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Abstract—History has shown that attacks against network-
connected software based systems are common and dangerous.
An important fraction of these attacks exploit implementation
details of the software based system. These attacks – sometimes
called low-level attacks – rely on characteristics of the hardware,
compiler or operating system used to execute software programs
to make these programs misbehave, or to extract sensitive
information from them. With the increased Internet-connectivity
of embedded devices, including industrial control systems, sensors
as well as consumer devices, there is a substantial risk that similar
attacks will target these devices.

This tutorial paper explains the vulnerabilities, attacks and
countermeasures relevant for low-level software security. The
paper discusses software security for two different attacker
models: the classic model of an attacker that can only interact
with the program by providing input and reading output, and the
more recent and challenging model of an attacker that controls
part of the execution platform on which the software runs, for
instance because the attacker has compromised the operating
system, or some of the libraries that the software under attack
relies on.

I. INTRODUCTION

Security is about maintaining desirable properties of sys-

tems in the presence of intelligent adversaries. Hence, to define

a security problem, one must define (1) the system under

consideration, (2) the desirable properties that one wishes to

maintain (the security objective), and (3) the capabilities the

attacker or adversary is assumed to have (the attacker model).

Software security, obviously, studies the case where the

system is a software based system. History has shown that

software based systems, and in particular systems that are

connected to the Internet, are vulnerable to a wide variety of

attacks. Attacks against software can take many forms, but this

paper focuses specifically on attacks that exploit implementa-

tion details of the platform (i.e. the hardware and software

infrastructure) on which the software is executing. These

attacks range from the classic stack-smashing attack [1] to

modern attack techniques like Return-Oriented-Programming

(ROP) attacks [2] or memory scanning malware [3].

This class of attacks (sometimes dubbed low-level software
attacks) has been one of the most damaging classes of attacks

on the Internet over the past decades. With the increased

Internet-connectivity of embedded devices, including indus-

trial control systems, sensors as well as consumer devices,

there is a substantial risk that similar attacks will also be

launched against such devices.

In this paper, we consider software systems that are com-

piled from source code, and we consider a very general

security objective: the compiled system should behave as
specified in the source code that it is compiled from (and only
as specified in the source code, i.e. no additional unexpected

functionality). This security objective defends against a very

wide range of attacks that exploit platform implementation

details, including all the example attacks mentioned above. For

instance, the behaviour of a vulnerable program under a stack-

smashing attack diverges completely from what is specified in

the source code of the program.

We can study this security objective for compiled software

systems under different attacker models. The most widely

studied attacker model considers an attacker that can provide

input to, and read output from a compiled program. The

attacker’s goal is to choose the inputs in such a way that

behaviour of the running program deviates from the behaviour

specified in the source code. Of course, attackers often have a

very specific deviating behaviour in mind (like getting a root

shell on the computer under attack, or installing a root-kit on

that computer) but from a defense point of view, it makes sense

to consider any behaviour that deviates from what is specified

in the source code as an attack.

Such attacks are possible in this attacker model against

software that is written in unsafe languages like C or C++

and that contains so-called memory safety vulnerabilities. We

discuss those vulnerabilities in Section III, as well as the wide

range of attacks and countermeasures that has been studied in

the past decades for this attacker model.

In some cases however, a more powerful attacker model

is appropriate. In Section IV, we consider attackers that

can provide part of the compiled code of a program. This

attacker model is relevant for software that consists of multiple

modules or components that are compiled separately and then

linked together, and loaded to be executed. Such software

often includes compiled modules from third parties, and in

this attacker model we consider attackers that can arbitrarily

modify one or more of these modules. The model also includes

attackers that can modify code (for instance to install malware)

in the more privileged operating system layer.

990978-3-9815370-6-2/DATE16/ c©2016 EDAA



We assume that readers of this paper have programming

experience in an imperative programming language like C,

and have a general understanding of how such languages are

compiled to a standard von Neumann style computer that

executes low-level, unstructured machine code. In the next

Section, we briefly recap some details of this compilation

process that are important to understand the attacks and

countermeasures in this paper, but this is not intended to

be a self-contained introduction to computer architecture and

compilation. Readers who need to refresh that background

more extensively should consult a relevant textbook [4].

II. SOURCE CODE, MACHINE CODE AND COMPILATION

Most software is developed as source code in a high-

level programming language and subsequently compiled to

machine code for execution. The difference between source

code and machine code is substantial. In high-level languages

like C, control flow is structured, there is a strict separation

between code and data, and most languages support features

that allow developers to define and enforce abstractions or

to hide information behind interfaces. At machine code level,

there is a single virtual address space, where both code and

data are represented as binary n-bit words and where control

flow is unstructured. For the examples in the paper, we will

assume a 32-bit memory address space, i.e. virtual memory

consists of 232 bytes. The processor has 32-bit registers and

a single instruction can load a 32-bit word (i.e. 4 bytes) from

memory to a register.

Figure 1 illustrates the difference between source and ma-

chine code, and also illustrates some details of the compilation

process.

Part (a) of the Figure shows a very simple C program that is

intended to be representative of a server process. In the main

method, it should first initialize, listen on a network socket

and accept connections (code not shown), and then it calls the

process () method passing it a file descriptor that can be used

to communicate on the established connection. The process()

method uses a get request() method to read a request of the

connection.

Part (b) of the Figure shows the compiled code for the

process() method. Both the assembly code, as well as the

machine code (in hexadecimal notation) are shown, and com-

ments clarify what the code is doing. In particular, the code

shows how the necessary management information associated

with this specific function invocation is maintained on the

call stack. The base pointer is a processor register that points

to the base of the stack record associated with the current

function invocation. The machine code of process() starts with

saving the old base pointer (the one associated with the main()

function invocation), and then sets the new base pointer to

the top of the stack. Next, it allocates space on the stack

by subtracting 0x18 from the stack pointer (note that this

grows the stack, as the stack grows towards lower memory

addresses). This includes space for the local variable (buf),

as well as space for the two parameters that will be passed

to get request() in the first statement of process(). The two

parameters are copied into that allocated space, and then the

call to get process() happens.

Part (c) of the figure shows a snapshot of (parts of) the run-

time state of the process executing the compiled program at the

point where it has just entered the get request() function. You

can recognize the stack records (also called activation records)

of the process() function invocation and of the get request()

function invocation. You can also see the machine code of the

process() function at some other place in memory: it is stored

starting at address 0x080483f2, in little-endian byte order (i.e.

the first byte is stored in the least significant byte of the word

at address 0x080483f2).

Two of the processor registers – the Instruction Pointer (IP)

and the Stack Pointer (SP) – are also shown, and point to code

of the get request() function and the top of the stack record

for the get request() invocation (which is at this point in time

the top activation record on the stack) respectively.

While not all details in the Figure are important, the

Figure does illustrate the huge abstraction gap between source

code and machine code. At run-time, the entire state of the

executing program (including its code, its data and information

about what point of execution the program has reached) is

maintained in memory and in processor registers; the run-time

state is essentially just a large collection of 32-bit words.

Depending on many factors, including at least the precise

characteristics of the source language, the way in which the

source code is compiled to machine code and the way in which

attackers can interact with the compiled code, attackers can

exploit the characteristics of the machine code level to make

software misbehave in dangerous ways.

We will illustrate some of these potential exploits in the next

Sections, referring back to Figure 1 for some of the examples.

III. LOW-LEVEL SOFTWARE SECURITY IN THE I/O

ATTACKER MODEL

In the I/O attacker model, the attacker can only provide

input to, and observe output of the program. This is an

appropriate model, for instance, for attackers interacting with

server software over a network connection, and these classes

of attacks have been among the most important security issues

for networked software for several decades.

A program is vulnerable under this attacker model only

if it contains memory safety vulnerabilities: bugs that may

cause the program to write to memory cells not allocated

to the program. We study these vulnerabilities in Subsec-

tion III-A. The presence of these vulnerabilities enables a

wide range of attack techniques, some of which we explore

in Subsection III-B. Countermeasures for such attacks have

been studied for decades, and we provide a brief survey of

important countermeasures in Subsection III-C.

A. Memory safety vulnerabilities

Source languages like C support mutable state, i.e. the

source language has constructs for allocating and deallocating

memory that can subsequently be assigned to, or read from.
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0xbfffefdc saved base pointer
0xbfffefd8 buf[12..15]
0xbfffefd4 buf[8..11]
0xbfffefd0 buf[4..7]
0xbfffefcc buf[0..3]
0xbfffefc8 buf parameter
0xbfffefc4 fd parameter
0xbfffefc0 saved return address
0xbfffefbc saved base pointer

0xffffffff Top of memory…

Activation 
record
process()

Activation 
record
get_request()

0xbfffeff8
0x004f4e4d
0x4c4b4a49
0x48474645
0x44434241
0xbfffefcc
0x00000011
0x0804840a
0xbfffefdc

0x0804840a
0x08048406
0x08048402
0x080483fe
0x080483fa
0x080483f6
0x080483f2

…
0x8955c3c9
0xffffffe3
0xe8240489
0x08458b04
0x244489f0
0x458d18ec
0x83e58955

Machine code for process()

0x00000000 Bottom of memory…

0x08048000 …

Heap segment and
unmapped memory

Stack segment

Text segment

0xbfffefe0 saved return address0x08048424
0xbfffefe4 fd parameter0x00000011

ADDRESS CONTENTS

Machine code for get_request()

Machine code for main()

Kernel segments

SP

IP

Kernel segments

55 push   %ebp
89 e5 mov %esp,%ebp
83 ec 18 sub     $0x18,%esp           
8d 45 f0 lea     -0x10(%ebp),%eax
89 44 24 04  mov %eax,0x4(%esp) 
8b 45 08 mov 0x8(%ebp),%eax
89 04 24 mov %eax,(%esp)          
e8 e3 ff ff ff call    0x80483ed
c9 leave  
c3 ret    

(a) Program source code

(b) Machine code for process() function (c) Run-time machine state

Fig. 1. This figure illustrates the relationship between source code and run-time machine state.
Part (a) shows a simple source code program.
Part (b) shows the compiled version of one of the functions in that program. Both the machine code (in hexadecimal) as well as the corresponding assembly
code is shown. Note for instance that assembly code instructions have variable lengths: they are between 1 and 5 bytes long.
Part (c) shows a snapshot of the run-time machine state while this program is executing. It shows parts of the memory address space, as well as the Instruction
Pointer (IP) and Stack Pointer (SP), at the point when the program has just entered the get request() function. Note that the machine code shown in part (b)
is stored in memory using a little-endian byte order.

At run-time, on the machine code level, these memory

cells allocated for use in the program will be part of the

same virtual address space where also program code, and

management information to track the structured control flow

will be stored. For example, in Figure 1, the local variable buf

of the process() function is allocated at address 0xbfffefcc and

occupies 4 words (each containing 4 bytes). In the snapshot

of memory shown in Figure 1, the buf variable contains the

string ”ABCDEFGHIJKLMNO”: the ASCII codes of these

characters are stored (in little-endian order) in the 4 words

allocated to buf, ending with a null byte.

In the presence of bugs in the source program, it is possible

that the program writes to memory cells that are not allocated

for use in the program, and in certain circumstances this can

cause the program to modify program code or management

information in dangerous ways. For instance, in Figure 1, we

can introduce such a bug in the get request() function by

replacing the third parameter of the read call with 32 instead

of 16. Now, input provided to the program might overflow the

space allocated to the buf variable by 16 bytes (4 words), and

hence it can for instance overwrite the saved return address

stored at address 0xbfffefe0.

A memory safety vulnerability is a bug where a program

reads or writes to a memory cell not currently allocated to the

program. In C-like languages, these bugs come in two forms.

A program has a spatial vulnerability, if it accesses a range

of cells (typically an array) that is allocated to the program, but

due to insufficient or buggy checking these accesses might go

out of bounds. The example above is an example of a spatial

memory safety vulnerability. The term buffer overflow is often

used as a synonym for such spatial vulnerabilities.

A program has a temporal vulnerability, if the program

accesses a cell that was once allocated to the program, but

has since been deallocated. Such deallocation can happen

implicitly or explicitly. If for instance the process() function

in Figure 1 were to return buf to the main() function, and the

main() function would access buf, for instance by reading input

into buf, this would be an example of a temporal vulnerability:

since it is a local variable, the buf array is only valid during

the invocation of process() and is deallocated (implicitly, by

deallocation of the corresponding stack activation record) on

return of process().

The range of memory cells the attacker can illegitimately

access depends on the vulnerability. For instance, in the spatial

vulnerability example above, the attacker can modify 16 bytes

(4 words) of memory outside of the buffer’s allocated memory
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space, more specifically the words with addresses 0xbfffefdc

– 0xbfffefe8. In a vulnerability where the program performs

a buf[i] = v assignment, where both i and v come from input

channels and hence can be controlled by the attacker, the

range of cells modifiable by the attacker is essentially the

entire virtual address space (taking into account that this kind

of indexing will wrap around when the top of memory is

reached). The attacker can modify the contents at one address

of his choosing in the entire memory address range.

B. Attack techniques

An attacker will try to find input values to send to the

program such that a memory safety vulnerability is triggered.

The behavior of a program in which such a vulnerability

has been triggered is undefined according to the C language

specification. In other words, the source program does not give

any information anymore on how the program will behave

from that point onward. In practice, what happens when a

program accesses memory out of bounds, or memory that has

been deallocated, depends on low-level details of the compiler,

operating system and/or hardware. Often, the program will just

crash.

The attacker should use his knowledge about the low-

level details of the executing program to make the program

do more useful things than just crashing. The oldest and

most widely known technique is stack smashing with direct

code injection [1]. This attack exploits spatial vulnerabilities

on stack allocated buffers, like the example vulnerability

discussed above. For that example, the attack would essentially

go as follows: the attacker provides input that get request()

stores into buf, and by providing more than 16 bytes the

attacker overwrites first the saved base pointer and then the

saved return address. When the get request() function, and

subsequently the process() function return, this modified return

address will be popped from the stack into the Instruction

Pointer register, and the processor continues execution at this

address of the attacker’s choosing. The attacker will hence set

the return address to such a value that the processor starts

executing code that the attacker wants to execute. He can for

instance set the return address to 0xbfffefcc, the address of buf.

Then the processor will start loading bytes from that address,

interpreting them as instructions, and executing them. Since

the attacker provides these bytes as input, he can essentially

choose what code the processor will execute. This technique,

where the attacker brings machine code into memory as data

is called direct code injection.

Over the past decades, a wide range of attack techniques

has been developed. Some important examples include:

• Overwriting code pointers: the attacker overwrites a

memory cell that will at some later point be loaded in the

Instruction Pointer register. Examples of such memory

cells include the saved return addresses in activation

records on the stack (as discussed above), or memory

cells that contain function pointers. For instance, a sort-

ing function can take as a parameter a pointer to the

comparison function that should be used for sorting. If

the attacker can modify the pointer to the comparison

function, control flow will be hijacked on the point where

the comparison function is called through the function

pointer.

• Code corruption attacks: instead of overwriting a code

pointer, the attacker can overwrite the machine code

of a part of the program that will later be executed.

For example, referring to Figure 1 again, the attacker

could overwrite the bytes starting at 0x0804840a, where

execution will continue after return of the get request()

function. (Obviously, the attacker would need a vulner-

ability that gives him a range of accessible cells that

includes these cells).

• Code reuse attacks: instead of redirecting control flow to

a location in data memory as in the direct code injection

example above, the attacker can redirect the control flow

to existing code in code memory. Several variations

of this technique exist: in a return-to-libc attack, the

attacker will divert control flow to an existing useful

function (typically a function defined in the libc library).

In a Return-Oriented-Programming (ROP) attack [2], the

attacker will divert control flow to a code fragment (called

a trampoline) that (1) resets the Stack Pointer (SP) to

a memory address whose contents is controlled by the

attacker, and (2) returns. On this return, control flow will

continue to the address that the SP points to (and hence is

under control of the attacker). The attacker chooses this to

be an address to another code fragment (called a gadget)
that ends with a return instruction. Where this return will

go is again chosen by the attacker, and by continuing

this process the attacker can execute a sequence of such

gadgets. It has been shown that by combining such

gadgets, the attacker can essentially do anything he wants.

These code reuse attacks are particularly useful in cases

where there are countermeasures active that prevent the

attacker from doing code corruption or from injecting

code as data (direct code injection).

• Data-only attacks: instead of overwriting code pointers or

code, the attacker can choose to overwrite the contents

of another mutable variable in the program. A typical

example would be to overwrite a boolean variable (e.g.

isAdmin) that impacts the actions that the program under

attack can perform. By modifying through a memory

safety vulnerability the variable isAdmin from false to

true, the attacker is now allowed to perform administra-

tive actions.

• Information leaks: all examples we have discussed so

far violate the integrity of certain memory cells. But

also confidentiality attacks are possible. By reading past

the bounds of a buffer, the program might leak confi-

dential information such as cryptographic keys (this is

essentially what was possible with the famous Heartbleed

vulnerability). In addition, leaking the contents of parts

of memory may allow the attacker to bypass some of the

countermeasure we discuss further in this paper [5].
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All these attack techniques are well understood and well

documented. Erlingsson et al. [6] discuss detailed examples

of many of these attack techniques, and Szekeres et al. [7]

develop and describe a general model of these memory cor-

ruption attacks.

C. Countermeasures

Because of the widespread nature of the attacks discussed in

the previous Subsection, there has been a substantial amount

of research on countermeasures [8], [7], and several of these

countermeasures are now widely adopted in practice.
We distinguish between countermeasures that counter ex-

ploitation of vulnerabilities during execution of the soft-

ware (for instance by making some of the attack techniques

discussed above substantially harder), and countermeasures

that counter the introduction of memory safety vulnerabilities

during the development or testing of the software.
1) Countering exploitation of vulnerabilities: The follow-

ing three countermeasures are now widely adopted in most

server and desktop software platforms, including the Windows

platform and most Unix variants.

• Stack canaries [9] are a cheap and straightforward coun-

termeasure against stack smashing: the compiler emits

code to (1) place a (for the attacker) unpredictable value

– the canary – in each activation record between the local

variables and the saved registers (base pointer and stack

pointer), and (2) checks that this value is not modified

before returning from a function call. If an attacker were

to overwrite a saved return address by overflowing a stack

allocated buffer, he also necessarily needs to overwrite

the canary, and hence this will be detected before the

overwritten return address is used.

• Data Execution Prevention (DEP): marking the code seg-

ment non-writable and the data segment non-executable

is a simple countermeasure against direct code injection:

the attacker can no longer bring data in memory and then

later have it executed as code.

• Finally, Address Space Layout Randomization (ASLR),
introduces artificial randomness into the memory layout

of a process, making it harder for an attacker to (1) predict

interesting memory locations (like the location of a saved

return address) to overwrite, and (2) write a (for the

attacker) useful value – like the address of a trampoline

or gadget to jump to – to these memory locations.

While the combination of these countermeasures raises the

bar for attackers, it is commonly accepted that many memory

safety vulnerabilities remain exploitable through clever com-

binations of attack techniques.
2) Countering introduction of vulnerabilities: Instead of

countering the exploitation of memory safety vulnerabilities,

it is even better to make sure that they are not present. A wide

range of techniques exists to assist developers in writing safe

code. Three important classes of techniques are:

• The use of safe languages, like Java or C#. These lan-

guages are designed such that a combination of compiler-

enforced bounds checks (to avoid spatial vulnerabilities)

and automated garbage collection (to avoid temporal vul-

nerabilities) can provide hard assurance that no memory

safety vulnerabilities are present. There is currently a

growing interest in more C-like languages that compile to

machine code and give the programmer more control over

memory management, while still providing substantial

memory safety guarantees through type checking. A pro-

totypical example is the Rust programming language [10],

strongly influenced by the Cyclone language [11].

• If switching to a safe language is not an option, best-

practice dictates a combination of coding guidelines [12],

and code review. Source code analysis tools can help

during code review. Some tools require little developer

effort, but suffer from false positives and false nega-

tives [13], other tools can provide very high assurance

about memory safety but require a substantial amount of

effort [14], [15].

• Testing for the presence of memory safety vulnerabilities

is made significantly more effective with the use of run-

time checks that check for unsafe memory accesses [16],

[17]. While such run-time checks often impose a per-

formance overhead that is unacceptable in production

systems, this overhead can be acceptable during testing,

and they help ensure that every illegal memory access is

detected during test runs.

Again, none of these techniques is a silver bullet. Code review

and testing can suffer from false negatives: even well reviewed

and well tested code can still contain bugs. And even safe

languages often link to libraries written in an unsafe language,

or allow the programmer to write potentially unsafe code in

well marked parts of the programs (for instance, unsafe blocks

in C# or Rust).

IV. LOW-LEVEL SOFTWARE SECURITY IN THE MACHINE

CODE ATTACKER MODEL

In the I/O attacker model, software without memory safety

vulnerabilities is immune to low-level attacks. A safe program

will behave as specified in the source code for all possible

inputs an attacker can provide. But stronger attackers can still

derail the program.

A stronger and realistic attacker model considers attackers

that can install some machine code on the computer executing

the program. This could be machine code within the virtual

address space of the process executing the program (for in-

stance because the program links to a native library controlled

by the attacker, or because it loads a binary plugin provided by

the attacker). It could also be machine code in the operating

system kernel (for instance because the attacker succeeded

in installing malware on the computer). A practical example

of this kind of attack that is gaining importance is so-called

memory-scanning malware – malware that will read the virtual

address space of running processes looking for interesting data

like credit-card numbers or passwords [3].

This attacker model is an appropriate model in cases where

software is built using third-party libraries that might be

malicious (or vulnerable, and hence might turn malicious
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(a) The secret module

(b) Other modules of the program (c) Run-time memory contents

secret.c

secret.h

Machine code for 
main and other 

modules

Machine code for 
secret module

Static data for all 
modules (including 
PIN, tries_left, …) 

Heap (global)

Stack (global)

Fig. 2. A program with a security critical module.

after an exploit), or in cases where software might run on a

compromised platform (like on a malware infected operating

system).

As a small representative example, consider the program

in Figure 2. The program has a single module (implemented

in secret.c) that manages sensitive information, in this case

the secret variable that should only be shown to users of the

program who can provide a correct PIN. After three tries with

an incorrect PIN, the module will refuse further attempts to

protect against brute force attacks. The secret module exposes

(in it’s header file secret.h) only the get secret() function, and

hence access to the global variables in secret.c is restricted

to the secret module at source code level. Other modules

(including for instance the main() function) can only interact

with the module through the get secret() function. This mod-

ule is a very simple example of a security critical module,

like for instance the password manager in a browser or the

implementation of a cryptographic protocol. These modules

manage secrets, and even if they implement restrictions on

access to these secrets in source code (like the small example

module), they can still be subject to memory scraping attacks.

To see this, consider the compiled version of this program

at run-time. Part (c) of Figure 2 shows a schematic picture

of the memory contents at run-time. If we now consider an

attacker that can choose the machine code for some of the

other modules of the program, it is clear that the attacker

can easily violate both integrity as well as confidentiality of

the variables of the secret module. At machine code level,

there is no restriction in place for the attacker’s code to access

the memory cells containing the secret module’s variables. A

memory scraping attack is an attack where such malicious

code scans the entire virtual memory address space of a

process looking for secrets like authentication credentials,

cryptographic keys, credit card information and so forth. Even

if the source code implements restrictions on accessing these

secrets (like in the example secret module), a machine code

attacker still can easily access them.

Note an important difference with the I/O attacker: the

I/O attacker could only launch attacks in the presence of

bugs (vulnerabilities) in the program, whereas even a bug-free

program is still vulnerable to the machine code attacker.

In this Section, we consider how to protect modules like the

secret module in this example against machine code attackers.

This requires at least some form of isolation mechanism to

protect parts of the virtual address space of a process. We

discuss some of the proposed mechanisms in Subsection IV-A.

Then we discuss in Subsection IV-B how the compiler should

make use of these isolation mechanisms to guarantee security

against low-level attacks, i.e. attacks that make the protected

module behave in any way that deviates from what is specified

in the source code.

A. Isolation mechanisms

Looking back at Figure 2, it is clear that some run-time

support for isolating the various modules in a single address

space is required to offer protection against the machine code

attacker. A wide variety of such isolation mechanisms have

been studied. Some important representative mechanisms are:

• Virtual machines like the Java Virtual Machine [18] raise

the level of abstraction of compiled code such that it

gets closer to that of the source code. Compiled modules

now consist of bytecode, and both the distinction between

data and code, as well as abstraction mechanisms from

the source language (like objects with private fields) are

maintained at run time. This is a useful and widely used

mechanism, but two important disadvantages are that

(1) there is a performance penalty, as the bytecode is

essentially interpreted or just-in-time compiled to real

machine code, and (2) there is no protection against

machine code attackers that can control machine code at

lower layers of abstraction, for instance malware that has

infected the operating system kernel is not constrained by

the isolation mechanisms of the Java Virtual Machine.

• Software Fault Isolation [19] is an example of the class

of sandboxing techniques, that make it possible for a

trusted application to load untrusted binary modules

into its address space. A critical assumption for these

techniques is that the trusted application can inspect or

even modify the untrusted module before it is loaded.

By combinations of code analysis and code rewriting, the

newly loaded module can be enforced not to do any harm.

This technique is used for instance by web browsers to

run native machine code as part of a web application [20].

But an important disadvantage is that these techniques are
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Fig. 3. A protected module

fundamentally asymmetric: they protect a host application

from untrusted modules, but modules are not protected

against the host application, and a fortiori not against

malicious code in the operating system.

• Capability machines [21] provide an alternative mem-

ory protection mechanism at the level of the processor.

Instead of using integers to address memory cells, the

hardware supports capabilities, a kind of unforgeable

pointer to memory segments that can also include lim-

itations on what can be done to that memory. As a

consequence, machine code is limited in what it can do by

the capabilities it holds. Capability machines are a very

powerful technique to achieve fine-grained separation

of privileges at machine code level, and very recently

progress has been made [22] in the formal characteriza-

tion of capability safety that can lead to tool support for

proving security properties of software on such machines.

But an important downside is that they are still in a

research stage, and no widely used hardware supports

this model (yet).

• Finally, Protected Module Architectures [23], [24] offer

a simple memory access control model that can be used

to isolate modules. They have been designed both for

higher-end processors [23], [24] as well as for small

micro-processors [25], [26], [27], and recent Intel pro-

cessors provide support under the name of Intel Software

Guard Extensions (Intel SGX) [28].

secret.c

secret.h

Fig. 4. An alternative secret module

For the purpose of this paper, we will zoom in on Protected

Module Architectures. Figure 3 shows how the secret module

from the program shown in Figure 2 could be loaded in a pro-

tected module. A protected module is essentially a segment of

memory, subdivided in a code part and a data part. In addition,

the module has one or more entry points, addresses pointing

into the code part of the protected module. The memory access

control model of protected module architectures essentially

enforces the following rules:

• When the Instruction Pointer (IP) is outside of the pro-

tected module, access to memory in the protected module

is prohibited.

• When the IP is inside the protected module, data memory

can be read and written, and code memory can be

executed.

• The only way for the IP to enter a protected module is

by jumping to one of the designated entry points.

This simple access control model makes it possible for mod-

ules to guard access to their private state. As shown in

Figure 3, the secret module could be compiled such that its

machine code goes into the code part of a protected module,

and its static data goes in the data part. If we provide a

single entry point to call the get secret() function, then the

variables PIN, tries left and secret can only be accessed by the

get secret() function. Because of the memory access control,

they can no longer be “scraped” from memory by malicious

machine code in one of the other modules, or even by malware

in the kernel.

B. Secure compilation

It is clear from the example discussed above, that the

compiler will need to be modified to take into account the

new protection mechanism offered by protected module archi-

tectures. And it turns out that making this compilation process

secure is non-trivial. Here is a simple example of something

that can go wrong.
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Consider the variant of the secret module shown in Figure 4.

Instead of passing in a candidate pin number, here clients of

the module pass in a function pointer to a function get pin()

that the module will call to get a candidate pin from the user.

This could be useful to allow clients to call the module with

different implementations of get pin(), for instance one that

gets the candidate pin from standard input or another one that

gets the candidate pin through a graphical user interface.

An important difference is that this new implementation

accepts a function pointer as a parameter, whereas the old

implementation accepted an integer. This difference is impor-

tant: a malicious machine code client of the module can never

provide an invalid integer (any 32-bit word is a valid integer),

but it can provide invalid function pointers. Function pointers

are represented at machine code level as 32-bit addresses, but

only a few of these addresses actually point to the start of the

code of a function.

What is even worse is that an attacker can actually exploit

this to get his hands on the secret! For instance, the attacker

could pass in the address of the machine code instruction

within the compiled secret module that resets tries left to 3

(i.e. the 4th line of the get secret() function). When the secret

module calls get pin(), it will actually jump to the provided

address, i.e. it will jump to the instruction that resets the

tries left variable and then returns secret as the result of

get pin(). The function get secret() would then return 0 as

the secret is probably not equal to the PIN, but the important

thing is that the attacker has reset the tries left variable! The

attacker can use this exploit to reset the tries left counter after

each two tries, and hence can now successfully perform a brute

force attack.

We can see from this example attack that the compiler will

at least have to be very careful with arguments that outsiders

can pass into a function that runs inside a protected module.

For the example above, the compiler could for instance insert

a defensive check that makes sure that the function pointer

that is passed in should at least point to an address outside of

the protected module.

An interesting question is: how can we ever know that

defensive checks inserted by the compiler are sufficient? How

can we know that we have thought of any possible exploit?

This question is the subject of current research in the

area of secure compilation. Remember from the introduction

that our security objective is: the compiled system should

behave as specified in the source code that it is compiled

from. The standard way of formalizing this requirement is

to require the compiler to preserve and reflect observational

equivalence [29]. In other words: whatever a machine code

attacker can observe by interacting with a compiled module,

could also be observed about that module by other source

code modules interacting with the module. This is a precise

and appropriate formalization of our security objective.

The question of how to securely compile C-like source

code to protected module architectures has been the subject

of several recent papers. Agten et al. [30] were the first to

propose a secure compilation scheme, and Patrignani et al. [31]

extended this scheme to handle many source code language

features. The Sancus system [25] comes with a practical

LLVM based compiler that implements a pragmatic variant

of this secure compilation scheme.

Despite this progress, many interesting open questions re-

main. First, the work mentioned above focuses on compilation

of a single protected module, and does not handle the case of

multiple mutually distrustful modules. Extending the compiler

to securely handle multiple modules is non-trivial and the

subject of ongoing research [32], [33]. A second interesting

question is how to deal with more advanced language features,

in particular with stronger type systems. A stronger type

system for the source code language can make it easier to

reason about security properties at source code level, but it

also makes it harder for a compiler to make sure that machine

code attackers can only observe what (well-typed) source code

modules could observe. Research on proving the security of

compilations of typed languages is ongoing [34], [35].

C. Further extensions

Even if protected module architectures can use hardware-

supported memory access control to make sure that even the

operating system can not illegitimately read the state of a

protected module, the operating system might still attack the

module during loading of the module. One way to protect

against such attacks is the use of remote attestation. The

module will attest, after it has been loaded, that an unmodified

version of the module is active in protected memory. The

essence of the idea is to have the hardware derive a module-

private cryptographic key that depends on the exact code that

has been loaded (for instance by depending on a hash of

the code segment of the loaded module). If the operating

system were to modify the code of the module before loading

it, the modified module would no longer receive the correct

module-private key, and hence will fail to attest to remote

parties that it has loaded correctly. Support for this kind

of remote attestation of module authenticity is supported in

several protected module architectures [27], [25], [28].

Finally, an important question is how such protected mod-

ules will receive their initial state, and will securely store

and recover their state when they are stopped and restarted.

For initialization of the module, the provider of the module

can use the same module-private key that is used for remote

attestation. But storing and recovering state should preferably

be done locally on the device. Obviously the stored state

should be confidentiality and integrity protected using crypto-

graphic mechanisms, but in addition it should be secure against

rollback attacks where an attacker tries to feed the module

a stale stored state. Consider again the example program in

Figure 2. In the initial state the tries left variable will have

the value 3. An example of a rollback attack would be that

an attacker, after two unsuccessful tries, stops and restarts the

module feeding it again the initial state which effectively resets

the tries left variable to 3 again, thus allowing the attacker to

do a brute force attack against the PIN.
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Supporting secure local storage and recovery of the states of

protected modules turns out to be challenging, in particular if

one wants to ensure liveness in the sense that random crashes

or interruptions of the protected module should not leave it in

a state where it can no longer make progress because none of

the stored states is considered fresh anymore. Several designs

have been proposed [36], [37], all of them imposing some

additional hardware requirements.

V. CONCLUSIONS AND OUTLOOK

The field of software security studies how software based

systems can maintain desirable properties in the presence of

intelligent attackers. It is useful to consider two aspects of this

problem independently:

• An application-specific part: what are the desirable prop-

erties for the application at hand? How can users of

the application misbehave? Software engineers should

elicit these security requirement, propose a solid design

with appropriate security countermeasures, and finally

implement the desired application in source code taking

care to avoid implementation vulnerabilities like the use

of weak cryptography or incomplete mediation for access

control.

• An application-independent but execution-platform-

specific part: how can the execution platform ensure that

the software based system will behave as specified in the

source code, even in the presence of intelligent attackers

that actively try to derail the software?

This paper has focused on the second aspect: how can one

ensure that software that is compiled from source code to ma-

chine code on a specific execution platform can be guaranteed

to behave as specified in the source code, and this for two

kinds of attackers.

First, we discussed how memory safety vulnerabilities in

unsafe languages like C allow attackers to derail software

using an incredibly wide range of attack techniques for which

the attacker only needs the ability to send input to and receive

output from the software. We also surveyed part of the arsenal

of countermeasures that C developers can rely on to make

such attacks more difficult. The problem of protecting unsafe

code against such I/O attackers is by now well understood, but

such attacks still make up a significant fraction of the security

incidents reported today.

Second, this paper also made the case that, in practice,

even stronger attacker models should be considered. We

discussed the model of the machine code attacker, that can

execute arbitrary machine code in the virtual address space

of the program under attack, or in the operating system. This

is a more challenging problem, and research into adequate

security mechanisms is still ongoing. We discussed some of

the mechanisms that are already used in practice, and in

particular zoomed in on the mechanism of Protected Module

Architectures, supported in modern processors. Finally, we

explained how compilers can use this mechanism to protect

software against machine code attackers.
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