must be summed and 
then compared with a reference current representing the 
threshold. If the summed current exceeds the threshold, the 
output of the gate is pulled to the high supply voltage or vice 
versa. This operation can be accomplished using current 
mirrors to first reflect the weighted inputs, sum them, and 
then compare to the threshold represented by the reference 
current. 

IV. MEMRISTOR FOR MEMORY-INTENSIVE ARCHITECTURES  

As already mentioned, the state-of-the art computers are 
facing memory and power walls. The trends in modern 
memory systems have been changing towards throughput and 
energy efficiency. Fig. 3 illustrates throughput/memory-
bandwidth versus bandwidth. Obviously it is desired to 
achieve high throughput, but additionally not to have a large 
(and costly) bandwidth systems (bandwidth demon systems). 
Memory Intensive Architectures target the realization of 
similar overall throughput as systems with  large bandwidths, 
but then by using small bandwidth, smart microarchitectures, 

increasing on-die memory and new device technologies (such 
as memristors). 
 
The unique properties of memristive technologies, together 
with their speed, high endurance and low power, make them 
ideal candidates to enable memory intensive architectures. 
Memristors can be used in memory levels different than the 
standard non-volatile memory (i.e., different than secondary 
storage and code storage). Additionally, many types of 
memristors can be fabricated between two layers of metal and 
can therefore be fabricated in back-end-of-the-line of any 
conventional CMOS process, including stacking them in 
multiple vertical layers. Fabricating such a tight integration, 
where memristors are located on-top of CMOS transistors 
enables extremely high dense memory with low access 
latency. Having numerous memory elements located above the 
CMOS logic is the key to enable the radical change in 
computer architecture that we call the Memory Intensive 
Computing era. 
         Memory intensive computing does not only mean bigger 
and faster on-die conventional memories (e.g., cache, register 
file), but also includes new micro-architectures and novel 
memory elements, which use the "sea of memory" located on 
the top of the standard CMOS circuits, to enhance the overall 
performance of processors and reduce the power dissipation. 
These advantages of using an ample amount of on-die 
memory make the technology appealing for use in big data 
and internet of things (IoT) applications. 
 
We demonstrate the concept of memory intensive computing 
by two examples. The first example uses a novel memory 
structure called the multistate register to store instruction 
states locally and by that significantly improving performance 
in multithreaded processors. The second example uses local 
nonvolatile memory elements to construct nonvolatile 
processors that can be efficiently powered-on and powered-
off and by that, substantially reducing energy.  It is worth 
noting that Hybrid Memristor-CMOS Logic (as explained in 
Section III) is another option that can be explored for memory 
intensive architectures; it can be used exploit the “sea of 
memory elements” via a tight integration on the top of CMOS 
logic to create three-dimensional logic paths that dramatically 
improve area efficiency.  

 
Fig. 3. Throughput/memory-bandwidth vs. bandwidth. Each curve 
on the graph has a fixed throughput TPi (performance) while the 
memory bandwidth varies.  
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Fig. 4. Illustration of timelines for different multithreading 
techniques with four threads. All processors run the same four 
threads as shown in the lower table. The latencies of 'white' and 
'shaded' instructions are, respectively, a single clock cycle and ten 
clock cycles. 

A.  Continuous Flow Multithreading (CFMT) 
The newly added abundant memory can be used to increase 
the performance of a machine by increasing the capacity of 
elements within the processor, such as caches, branch 
predictors, instruction queues, prefetching structures, reorder 
buffers, and other buffers. The additional memory elements 
can also be used to store data, which currently is not being 
stored due to the limitations of conventional technologies. For 
example, it is possible to store the results of previously 
executed instructions to perform instruction reuse and have 
hardware memorization [36]. It is also possible to have many 
checkpoints within the processor. Another example for storing 
previously unsaved data is demonstrated in a novel 
microarchitecture named Continuous Flow Multithreading 
(CFMT) [18], which will be discussed next.  
 
CFMT is a multithreaded microarchitecture based on Switch 
on Event multithreading (SoE MT) [37, 38, 39]; it employs the 
simple method of switching between active threads each time 
an event occurs that takes more than a certain amount of time 
to resolve (e.g., cache miss). SoE MT is a simple technique 
that requires minimal control, but it suffers from low 
performance and relatively high energy consumption due to 
pipeline flushing on every thread switch; this is exactly what 
is avoided by CFMT. The superiority of CFMT comes from 
the fact that it can locally stores  any  relevant data such as 
that stored in in pipeline registers and register files; these 
locally stored data can be then used later on a thread switch. 
This avoids flushing of early pipeline stages, thus reducing 
thread switch penalty. Fig. 4 Illustrates the instruction flow of 
CFMT compared to other multithreading methods including  
SoE, Fine-grained [40, 41], and  Simultaneous Multi-
Threading (SMT) [42]. In addition, the reduced penalty allows 
to consider new events as worthy of a thread switch, further 
increasing throughput.  
      The primary change in CFMT as compared to SoE MT is 
the use of a novel memristive memory element named 
Multistate Pipeline Register (MPR) [43]. The MPR replaces 
the conventional pipeline register and is used to store the 
states of instructions from different threads. The MPR has a 

CMOS layer that is similar to conventional pipeline register 
and a memristive layer that is used to store additional data, as 
illustrated for a resistive memory (RRAM) based memristive 
MPR in Fig. 5. Rather than flushing an instruction during a 
thread switch, the state of the instruction is stored in the 
memristive layer of the MPR (e.g., crosspoint in the figure), 
while the instruction from an active thread is stored in the 
CMOS layer (e.g. CMOS register in the figure). The use of 
memristors to store additional data is extremely area efficient. 
For example, in RRAM-based memristive MPR, the area 
required to store 64 inactive threads in the memristive layer 
does not exceed 86% of that required to store the active thread 
in the CMOS layer [44]. 

In addition to area efficiency, CFMT processors achieve 
high performance, while maintaining the control complexity 
as low as SoE MT, resulting in lower energy. CFMT 
outperforms SoE by 40% on average, and has comparable 
performance to SMT [44]. The CFMT example clearly 
highlights how the density and tight integration of memristors 
and CMOS makes the use of MPR area efficient, and as a 
result enables a multithreaded processor that achieves high 
performance, while keeping the energy low. 

B. Low Power Nonvolatile Processors(NVP) 
Similarly to MPR, non-volatile flip-flops (NVFFs) [45, 46] 
can be used to reduce energy of processors. While MPR holds 
multiple states, the NVFF holds a single state to store the 
entire state of the machine in a non-volatile memory prior to 
power loss. The stored state creates a “checkpoint” to restore 
from upon power resumption. This type of system is called a 
Non-Volatile Processor (NVP) [47, 48], and is useful in 
extremely low-power applications, such as IoT applications 
[49], where devices are isolated, and often have to rely on 
self-produced (harvested) energy. Such devices (e.g. sensors, 
wearables, smart IDs) are likely to spend most of the time 
turned off, with only brief periods of battery powered 
operation. The need for a standard boot from non-volatile 
storage before each operational period is too energy 
consuming and may not be feasible when using harvested 
energy. 

  

Fig. 5. Single bit RRAM-based memristive multistate register. The
active bit is stored within a CMOS D flip flop and the other 15
inactive bits are stored within the memristive crossbar 
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Fig. 6: Basic structure of a Non-Volatile Processor NVP 
 
Recent reported NVFFs have read/write latencies in the 

order of 1’s to 100’s of nanoseconds, and energy dissipation 
of few pJ per bit [50, 51, 52, 53]. These properties, combined 
with the tight integration of CMOS and memristors, make 
memristors ideal candidates for local storage of the machine 
state for resuming operation after a power down period. In 
fact, low latency and energy costs allow storing a device’s 
state not only before a planned power down, but also in the 
case of a sudden power failure. 

Fig. 6 shows the structure of an NVP; the processor 
consists of an energy module for harvesting and managing an 
ambient energy source (e.g., solar, wind, thermal, 
piezoelectric, RF), a (typically simple) processing unit with 
volatile memory (FFs, caches, working set memory), and a 
non-volatile part for check-pointing. These are all controlled 
by a central controller that determines the mode of operation. 
While using conventional non-volatile technologies compel 
the non-volatile part to be a separate module, when using 
memristive NVFF, the nonvolatile part can be fabricated 
directly above the CMOS area, reducing wire distances for 
backup of data, thus decreasing latency and capacitance.  
 

V. MEMRISTOR FOR NEUROMORPHIC COMPUTING  
Biological neural networks process information in a 
qualitatively different manner from conventional digital 
processors. Unlike the sequence of instructions programming 
model employed by conventional von Neumann architectures,  
the knowledge, or the program, in a neural network is largely 
encoded in the pattern and strength/weight of the synaptic 
connections. This “programming model” is key to the 
adaptability and resilience of neural networks. That is because 
through synaptic plasticity mechanisms, the network can 
continuously learn, or self-program, by adjusting the weights 
of the synaptic connections based on the network inputs and 
internal dynamics.    
 

Neuromorphic computing draws inspiration from biological 
networks in an effort to develop adaptable and massively 
parallel computing architectures. In biological networks, 
synapses outnumber neurons by several orders of magnitude, 
making the implementation of plastic synaptic elements the 
key hurdle limiting the scalability of neuromorphic 
architectures. Memristors offer a compelling solution to the 
scalability problem, as they can be used as nano-scale synaptic 
elements whose connection weights (conductances) are 

modulated by the activity of the pre- and post-synaptic 
neurons, as is the case in biological networks.   
 
Neural network architectures that make use of memristive 
devices roughly fall into two categories: architectures based 
on spiking neural networks that make use of biologically 
motivated spike-base plasticity mechanisms, and architectures 
based on non-spiking, or artificial, neural networks where 
connection weights are updated according to some form of 
gradient descent. Artificial neural networks have been 
tremendously successful in solving a wide class of machine 
learning problems. However, they make use of analog-valued 
neurons and are only loosely related to biological networks. 
While not neuromorphic in the full sense of the word, artificial 
neural networks still embody the main principles of operation 
of biological networks such as the distributed representation of 
information in neural activity, and adaptability through 
synaptic plasticity. 
 
Neuromorphic architectures place less stringent demands on 
the memristor characteristics compared to conventional digital 
circuits. Learning in artificial networks is an iterative process 
that adjusts the connection weights based on the network 
behavior. This iterative process can compensate for mismatch 
in the memristive synaptic elements, as well as unreliable 
set/reset mechanisms in the memristive device. Unreliable 
set/reset mechanisms can even be beneficial, as intermittent 
failures in updating the synaptic weights can make learning 
more robust against spurious inputs [54].  Like their biological 
counterparts, some artificial network models can even tolerate 
the complete failure of some synaptic elements, as the 
synaptic learning mechanisms can use the remaining 
connections to compensate [55]. The required synaptic weight 
resolution will depend on the network and the learning task. 
Several recent results indicate that the 32-bit floating point 
weights typically used in artificial neural network models are 
far from necessary and synaptic bit-resolutions as low as 4-bit 
[56], 2-bit [57], or even 1-bit are sufficient [58] during 
forward propagation. 

 

In the rest of this section we will show how the memristor 
enable the implementation of artificial neural network and 
spiking neural network architectures.  

A. Memristors in artificial neural network architectures 
Artificial neural networks (ANNs) utilize analog valued 
neurons. One common ANN architecture is the feedforward 
fully connected network. These networks are composed of 
successive layers of neurons with feedforward connections 
from one layer to the next and no lateral connections within 
layers. The output of the neurons at layer l, yl is given by: 
 

 
 

where Wl is the matrix of weights connecting neurons in layer 
l-1 to neurons in layer l and bl is the bias vector for the 
neurons in layer l.  is a static non-linearity. The first (bottom) 
layer is the input layer carrying in the raw data to be 
processed.  
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    (a)  

             (b)  
Fig. 7. General form of a memristive ANN implementation of a 
single feedforward layer. The input layer neural activity, yl-1, is 
encoded as analog voltages. The output neurons maintain a virtual 
ground at their input terminals and their input currents represent 
weighted sums of the activities of the neurons in the previous 
layer, where the weights are encoded in the memristors' 
conductances. The output neurons generate an output voltage 
proportional to their input currents (after applying the static non-
linearity, ). 

 

 Fig. 8. (a) General shape of the STDP curve illustrating the relation between weight 
change and relative timing between pre- and post-synaptic spikes, tpost – tpre. (b) 
STDP learning implemented using a memristor with bipolar switching 
characteristics. The waveforms generated on the pre- and post-synaptic terminals 
cause the voltage applied across the memristor, vpost – vpre, to cross the conductance 
modulation threshold only when the pre- and post-synaptic spikes are temporally 
close. The green horizontal lines indicate the modulation threshold. The polarity, 
amplitude, and duration of the threshold-crossing depends on tpost – tpre. as illustrated 
here for the weight potentiation and depression cases. 

A straightforward memristive realization is illustrated in Fig. 
7. Fully connected feed-forward networks lend themselves 
very well to implementation using memristor crossbar arrays. 
A single layer network based on the architecture in Fig. 7 has 
been physically implemented using Titanium dioxide 
memristors [59]. 
 

B. Memristors in spiking neural network architectures 
In memristor-based spiking neural networks, the conductance 
of the memristor is used to encode the synaptic weight. 
Neurons are either implemented using standard CMOS 
circuits, or logically implemented in software on a digital 
processor. Synaptic plasticity in spiking neural networks often 
takes the form of spike-timing dependent plasticity (STDP) 
where the synaptic weight is updated based on the relative 
difference between the spike times of the pre- and post-
synaptic neurons. STDP typically induces weight increase 
(decrease) when the pre-synaptic spike precedes (lags) the 
post-synaptic spike as shown in Fig 8(a). This results in a 
Hebbian learning mechanism that strengthens the connection 
between neurons whose activities are causally related.  
Implementations of STDP typically exploit the threshold 
effects observed in the switching characteristics of several 
types of memristors [60], which cause applied voltages below 
a threshold to have little to no effect on memristor 
conductance. STDP-driven weight updates can be realized by 
applying a shaped pulse to the memristor’s pre-(post-)synaptic 
terminal whenever the pre-(post-) synaptic neuron spikes. The 
pulses are shaped so as to induce a change in memristor 
conductance only when the pre- and post-synaptic spikes 
occur in close temporal proximity as shown in Fig. 8(b) [61]. 
Learning rules based on STDP have been used to train spiking 
networks on image classification tasks [62] and on 
probabilistic inference tasks [63]. The later network model has 
recently been physically implemented using Titanium dioxide 
memristors as synaptic elements [64]. 
 

Several biologically motivated learning rules do not fall into 
the vanilla STDP learning paradigm where weight update is 

only a function of the time difference between pre- and post-
synaptic pikes [65, 66]. These learning rules usually employ 
extra state variables in the neurons that modulate the 
magnitude of the weight updates. The pulse shaping paradigm 
illustrated in Fig. 8(b) can still be applied to implement some 
of these rules by modulating the shape of the spike-triggered 
waveforms based on the plasticity-relevant internal states of 
the neuron [67], which would in turn allow these states to 
control the magnitude of the weight update. Some learning 
rules, however, trigger synaptic updates on pre-synaptic spikes 
[54], even in the absence of post-synaptic spikes. These rules 
therefore cannot depend on the overlap between pre- and post-
synaptic waveforms to trigger memristor weight updates. An 
alternative stimulation protocol can be used in which the 
memristor pre-synaptic terminal is kept floating and then 
clamped to an intermediate voltage on pre-synaptic spikes. 
The post-synaptic terminal potential would then control the 
magnitude/polarity of the weight update based on the post-
synaptic neuron's state [68]. This, however, precludes the use 
of memristor cross-bar arrays since the floating pre-synaptic 
terminals would then introduce direct paths involving two 
memristors in series between the post-synaptic terminals. A 
generalization of this stimulation scheme to crossbar 
memristor arrays [69] uses active sensing circuits on the post-
synaptic side which detect and lock onto the pre-synaptic 
stimulation pulse, and drive a post-synaptic stimulation pulse 
in sync with the pre-synaptic pulse. All memristor terminals 
are actively driven at all times, thereby avoiding direct current 
paths between post-synaptic terminals which could be 
mistakenly interpreted as pre-synaptic activity. 
       Importantly, the inherent robustness of neuromorphic 
architectures for general tasks in statistical inference and 
learning make them resilient to imprecision in their physical 
implementation using highly variable and noisy memristor 
devices. The stochasticity of ionic transport in memristor 
junctions can even be harnessed to implement stochastic 
algorithms in neural transduction [19] and in synaptic 
transmission [70, 71] yielding greater performance in learning 
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and inference, in addition to greater energy efficiency and 
noise resilience. 

VI. CMOS-MEMRISTOR SYSTEM INTEGRATION 
CHALLENGES 

Despite their many advantages, several open problems and 
challenges remain in integrating memristive devices with 
conventional CMOS systems. 

Modern CMOS has curbed scaling induced power 
dissipation through lowering operating voltages below 1V for 
the core computational circuitry [72]. However, the physics of 
resistive memory devices necessitates energy be expended to 
read and write to them [26, 27, 73]. Furthermore, fabricating 
and electroforming these devices often entails high electric 
fields being applied across the device terminals to SET the 
device. Analysis of the scaling properties of these devices 
shows the area of the device scales inversely with the intensity 
of the forming voltage [74] with voltages >2V required to 
form 100nm2 HfOx based memristors [75]. The forming 
process thus requires the inclusion of high-voltage devices in 
the periphery reducing memory densities. These voltages are 
generally determined by the high-resistance state (HRS), the 
desired low-resistance state (LRS) and the set-compliance 
current which prevents dielectric breakdown during the 
forming process. Attempts at reducing this voltage lead to an 
increase in the LRS, and, decreasing RHRS/RLRS leading to 
indistinguishable states; see also Fig. 1(b). This effect is 
further exacerbated when the selector device in a 1T1R 
structure is replaced by a vertical diode (1D1R) memory cell 
structure [76] due to further lack of control on the compliance 
current. 

Challenges in scaling up the size of arrays of memristors 
include: nonuniform resistance profile across the crossbar 
array, resistance drift, inherent device-to-device and cycle-to-
cycle variations as well as yield issues. Overcoming these 
requires a concerted effort at both a device and algorithmic 
level. While highly fault-tolerant algorithms can partly 
compensate for variation trading-off energy and time for 
accuracy [77], these need to be complemented by electrical 
methods like correcting pulses to restore state after reading, 
mitigating the effect of resistance [78]. Other techniques 
where memristive elements are implemented as 
complementary resistive switches [79]; adaptive writing and 
erasing methods [80] are adopted to improve yield, combating 
reliability issues. 

The large fan-out and fan-in in contemporary machine-
learning algorithms also poses specific challenges, 
necessitating large memory array sizes. For large arrays, the 
energy to drive the array dominates the net energy [81], while 
also suffering from increased IR drops along bit and word 
lines. Increasing the wire thickness to mitigate the effect of the 
IR drops results in decreased device densities, increased 
capacitance and increased energy losses in driving the array. 
Alternative architectures composed of adequately smaller 
sized arrays strike a balance between greater fill density in 
connectivity and more frequent communication between 
cores, which may lead to substantial system-level energy 

savings [82].  Greatest benefits of system-level integration can 
be reaped from hybrid CMOS-memristor architectures as tiled 
arrays of neural processor cores with locally dense memristor 
cross-bar synaptic connectivity within each core, and with 
globally sparse, dynamically reconfigurable axonal 
connectivity and event-driven neural communication across 
cores, as highlighted in Fig. 9. The combination of high 
energy efficiency and great functional flexibility of such 
reconfigurable architectures opens the door to system-level 
co-optimization of advances in memristor devices and deep 
learning algorithms leading to even greater advances in 
adaptive computational intelligence. 

VII. CONCLUSION  
Memristive devices provide many opportunities; not only to 
enable new generations of non-volatile memories (with fast 
access speed, high reliability, up to 1TB storage capacity, and 
multi-level capability), but also  to enable new alternative 
computing architectures and notions required for emerging 
applications; examples are smart microarchitectures making 
use of memristor devices as local storage elements (Memory 
Intensive Architectures) and neuromorphic computing making 
use of the memristors as weighted elements. However, there 
are still many challenges ahead to be solved, such as those 
related to  CMOS-memristor system integration. 
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