
Formal Probabilistic Analysis of Distributed Resource
Management Schemes in On-Chip Systems

Shafaq Iqtedar∗, Osman Hasan∗, Muhammad Shafique†, Jörg Henkel†
∗School of EE and CS, National University of Sciences and Technology (NUST), Islamabad, Pakistan

†Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany
Email: {10besesiqtedar, osman.hasan}@seecs.nust.edu.pk; {muhammad.shafique, henkel}@kit.edu

Abstract—New paradigms for managing resources in on-chip many-core
systems come with various issues. Among them is the key demand for
robust verification of (distributed) resource management (RM) schemes
before deployment. Moreover, it is important to have a unified framework
where different RM schemes can be formally analyzed and compared
for their performance efficiency and robustness. Traditional techniques,
like simulation or emulation, are inherently in-exhaustive and thus
compromise the completeness and accuracy of the analysis results. In
this work, we present a formal approach, based on probabilistic model
checking, for evaluating and comparing the performance of different
distributed RM schemes. To illustrate the benefits and applicability of
our formal verification and comparative analysis approach, we perform
a case study on the comparison of two state-of-the-art distributed RM
schemes using the PRISM model checker.

I. INTRODUCTION

With current trends in hardware design, on-chip many-core systems

[1] have emerged as a new paradigm. These multicore architectures

execute highly parallel and resource demanding applications. This

leads to the problem of runtime resource allocation, i.e., which

application should use which and how many cores to get the most

efficient utilization of available resources [2] [3]. These resources

can no longer be managed by one central entity (i.e., in a centralized

resource management paradigm) due to increased design optimization

space of large-scale many-core systems. Therefore, many distributed

Resource Management (RM) schemes have been proposed, e.g., [2]

[4] [5] [6], over the past few years, to ensure an efficient utilization

of the available resources and for maximizing the overall throughput

of on-chip many-core systems in a scalable fashion.

Just like any other algorithm, these distributed RM schemes are

also susceptible to functional and design errors. But catching all such

errors using traditional techniques, such as simulation or emulation

[7], can never be guaranteed due to the distributed nature of RM

schemes and the in-exhaustive nature of these analysis methods. This

is a severe limitation since an uncaught bug in the analysis phase

may lead to runtime failures. Especially, when considering distributed

RM schemes, the possibilities of mapping decision (i.e., task-to-

core mappings) increase exponentially with the number of cores.

Furthermore, as depicted in [10], the exhaustive verification of even a

simple 32-bit comparator would take about 584,941 years to complete

using simulation. Therefore, no matter how intelligent the test-bench

and generator are, validating the design intent through simulation

[16] is inherently incomplete for large and complex systems. On the

other hand, formal verification methods [10] have been well known

to solve such problems due to their soundness and completeness.

Moreover, it is of great significance to have a single framework

where different distributed RM schemes can be compared to each

other and evaluated for their design and performance efficiency.

Again, given the sampling-based nature of simulation and emula-

tion, the comparison results cannot be considered as completely

reliable. Finally, another challenge while analyzing distributed RM

schemes is the absence of a global system state knowledge due to

their decentralized nature. Therefore, in some cases the resources

are allocated in a randomized manner, and with continuous self-

optimization, the system attains a stable and efficient configuration

(i.e., closer to the mapping quality of centralized schemes). Due to

such randomness in the behavior of distributed RM schemes, we have

to use probabilistic analysis methods. Simulation-based probabilistic-

analysis only ascertains the correctness of the states that are reached

in a particular simulation path and as the reachable state-space of

the system increases, the limited sampling-based simulation results

become less and less accurate.

The accuracy of functional and performance analysis of distributed

RM schemes and their reliable comparison is a dire need due to the

extensive applications of many-core systems in a variety of safety-

critical systems, such as medicine and transportation, and the high

performance demands of the present era. As a more accurate and

complementary approach to simulation and emulation methods, we

propose to employ probabilistic model checking [12], i.e., a formal

method for verifying systems that exhibit randomized behaviors, for

analyzing and comparing various distributed RM schemes. To the

best of our knowledge, so far no formal probabilistic verification
method, with comprehensive quantitative analysis of functional and
performance-evaluation properties, has been proposed in the context
of verifying distributed RM schemes in on-chip many-core systems.

A. Our Novel Contributions and Concept Overview

In particular, we have developed a generic discrete time Markovian

model for distributed RM schemes, such that most of them can

be formally modeled based on our generic model through simple

updates. This model can then be used with a probabilistic model

checker to formally verify various probabilistic properties that provide

very useful insights for the many-core system designer. For instance,

the probability of the event when an application fails to get the
desired number of cores or the probability of an event when one/more
cores will never be used for actual computations, is a useful piece

of information for the distributed RM designers. Thus, statistical

knowledge can play a vital role in comparison and performance

evaluation of different distributed RM schemes and will help in the

detection of unwanted behaviors during early design stages.

We have identified a set of probabilistic properties which are aimed

to formally address the following most critical questions posed on

distributed RM community:

1) Quality of mapping decision, i.e., how close is the quality of

mapping decision compared to the centralized approaches.

2) Communication/computation overhead, i.e., how the system

states and transitions (i.e., messages, requests, calculations,

etc.) increase as we increase the number of cores and appli-

cations.

3) Time to a stable system configuration, i.e., how the number

of steps to a stable system configuration increases with the

increase in the resource demand.

4) Identification of other miscellaneous bugs, i.e., deadlocks, back

and forth trading, and other functional design errors.

To illustrate the practical effectiveness and utilization of the

above-mentioned contributions, we have employed the PRISM model

checker [8] in this paper to formally verify functional and timing

properties of two state-of-the-art distributed RM schemes, namely

”distributed run-time resource management for malleable applications

930978-3-9815370-6-2/DATE16/ c©2016 EDAA

on many-core platforms” (DRRMM) [5] and ”distributed RM for

on-chip many-core systems” (DistRM) [2], and thus compare them.

The main reason for choosing these two schemes is that both of

these recently proposed schemes are highly scalable while achieving

comparable results to the centralized RM schemes.

II. PRELIMINARIES

A. Probabilistic Model Checking and the PRISM Model Checker

Probabilistic model checking [13] is an extension of traditional

model-checking techniques [9] for the integrated analysis of both

qualitative and quantitative properties of systems that exhibit stochas-

tic behavior. A model checker exhaustively traverses the entire state-

space of a design in ascertaining correctness. The 100% completeness

of analysis coupled with the consideration of randomized behaviors

and provision of a detailed quantitative knowledge makes probabilistic

model checking quite suitable for the proposed work.

PRISM [8] is a widely used probabilistic model checker. The

system to be verified by PRISM is first described as a probabilistic

variant of Reactive Modules [11]. PRISM provides support for

analyzing discrete-time Markov chains (DTMCs), continuous-time

Markov chains (CTMCs) and Markovian Decision Process (MDPs).

An advantage of using PRISM is that it allows accurate computation

for a wide range of numerical properties and it performs a complete

analysis, which is a very useful feature for analyzing the best-and-

worst-case scenarios. For instance, in case of distributed RM schemes,

the designer can analyze the upper and lower bounds for the average

application speedup and the probability of their occurrence. Such

quantitative knowledge indicates the usefulness of probabilistic formal

analysis in the context of verifying distributed RM schemes.

B. Agent-Based Distributed RM Schemes

The run-time RM schemes often utilize the concept of malleable
applications [15] that are able to adapt their degree of parallelism to

the number of assigned cores dynamically. This means that they are

designed in a way that allows them to enlarge or to shrink the set of

cores that are used by the application. In a distributed environment,

the chip is usually divided into different regions. A region of size r
is a set of cores that contains a particular center-of-the-region core

and all cores that are within a Manhattan distance of r to that core.

The resources are handled locally in different regions, rather than

being handled globally from a single central point. In order to do

so, these schemes often employ the principles of multi-agent systems

[14] to perform the resource management. An agent is a situated

computational entity that makes decisions autonomously. Depending

on the RM scheme, the agents can either be associated with different

applications or they can be distributed throughout the chip.

III. MARKOVIAN MODEL FOR DISTRIBUTED RM SCHEMES

We used a set of guarded commands in PRISM to develop a generic
model for the distributed RM schemes. A guard is a predicate over all
variables of the system and if it is true then a transition takes place
with the associated probabilities. A command takes the form:

[action] guard-><prob>:<updt1>+...+<prob>:<updt2>;

where each updt (i.e., update) describes a transition that the module
can make if the guard is true. Each update is also assigned a
probability, considering the corresponding transition. If no probability
is assigned to a transition, then it is implicitly assumed to be 1. A
command can also be labeled with actions, which force two or more
modules to make transitions simultaneously. For example:

[] x=1 -> 0.3:(x’=2) + 0.7:(x’=3);

The above-mentioned command states that if the expression ‘x = 1’

holds true, then (−>) with probability 0.3, the next value of x (x′)

Agent n requires more cores?

Pick a region randomly

 agn_send_request = rgx
No. of agents requesting cores in rgx = m
 rgx_serve = false

P= 1/r*a

Yes

 rgx_requesting_agent = ag_n
 rgx_serve = true

P= 1/m

No

 Number of offers from rgx = y

Choose an offer
randomly

Algorithm for picking
up the offers

� r: total number of regions
� a: total number of agents performing self optimization
� ag_n: agent n, rgx: region chosen by agent n for sending request

Fig. 1. Application Self Optimization

would be equal to 2 or with probability 0.7, the next value of x (x′)
would be equal to 3. If two or more unsynchronized commands are

activated simultaneously, then one of them is chosen probabilistically.

Our generic model is composed of the behaviors depicting the

applications, agents and regions in a distributed decision making

paradigm (e.g., in case of a distributed RM scheme).

A. Modeling Applications and Agents

The characteristics of input applications/agents, like average paral-

lelism (A) of an application, its variance in parallelism (σ), currently

occupied cores, etc., can be stored in a set of variables in PRISM.

During the execution of algorithm, the values of these variables would

be updated in accordance with the underlying conditions. The speedup

of an application can be modeled by a set of formulas which comprise

of a name and an expression. For example, the speedup calculation

formula, given in [17] and used by the distributed RM schemes of

[2] [5], can be expressed as follows:

Formula curr speedup 1 = n ∗A/(A+ (σ/2 ∗ (n− 1));

where n is the number of current cores occupied by an application and

formula is the keyword used in PRSIM to express mathematical for-

mulas. This expression usually varies depending upon the distributed

RM scheme. Applications are initialized in a main module from where

the agents can send requests to different regions across the chip with a

certain probability. Algorithm 1 presents how an agent sends requests

to different regions across the chip (Line 5) and how the request is

either accepted or kept in the wait queue if the corresponding region

is already serving a request (Lines 6-7). For instance, if 3 agents are

sending requests in a particular region at the same time, one agent

will be picked up with a probability equal to 1/3 and the request

of the chosen agent will be served first. This is also illustrated in

Fig.1 where an agent chooses a region with a certain probability and

then the corresponding region serves the request depending upon the

total number of requesting agents. We have not synchronized the

commands in which agents send requests for self-optimization (Line

5) and hence PRISM is allowed to probabilistically choose which

agent will initiate a request at a particular time interval. This caters

for the fact that in some distributed RM schemes, a random delay

is chosen to avoid a synchronization of the optimization cycle of

different agents such that two agents that had been initialized at the

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 931

same time will not always try to optimize their set of cores at the

same points of time in the future.

B. Modeling Regions

We have modeled regions across the chip as a set of modules run-

ning in parallel (Algorithm 2). Each module contains the information

of total number of cores in the given region, local unoccupied cores,

the occupied cores and the agents/application that occupy cores within

the region. Lines 1-3 of Algorithm 2 show the initialization of the

cores of different agents inside a region. The initialization values

(i.e., rg1 ag1 init, rg1 ag2 init, etc.,) are provided later on when

model checking is performed. The size of a region (i.e., the total

number of cores inside a region) may vary in different RM schemes.

In this way, the designer can analyze the effects of the size of region

on the performance of the given distributed RM scheme. Note that

the size of the region would remain constant in a particular run of

model checking. The applications or their agents can send signals

requesting cores inside a region. The necessary computations will be

performed inside the region module as the agents within the region

will respond to the request.
Algorithm 2 presents how different agents respond to the request

of a new application. We have considered two cases:

1) Agent0 is shown as a manager of unoccupied cores. Therefore,

it simply relinquishes the cores to the requesting agent without

calculating the speedups (Line 4). At startup, we initiate this

agent with the total number of available cores as no application

is running on the chip. Depending on the distributed RM

scheme, multiple agents can be initiated in different regions

to handle the unoccupied cores.

2) Agent2 is shown as a manager of some running application.

Therefore, it performs the speedup calculation before losing

its own cores to the requesting agent. (Line 5)

Line 8 of Algorithm 1 is synchronized with Line 5 of Algorithm 2

by using the same label, i.e., ‘[rgi agentj offered k]’. This allows

an agent to update the value of its total current cores whenever it

occupies more cores inside a new region. Line 8 of Algorithm 1

executes whenever the requesting agent occupies new cores, inside

any region, relinquished by other agents that have cores within the

same region. Similarly, Line 7 of Algorithm 1 is synced with Line

4 of Algorithm 2. This allows an agent to update the value of its

total number of current cores whenever it receives any cores from

the manager of unoccupied cores inside any region.
Customization for Different Distributed RM Schemes: The main

motivation of developing a generic Markovian model for distributed
RM schemes, described above, is to facilitate the construction of
a Markovian model of any arbitrary RM scheme. The customiza-
tion step requires simple modifications. For instance, the speed up
formulas would usually vary for different distributed RM schemes.
Similarly, if the agents of distributed RM scheme only send requests
inside a region r, we can restrict Line 5 of Algorithm 1 to be
executed only once and then the value of region would remain
constant throughout the life of the application. Moreover, we have
shown that the agents perform self-optimization under very specific
criteria, i.e., only when the application has not maximized its speed-
up. If this is not the case and the agents keep on sending requests
throughout their lives, then we can simply remove some conditions
from the guard of Line 5 in Algorithm 1. In a similar manner, our
generic model can be tailored for most of distributed RM schemes
and for illustration purposes, we will present the formal modeling of
two state-of-the-art distributed RM schemes in Section V.

IV. PROBABILISTIC PROPERTIES OF DISTRIBUTED RM

SCHEMES

In this section, we provide a set of probabilistic properties that can be
used to formally analyze and compare the functionality and performance
of any arbitrary RM scheme.

Algorithm 1 Application self-optimization

Module optimize
1: agent1 current cores : [0..agent1 max cores];

2: agent1 send request : [0..maxRegion];
... //The region in which agent 1 is sending request.

The initial value 0 means no region is chosen as yet
agentn current cores : [0..agentn max cores];

agentn send request : [0..maxRegion];
3: rg1 serve : bool; . . . rgn serve : bool;

//Is region 1 already serving a request?
4: rg1 requesting agent : [0..maxAgents];

... //the agent requesting resources in region 1
rgn requesting agent : [0..maxAgents];

5: [] agent1 send request = 0 & agent1 demand! = 0 − >
1/total region : (agent1 send request′ = 1)+

1/total region : (agent1 send request′ = 2)+
... //if an agent require more cores

then pick a random region
1/total region : (agent1 send request′ = n);

6: for region i= 1 to n
[] agent1 send request = i & rgi serve = false − >

(rgi serve′ = true) & (rgi requesting agent′ = 1);
... //if region i is not serving any request

then send a request signal
[] agentn send request = i & rgi serve = false − >

(rgi serve′ = true) & (rgi requesting agent′ = n);

End for
7: for region i= 1 to n

let agent 0 be the manager of unoccupied cores
Let j be the requesting agent
[rgi agent0 offered j] true − >

(agent0 current cores′ = agent0 current cores−
min(agentj required cores, rgi agent0 cores))
& (agentj current cores′ = agentj current cores+

min(agj required cores, rgi agent0 cores));

//if the cores are offered from agent 0 in region
i to agent j then update the current cores

End for
8: for region i= 1 to n

for each agent j= 1 to n, inside region i
Let k be the requesting agent
[rgi agentj offered k] true − >

(agentj current cores′ = agentj current cores− 1

(agentk current cores′ = agentk current cores+ 1
//if the cores are offered from agent j in region

i to agent k then update the current cores
End for
End for

endmodule

A. Functional properties

Functional properties of a RM scheme can be expressed in probabilistic
Linear Temporal Logic (LTL). For instance, we can determine the prob-
ability that eventually an application will acquire the maximum desired
number of cores for optimizing its speedup, as follows:

P =? [F agentn current cores = agentn max cores]

Similarly, for the comparison of average application speedup, we can
calculate the probability that eventually the average application speedup
will be greater than or equal to a certain threshold.

P =? [F averageSpeedup >= Threshold]

Another interesting aspect for the designer can be the analysis of
resource utilization in comparison with demand. It can be useful to know,
if there are any cases in which even though the demand is greater than

932 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Algorithm 2 A Region serving an Agent’s request

Module region i
1: rgi agent0 cores : [0..total cores in region]init rgi ag0 init;

2: rgi agent1 cores : [0..total cores in region]init rgi ag1 init;
... //the cores of different agents inside region 1

3: rgi agentn cores : [0..total cores in region]init rgi agn init;

4: for requesting agent j= 1 to n
let agent 0 be the manager of unoccupied cores
[rgi agent0 offered j]rgi agent0 cores > 0 &

rgi serve = true&rgi requesting agent = j− >
(rgi agent0 cores′ = rgi agent0 cores−
min(agentj required cores, rgi agent0 cores))

& (rgi agentj cores′ = rgi agentj cores+
min(agj required cores, rgi agent0 cores));

End for
//agent0 offering the unoccupied cores to agenti

5: for offering agent j=1 to n
for requesting agent k=1 to n
[rgi agentj offered k]rgi agentj cores > 0 &
rgi serve = true & rgi requesting agent = k &
((gain speedup k)− (loss speedup j) > 0)− >
(rgi agentj cores′ = rgi agentj cores− 1)

(rgi agentk cores′ = rgi agentk cores+ 1);

End for
End for

//if gain in speedup of agent k is greater than the loss
in speedup of agent j, agentj will offer the core to agentk

endmodule

the available resources but the resources are still not utilized for actual
computations. Thus, we can calculate the probability that eventually all
the cores will be utilized for actual computation, as follows:

P =? [F unallocatedCores = 0]

B. Performance evaluation properties

Performance properties can be verified in PRISM by augmenting the
models with costs and rewards, i.e., real values associated with certain
states or transitions. Using this feature, the designer can reason about a
wide range of quantitative measures relating to the behavior of distributed
RM schemes. For instance, we can utilize this feature for finding the
number of requests initiated by an application/agent for self-optimization.
In order to do so, we first have to extend the model with rewards.

rewards “num requests by agentn”
[]agentn send request = 0 & agentn required cores! = 0 : 1;
endrewards

The above-mentioned reward structure assigns a real value of 1

to all transitions from the state(s) which satisfy the guard, i.e.,
’agentn send request = 0 & agentn required cores !=0. The reward will
be accumulated over time and in order to calculate the cumulative reward
after certain time interval, we can express the following property:

R {“num requests by agentn”} =? [C <= 100]

which would return, for a given state of the model, “the expected number
of requests initiated by agent n within 100 time units of operation”. Thus,
the designer can calculate the communication/computation overhead by
assigning real values to different transitions of the model. Similarly, we
can use the reward structure for evaluating timing properties. For example,
expected time required to reach a state where an agent has acquired the
maximum desired number of cores, from a state s, can be obtained by:

R =? [F agentn current cores = agentn max cores]

The above-mentioned property can be expressed in different ways to
evaluate and compare the number of steps to a stable configuration in
different distributed RM schemes.

In order to evaluate and compare the quality of mapping decision, the
designer can be interested in analyzing the average applications speedup
over time. This can be done by augmenting the model with rewards:

1

2

3

4

5

6

4x4 5x5 6x6 7x7

Centralized
Average
Minimum

Av
er

ag
e

ap
pl

ic
at

io
n

sp
ee

du
p

Number of cores

a) DistRM b) DRRMM

1

2

3

4

5

6

4x4 5x5 6x6 7x7

Centralized
Average
Minimum

Fig. 2. Average application speedup

0

0.2

0.4

0.6

0.8

1

0 5 10 15 17 22
Number of parallel tasks

Distributed Run-time RM

DistRMCo
re

 U
ti

liz
at

io
n

Fig. 3. Average core Utilization

rewards “average application speedup”
true : expression/formula for average speedup;
endrewards

The above-mentioned reward structure assigns a real value equal to the
average application speedup to every state of the given model. This time
we will not calculate the accumulated reward, as done in the previous
two cases, but rather the value of this reward in the long-run or steady
state. This can be done by expressing the following property which will
return the long-run average application speedup

R {“average application speedup”} =? [S]

where S implies the steady state. The properties, mentioned in this
section, can be specialized to formally analyze and compare most of the
distributed RM schemes, as will be depicted in the next section.

V. EVALUATION AND RESULTS

For illustration purposes, we used the proposed generic model, given
in Algorithm 1 and 2, to formally analyze and compare the following two
state-of-the-art distributed RM schemes:

1) Distributed RM for on-chip many-core systems (DistRM) [2]
2) Distributed run-time RM for malleable applications on many-core

platforms (DRRMM) [5].

A. Formal modeling of DistRM [2]

DistRM [2] is a fully decentralized agent-based RM scheme for on-
chip many-core systems. In distRM, a dedicated agent per application
is used as a resource manager. The agent randomly chooses regions on
the chip and tries to allocate cores there. The actual agents, currently
located inside regions, evaluate which of their own cores could be given
to the requesting agent. They send their offer (containing information
about their own loss in speedup) back to the requesting agent. All offers
that help increasing the speedup of the own application are taken, as long
as the speedup increases more than the speedup for the offering agent’s
application decreases. As an agent can send requests outside the initial
region, we added the following behavior in the generic code, described
in Section 3, to set the selected-region back to null once the request has
been served by a particular region:

[rgi release requesting agent] rgi requesting agent = j

− > (agentj send request′ = 0) & (rgi serve′ = false)
& (rgi requesting agent′ = 0);

In this way, an agent can randomly choose a new region for future requests
(see Line 5 of Algorithm 1). Moreover, since the agents in DistRM keep

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 933

A
pp

lic
at

io
n

sp
ee

du
p

Number of steps

(a) DistRM (b) Centralized (c) DRRMM

Fig. 4. Comparison of steps to stability and average application speedup

on looking for cores even when the application has optimized its speedup,
we removed all the commands that prevent from doing so from our generic
code described in Section 3. The speedup formulas of our generic code
are replaced by the speedup model used in distRM. Moreover, in distRM,
an Idle agent is located in every region for handling the unoccupied cores.
The implementation of these agents is already explained in Section 3.

B. Formal modeling of DRRMM [5]

Our second chosen RM scheme [5] is also a fully distributed RM
scheme but instead of agents, it rather utilizes the concept of controller
and manager cores. The controller cores and manager cores have similar
functionality as that of idle agents and application agents in distRM,
respectively. Therefore, they can be modeled in a very similar manner.
Whenever there is a new application, a core inside a random region is
selected as its initial core. The requests for more cores are only sent inside
the initial region. Therefore, once a random region is chosen at start-up,
we keep it constant throughout the execution. Moreover, the requests are
only initiated if the speedup of an application is not already optimized.
Therefore, we strengthened the guards of all the commands in which the
requests are initiated, to fulfill this criterion.

C. Experimental Setup

We used the version 4.1 of PRISM model checker along with Windows
7 professional OS running on a core i5-3210 CPU at 2.50 GHz with 8.00
GB of RAM. The verification is done starting from a 3x3 to upto a 7x7
grid using probabilistic model checking. In order to compare our results
with a centralized scheme, we have also modeled a centralized-resource
mapper using the speedup functions and greedy algorithm used in [2].

D. Results and Discussion

1) Comparison of Average Applications Speedup and Steps to
Stability: The most interesting property in the analysis of distributed
RM schemes is to verify that eventually the agent negotiation would
result in an efficient resource distribution that is closer to the mapping
quality of centralized schemes. Thus, maximizing the speedups of all
applications and the overall average application speedup. Moreover, it is
also important that the system attains this stable configuration (i.e., when
the agents are no longer sending requests for more cores and the best
possible distribution of cores has been attained) in minimum number of
steps. In order to analyze this behavior, we performed a detailed analysis
on different grid sizes and for the three considered RM schemes. For
the calculation of average application speedup, we used reward based
properties. PRISM by default only returns the value of reward for the
single initial state. Therefore, in order to calculate the value of average-
application speedup for all possible states we applied filters [8].

filter(min,R {“average speedup”} =? [S])

filter(avg,R {“average speedup”} =? [S])

filter(max,R {“average speedup”} =? [S])

The above-mentioned filters give the minimum, average and the maximum
values of rewards over all possible states of the model, respectively. These
properties give the value of average applications speedup in steady state.
We evaluated 9 such properties for every grid-size (i.e., 54-properties)
in order to compare the performance of the three RM schemes. These
upper and lower bounds can never be attained using simulation-based
techniques. The authors of [2], evaluated the RM schemes for only 100
runs/configuration. Whereas, using model checking we have exhaustively
verified over all possible system states and thus, identified the range
in which average speedups would fall. The results of this analysis are
presented in Figs.4 and 2. Fig.4 presents how the applications interact with

each other to optimize their speedups overtime. Fig.2 presents analysis
of average application speedup over different grid-sizes. The following
observations were made:

1) It was noticed that in DRRMM, applications compromise to a
distribution in fewer steps whereas, agents in distRM require more
steps to attain a stable distribution. It can also been seen in Fig.2
that the agents in distRM negotiate and exchange cores more often
as compared to DRRMM.

2) Even though it requires more number of steps and larger number of
requests but it can be seen that eventually applications in distRM
end up getting more cores and thus a higher value of speedup.
Moreover, the final solution is closer to that of the centralized
RM scheme.

The above-mentioned behavior can be explained by the fact that agents
in distRM send request outside region R, which increases the potential
options for getting more cores. Whereas, applications in DRRMM stays
inside the region R. Therefore, the applications have no access to the
available cores, which are outside this region R. Thus the latter attains
a stable configuration in smaller number of steps while compromising
on the possible better distribution of cores. These results indicate the
usefulness of our approach over traditional analysis techniques as it
not only saves the time and money spent on simulations but the model
checker has exhaustively traversed through all possible system states
and identified the worst possible speedup that the given distributed
RM schemes may attain which is evident from the minimum-curve
in Fig. 2 and also the speedups that would be attained on average by
the underlying distributed RM schemes. As a simulator only provides
results based on particular simulation paths, it is very much possible that
we only check on the paths that end up giving a better solution. And
there is no way that a simulator can exhaustively determine that how a
distributed RM scheme would perform on average.

2) Average Core Utilization: An important piece of knowledge for
distributed RM scheme designer can be the amount of average core
utilization after a certain time interval when different applications are
running in parallel. In order to perform this analysis, we augment the
model with the following reward structure:

rewards “avg core utilization”
[]true : total occupied cores/total cores;
endrewards

The above-mentioned reward structure assigns a real value equal to the
average core utilization to every state of the model. For instance, in order
to calculate the average core utilization after 100 steps, we verify the
following property:

R {“avg core utilization”} =? [I = 100]

where ‘I’ is known as the instantaneous reward. Unlike other reward
structures, it does not give the accumulated value of reward, rather
the instantaneous value at a particular time interval. Fig.3 shows the
results of this analysis. It can be seen that in terms of average core
utilization, distRM makes a more optimal utilization of available cores.
These statistics can help the designers in optimizing a distributed RM
scheme during early design stages where the designer can tweak the
underlying distributed RM algorithm and analyze the resulting effects on
average core utilization. Simulation-based results can again be inaccurate
as we cannot exhaustively determine the average core utilization.

3) Overhead of Requests Initiated by Agents: Apart from making an
optimal utilization of resources, a distributed RM scheme should also be
efficient in terms of communication/computation overhead. We performed

934 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

0

5

10

3x3 4x4 5x5 6x6
Number of cores

DRRMM DistRM

Re
qu

es
ts

 b
y

an
 a

ge
nt

Fig. 5. Requests sent by an agent

0
0.2
0.4
0.6
0.8

1

10 15 20 25

Graph a: 3x3-grid

Pr
ob

ab
ili

ti
es

Total parallel tasks

0
0.2
0.4
0.6
0.8

1

16 20 25 30

Graph b: 4x4-grid

Total parallel tasks

P=? [FG RequiredCores>0 & UnoccupiedCores>0]

Fig. 6. Analysis of unoccupied cores

an analysis on the average number of requests sent by an agent and the
comparison of the results of the two distributed RM schemes is shown
is Fig.5. It can be seen that the agents in distRM send more requests
compared to the DRRMM scheme.

4) Analysis of Unoccupied Cores: One of the main purposes of a
distributed RM scheme is to make sure that all the cores will be used for
actual computations and the idle agents will not manage the unoccupied
cores forever. Therefore, we performed an analysis on resources vs
demand. The results were evaluated for a 3x3 and a 4x4 grid size. We
divided the grid into two regions and each region contains a manager for
unoccupied cores. We kept the demand greater than the available resources
for this experiment. For evaluating the probabilities, we calculated the
probability that in future one or more available cores will remain globally
unoccupied even when there is a high resource demand:

P =?[F G required cores > 0 & unoccupied cores > 0]

Fig.6 presents the results for the DRRMM scheme. It shows that the
probability is very high for small number of parallel tasks and it gradually
goes towards zero as there are more parallel applications on the chip.
These results indicate that on some cores actual computations will never
be performed and hence the system is not making an optimal use of the
available resources. The probability of such an event is very important as
the distributed RM scheme must ensure that all the cores will be utilized
for actual computations and should not remain unoccupied for infinitely
long interval. In distRM, this probability remains zero as long as the
applications are allowed to periodically increase the distance for sending
the requests. These results clearly indicate the usefulness of probabilistic
model checking in the verification and analysis of distributed RM scheme
as it not only allows the designer to identify the design problems but also
compute actual probabilities associated with occurrence of faulty events.
These cases have not been caught using the traditional analysis techniques.

The verification results show that there is a trade-off between the
performance of the two RM schemes. One scheme attains better map-
ping configuration, which is closer to centralized while compromising
on the communication/computation overhead. On the other hand, the
other scheme is highly efficient in terms of complexity and it reaches
stability in less time but it compromises on the possible number of
better configuration options. Here, probabilities plays a very important
role as the designer can determine how much a distributed RM scheme
is compromising on one performance factor to attain another. These
corner cases in which a core will remain unoccupied forever cannot be
determined using simulations as simulation-based analysis only ascertains
the correctness of the states that are reached within a particular simulation
path and it is always possible that we may miss the path containing a
fault. The probability of occurrence of such an event is highly useful
for the designer to determine how efficiently the given distributed RM
scheme is utilizing the available resources. These statistics corroborate
the benefits of probabilistic model checking in verifying distributed RM.

VI. CONCLUSIONS

The paper presents a formal probabilistic methodology for analyzing
and comparing distributed RM schemes. The proposed method utilizes
the PRISM model checker to verify the functional and performance
evaluation properties. For illustration purposes, a successful probabilistic
analysis and comparison of two state-of-the-art distributed RM schemes is
presented in this work. The rigorous nature of the analysis coupled with
the ability to identify the outer bounds for the performance efficiency
of the distributed RM schemes, the probability of occurrence of corner
cases and detailed quantitative insights are the distinguishing features of
our approach compared to the other traditional techniques.

One can optimize the design of distributed RM scheme by integrating
our proposed methodology in early design phases. A designer can verify
useful quantitative properties and compare the results of different alternate
design solutions for the resource management problem and hence come
up with a solution that utilizes the resources in an on-chip many-core
system in the most efficient manner.

ACKNOWLEDGMENT

This work is supported in parts by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre Invasive
Computing (SFB/TR 89 http://invasic.de) and in parts by the DAAD
“Deutsch-Pakistanische Forschungskooperationen” project.

REFERENCES

[1] ITRS, http://www.itrs.net, 2015.

[2] S. Kobbe, L. Bauer, D. Lohmann, W .S. Preikschat, and J. Henkel,
“DistRM: Distributed Resource Management for On-Chip Many-
Core Systems”, Hardware/Software Codesign and System Synthe-
sis, pages 119-128, 2011

[3] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping
on Multi/many-core Systems: Survey of Current and Emerging
Trends”, Design Automation Conference, pages 1-10, 2013.

[4] M. A. Al Faruque et al, “Adam: Run-time Agent-based Distributed
Application Mapping for On-chip Communication.” Design Au-
tomation Conference, pages 760-765, 2008.

[5] I. Anagnostopoulos et al, “Distributed Run-time Resource Manage-
ment for Malleable Applications on Many-core Platforms”, Design
Automation Conference. (168), pages 1-6, 2013.

[6] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart
Hill Climbing for Agile Dynamic Mapping in Many-core Systems”,
Design Automation Conference. (39), pages 1-6, 2013.

[7] W. K. Lam, “Hardware Design Verification: Simulation and Formal
Method-Based Approaches”, Prentice Hall, 2008.

[8] PRISM web site, www.prismmodelchecker.org, 2015.

[9] C. Baier and J. P. Katoen, “Principles of Model Checking”, MIT
Press, 2008.

[10] O. Hasan and S. Tahar, “Formal Verification Methods. In Encyclo-
pedia of Information Science and Tech.” pages 7162-7171, 2014.

[11] R. Alur and T. Henzinger, “Reactive Modules”, Formal Methods
in System Design, 15(1), pages 7-48, 1996.

[12] A. Biere, “Tutorial on Model checking, Modeling and Verification
in computer science”, Algebraic Biology, LNCS, (5147), pages 16-
21, 2008.

[13] M. Kwiatkowska and D. Parker, “Advances in Probabilistic Model
Checking”, Software Safety and Security: Tools for Analysis and
Verification. (33), pages 126-151, 2012.

[14] G. Weiss, Ed, “Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence”, MIT Press, 1999.

[15] T. Desell et al, “Malleable Applications for Scalable High Perfor-
mance Comp.”, Cluster Computing. 10(3), pages 323-337, 2007.

[16] D. L. Dill, “What’s Between Simulation and Formal Verification”,
Design Automation Conference, pages 328-329, 1999.

[17] A. B. Downey, “A Model for Speedup of Parallel Programs, Tech.
Rep, 1997.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 935

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

