
Efficient Program Tracing And Monitoring Through Power

Consumption – With A Little Help From The Compiler

Carlos Moreno

Electrical and Computer Engineering

University of Waterloo, Canada.

Email: cmoreno@uwaterloo.ca

Sean Kauffman

School of Computer Science

University of Waterloo, Canada.

Email: skauffma@uwaterloo.ca

Sebastian Fischmeister

Electrical and Computer Engineering

University of Waterloo, Canada.

Email: sfischme@uwaterloo.ca

Abstract—Ensuring correctness and enforcing security are
growing concerns given the complexity of modern connected
devices and safety-critical systems. A promising approach is
non-intrusive runtime monitoring through reconstruction of pro-
gram execution traces from power consumption measurements.
This can be used for verification, validation, debugging, and
security purposes.

In this paper, we propose a framework for increasing the
effectiveness of power-based program tracing techniques. These
systems determine the most likely block of source code that
produced an observed power trace (CPU power consumption as
a function of time). Our framework maximizes distinguishability
between power traces for different code blocks. To this end,
we provide a special compiler optimization stage that reorders
intermediate representation (IR) and determines the reorderings
that lead to power traces with highest distances between each
other, thus reducing the probability of misclassification. Our work
includes an experimental evaluation, using LLVM for an ARM
architecture. Experimental results confirm the effectiveness of
our technique.

I. INTRODUCTION

Modern connected devices and safety-critical systems are

rapidly increasing in complexity and functionality. Conse-

quently, there is growing interest in runtime monitoring for

the purpose of ensuring correctness and enforcing security. The

complexity of modern systems makes it difficult to incorporate

runtime monitoring tools that work alongside the rest of the

software without breaking extra-functional requirements such

as timing constraints.

A promising approach is non-intrusive monitoring through

reconstruction of program execution traces from power con-

sumption measurements. This can be used for verification,

validation, debugging, and security purposes. Moreno et al. [1]

presented a novel approach where power consumption is used

to reconstruct program traces. This is accomplished through

the use of statistical pattern recognition techniques, where

the system determines the most likely fragment of code that

produced an observed power trace (captured sequence of

power consumption as a function of time) [2].

Eisenbarth et al. [3] attempted a similar technique, targeting

assembly-level instructions. However, at this fine granularity,

the reported performance was too low for a practical appli-

cation. Clark et al. [4] presented a malware detector based

on side-channel analysis (power consumption) for medical

devices. Their technique, however, is limited in that it operates

at the granularity level of the execution of the entire program,

and that it relies on the device executing a simple and highly

repetitive task.

In this paper, we propose a framework for increasing the

effectiveness of power-based program tracing techniques. We

focus on the techniques that use classifiers to determine most

likely blocks of code that produced the observed power traces.

Our framework increases the effectiveness of this classifica-

tion process by maximizing distinguishability between power

traces for different code blocks. To this end, we provide a

special compiler optimization stage that affects the code gen-

eration and layout with distinguishability as the optimization

criterion. This optimization stage reorders intermediate repre-

sentation (IR) instructions and estimates the resulting power

trace for a given reordering. It then determines the reorderings

that lead to power traces with highest distances between each

other, thus reducing the probability of misclassification.

An additional feature in our framework with respect to the

work presented in [1] is the use of the control flow graph

(CFG) [5]. Our approach assumes the use of the CFG to

constrain the classification process and only consider valid se-

quences of blocks; given the sequence of blocks that executed

in the immediate past, the CFG indicates the set of blocks

that can be currently executing. Thus, the classifier only needs

to consider those blocks as candidates in the classification

process. As a consequence, the compiler optimization stage

only needs to maximize distinguishability between blocks

corresponding to sibling nodes in the CFG (i.e., nodes with a

common parent).

Our work includes an experimental evaluation, implemented

using LLVM [6] with an Atmel SAM D21 ARM MCU [7].

Results from our experiments confirm the soundness of our

approach and the potential for usability in practical scenarios.

The remainder of this paper proceeds as follows: we start

with a brief background review in Section II. We describe our

proposed approach in Section III, followed by the details of our

experiments (sections IV and V). We finish with a discussion

in Section VI and some concluding remarks in Section VII.

II. BACKGROUND – STATISTICAL PATTERN RECOGNITION

Our proposed framework focuses on power-based tracing tech-

niques that rely on statistical pattern classification to determine

most likely blocks of code given an observed power trace [2].

1556978-3-9815370-6-2/DATE16/ c©2016 EDAA



Specifically, these techniques seek to maximize the condi-

tional or a posteriori probability among all candidate frag-

ments given the power trace 1 produced by the execution of

the unknown fragment of code.

Several techniques exist and are commonly used to ac-

complish the above goal. Often, we do not have an explicit

(analytic or otherwise) description of the distribution of the el-

ements. In those cases, classification techniques use a training

database consisting of a set of S samples {X1,X2, · · · ,XS},

each of them labelled with the class to which the sample is

known to correspond. Classification for a given element is

done based on proximity (usually Euclidean distance) to the

database samples. The nearest centroid rule also uses a training

database of labelled samples; for each class Ck, the system

determines the centroid of all training samples with label Ck:

Xk =
1

Nk

Nk∑

n=1

Xn (1)

where Nk is the number of training samples with label Ck.

The classification decision for a given element X consists

of selecting the class corresponding to the centroid nearest to

X (also with Euclidean distance being the usual metric).

This is a key notion for our proposed technique: if we

consider a two-centroids scenario, the probability of misclas-

sification is related to distance between centroids. This proba-

bility is given by the area (or volume, in the multidimensional

case) under the curves corresponding to the probability density

functions taken from the equidistant point or region with

respect to the two centroids; the farther apart the centroids,

the smaller this probability should be, since we take a smaller

portion of the tails of the probability functions.

III. OUR PROPOSED TECHNIQUE

We now present the details of our proposed framework as well

as our implementation using LLVM with an ARM Cortex-M0

target architecture.

A. Reordering Instructions

The key aspect behind our technique is the relationship be-

tween sequences of individual instructions and the resulting

power trace. If we reorder the instructions in a program, the

power trace produced by the modified program will, in general,

be different. Since the classification process is based on

distinguishing power traces corresponding to different blocks

of code, our approach is based on the idea of reordering

instructions corresponding to the various blocks to make the

resulting power traces maximally distinguishable.

A trivial solution exists for this problem: we can always

introduce new and unnecessary instructions into the program

which have wildly different power signatures. Clearly, this

would not be an acceptable solution in most cases, due to

its detrimental effect on performance. For a solution to have

practical value, it should modify the program in such a way

that performance is affected the least. One way to ensure that

1 More specifically, given a noisy measurement of the power trace

performance is not drastically affected is to avoid introducing

new instructions, and instead only reorder the instructions that

are part of the original program.

We should also consider the fact that the classifier can take

advantage of information about the CFG of the program to

improve the classification process. The intuition is that if we

narrow down the candidate blocks considered by the classifier,

we should reduce the probability of misclassification. Thus, we

should focus on maximizing distinguishability between blocks

that can be candidates for the same classification instance.

This can only happen if the nodes have common predecessors;

after execution of a given block corresponding to a node in the

CFG, the classifier only considers the successors to the current

basic block. If we can increase the distance between power

traces corresponding to basic blocks that are the successor

nodes to the same block in the CFG, we can improve their

differentiability and lower the rate of misclassifications on the

program. Additionally, we want to increase the distance for

the nodes that are most easily misclassified without adversely

affecting our ability to correctly classify the nodes that are

already easy to distinguish.

Thus, our optimization task consists of increasing the dis-

tance between basic blocks and their siblings in the CFG. We

define a sibling to mean all of the successors of all of the

predecessors of a basic block in the CFG that are not the

block itself. It is important to consider sibling nodes in the

above sense rather than considering the successors of each

node. This is the case because a block may have more than

one predecessor in the CFG. If we only increase the distance

between the successors to a single basic block, we may do

so by decreasing the distance between those blocks and their

siblings from other predecessors. During classification, a basic

block may be a candidate together with any of its sibling

nodes since the set of candidate blocks depends on the specific

instance of execution.

To calculate this distance metric, the power trace of each

basic block can be broken down into the power traces of

its component instructions. Since a basic block consists of a

sequence of instructions with a single entry and a single exit

point, it can be thought of as a series of instructions which will

execute in order. Thus, the power trace of a basic block can be

conceived as the series of the power traces of its component

instructions, given that the power trace corresponds to power

consumption as a function of time. If we know the number of

clock cycles for every instruction to complete and we know

how much power they require on average, we can determine

the average power traces for basic blocks.

B. A Little Help from the Compiler

The process of reordering instructions described in the previ-

ous section was implemented in a compiler optimization stage.

We chose LLVM for its modularity and ease of modification,

and to make our modifications to the intermediate representa-

tion (IR) of the program.

Much work has been done in the area of modifying the

compilation of a program to change its power consumption.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1557



Typically, the goal is to reduce the power consumption of the

program. There are several approaches to this problem, but

the most typical is to try to reduce transition activity in the

instruction bus by reducing the hamming distance between

instructions in the program [8], [9]. This is an effective way

to approach the problem, since it provides a simple heuristic

for which the code can be optimized and for which one

approach can be judged to be objectively better than another.

However, the problem is NP-Hard [8] and tends to discount

the many other factors in a processor. Other research has been

done into methods that require customized hardware, such as

optimizing the use of way-specific registers in multiple issue

digital signal processors [10] or by using a combination of

instruction packing, booth multiplier operand reordering [11].

Our approach is based on the idea of modifying the order

of the instructions. When run after most other optimizations,

instruction ordering gives us control over the power trace of

a basic block with low performance impact. Although some

basic blocks contain only instructions with data dependencies

between them, most contain some instructions which can be

reordered without changing the semantics of the program. To

do this, we needed more granular information about the power

used by instructions.

We created a framework for generating machine code cor-

responding to sequences of a single LLVM IR instruction.

Our goal was to modify the IR representation of the program,

but the power traces for instructions were CPU/MCU specific.

To be able to associate a power trace with an IR instruction

on a target, we need to profile the system: determine what

machine instructions are emitted by the LLVM backend for

a particular IR instruction on the particular target, and then

measure the power trace for that sequence of assembly-level

instructions. We generated assembly files representing 1000

executions of an IR instruction for most of the instructions

in the LLVM language and for most valid combinations of

operand sizes. Depending on the target, there could be large

variations between the number and type of instructions emitted

for different IR instructions.

These files were then run on the target hardware and their

power traces were recorded. To avoid issues with resolution

or accuracy in the measurements, each file consisted of 1000

repetitions of the same sequence of machine instructions

corresponding of one IR. We then divided the trace into 1000

sequences of measurements and took the mean of each index.

The resulting vector represents the given IR instruction for

the target. A number of examples of these vectors are given

in Figure 1. We will present a more detailed description in

Section IV, when describing the experimental setup.

A vector for a basic block can then be created by con-

catenating the traces of its instructions. We can calculate the

differentiability between two basic blocks as the distance be-

tween these two vectors. Because the length of each instruction

vector varies, it is not enough to simply add up the distance

between subsequent instruction traces. This is demonstrated

in Figure 1, which shows how different instructions can have

power traces with wildly different lengths.

6.036

6.040

6.044

0 100 200 300 400
Time (samples)

M
ea

n 
of

 s
am

pl
ed

 p
ow

er
 (

m
W

)

Fig. 1. Instruction Trace Vectors

We define the distance of a basic block to be the average

of the square Euclidean distance between its power trace

and the power traces of its siblings in the CFG.2 When

evaluating the distance between two traces, we consider only

the initial portion of the traces that overlaps, since this is the

only meaningful way to compare traces when the classifier

is making a decision during normal operation. Given a basic

block b and the set of its sibling basic blocks Sb, where a

basic block consists of a vector representing its power trace

over time, the distance is given by:

distance(b) =
1

|Sb|

∑

s∈Sb

Ms∑

t=0

(b[t]− s[t])
2

(2)

where Ms � min(|b|, |s|).

We use an iterative, greedy algorithm to improve the total

distance of a program until a threshold is reached. The

algorithm starts by iterating over each basic block in the CFG

and finding its sibling nodes. It then begins the main loop,

which starts by placing all of the basic blocks into a list

sorted by their distance. The block with the lowest distance is

then chosen and all valid permutations of its instructions are

checked and its instruction order is changed to the permutation

with the highest distance. A valid permutation means that

the semantics of the basic block are not changed, so the

order of instructions with data dependencies is preserved.

Because this validity restriction drastically reduces the number

of possibilities, it becomes practical to search all permutations

for a moderately large basic block. Once the block is reordered

and its siblings are removed from the list, the block with the

next lowest distance in the list is chosen to repeat the process.

Once the list becomes empty, it is repopulated and sorted until

the change in total distance of the program drops below some

specified threshold. Algorithm 1 shows the details of this

optimization procedure.

C. Example

As a contrived example let us look at the C code in Figure 2

which is part of a program that we would like to classify.

It contains two basic blocks which are siblings in the CFG.

Figure 2 also shows the equivalent LLVM IR generated by the

LLVM program clang.

2 This is a common optimization in pattern recognition techniques, where
comparing square distances yields the same result as comparing distances
without incurring a square root computation.

1558 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)



Algorithm 1 Optimization Algorithm

1: procedure REORDER(CFG, threshold)
2: for block ∈ CFG do
3: for pred ∈ block.predecessors do
4: block.siblings← pred.successors \ block

5: do
6: BBList← CFG.blocks
7: Sort BBList, ranked by distance
8: while BBList �= ∅ do
9: block ← BBList[0]

10: for p ∈valid permutations of block do
11: if distance(p) > distance(block) then

12: block ← p

13: BBList← BBList \ {block}
14: BBList← BBList \ block.siblings

15: while Δ
∑

distance(block ∈ BBList) < threshold

if (x < y)

{ if.then:

x = x + z; %add = add nsw i16 %z, %x ← will be

y = y << z; %shl = shl i16 %y, %z ← reordered

x = x & y; %and = and i16 %add, %shl

} br label %if.end

else

{ if.else:

y = y + z; %add2 = add nsw i16 %z, %y

x = x << z; %shl2 = shl i16 %x, %z

x = x & y; %and2 = and i16 %shl2, %add2

} br label %if.end

Fig. 2. C code and equivalent LLVM IR

Even without knowing the power traces for any of the

instructions, we can see that the two basic blocks are similar,

so they will be difficult to differentiate. In fact, looking only

at the type of instruction and the sizes of its operands, these

two blocks are identical. When the algorithm is run on this

program, one of these two blocks is sorted to the top of the list

to be rearranged first, because the distance to its siblings is 0.

Then when different permutations of the block are tried, they

are limited because of data dependencies. The br instruction

cannot be moved, because it is the terminating instruction for

each basic block and must come at the end, and the and

instruction before it depends on the results of the other two

instructions so it cannot come before either of them. Only the

add and shl instructions can be moved, so the algorithm

chooses to change their order in the first basic block.

IV. EXPERIMENTAL SETUP

The key aspect in our experiments was the capture of power

traces corresponding to the execution of basic blocks. This

introduced an important difficulty, since we needed to run the

fragments of code in the natural sequence as they occurred

in the program to obtain good accuracy in the measurements.

This is due to the fact that power consumption may be affected

by low-level hardware features such as pipelines and internal

state transitions; thus, if we execute fragments of code in

isolation, the power consumption may not reflect the actual

power consumption during operation.

To this end, we created two instrumented versions of the

programs; one of them executes on the target and uses a GPIO

pin to signal transitions between BBs by toggling the pin.

The instrumentation simply places a pin-toggle statement at

the beginning of each BB. We capture power traces through

the Line-In input of a standard PC sound card. This idea

was introduced in [1]. Unlike in that work, we used the two

channels of the stereo sound card input so that one of the stereo

channels captures power consumption and the other channel

captures the markers. Figure 3 shows an example of a captured

trace. The system automatically detects the positions of the

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

D
ig

iti
ze

d 
V

al
ue

s

Time Index

Power
Markers

Fig. 3. Example of Captured Power Trace with Markers

markers by identifying pairs of nearby local maximum and

minimum, and finally determine the position of the inflection

point between these two extreme points. We used the standard

numerical approximations of the derivatives to determine the

point at which the second derivative changes sign [12].

The second instrumented version contains print statements

and it is executed offline on a workstation. We used a pseu-

dorandom number generator (PRNG) to generate inputs for

the functions. By seeding the PRNG with the same seed value

in both instrumented versions, we ensure that the execution

trace will be the same, since the input data is the same in

both cases. This allows us to match the segments of the trace

(separated by the markers) against the BB labels that are output

by the print-instrumented version, and thus we are able to label

each of the power trace segments with the BB to which they

correspond. To guarantee that this was the case, we coded a

custom PRNG, thus avoiding the risk that the standard library

random facilities could vary between compilers. We used a

linear congruential generator with 64-bit state following the

standard conditions to maximize the period [13].

The benefit of obtaining this set of labeled power traces

is twofold: (1) we use these labeled samples for the training

database. And (2) we can determine the precision of the system

(the rate of correct classifications): the experiment runs the

classifier feeding the sample without labeling and can compare

the output of the classifier against the known label associated

to the sample. We emphasize the aspect that the experiments

always use different samples for the training database and

for obtaining the classifier’s precision. In particular, different

samples of the power traces always correspond to executions

with different input data.

V. EXPERIMENTAL RESULTS

The main goal and focus of our experiments is to demonstrate

the difference in the classifier’s precision as a consequence of

the modifications done by the compiler through the optimizing

stage that reorders the IR instructions. The precision P is

defined as the rate of true positives. This parameter fully

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1559



describes the performance of the classifier, since we do not

have false negatives (the classifier always outputs something)

and thus the notion of recall is not applicable to our case.

P �
#CC

#CC +#IC
(3)

where #CC denotes the number of correct classifications

(true positives), and #IC denotes the number of incorrect

classifications (false positives).

As auxiliary measurements that are directly associated to

the manipulations that the compiler performs, we also report

distances between centroids, both synthetic (distances between

the traces constructed by the compiler while evaluating the

reorderings) and obtained from actual measurements on the

target. We also created an additional version of the compiler

that chooses the estimated worst reorderings; thus, minimizing

distances between power traces instead of maximizing them.

The purpose of this is to demonstrate the potential effect of

these changes in the distances between traces.

We ran each of the MiBench functions 1000 times, obtaining

a total number of segments (corresponding to individual execu-

tions of BBs) of a little above 1.3 million. Many of the traces,

however, correspond to blocks that are too small, and thus we

omitted them from the reported results, as they are far too

many and add little value since the compiler is limited in how

much it can reorder small blocks. To evaluate the precision,

we partitioned the sets of power traces corresponding to each

BB into two sets. We used one of the sets to construct

the training database — essentially, to obtain the centroids for

each class (each BB) — and the other set to run the classifier

and obtain the precision. We used a process similar to

bootstrapping [14] to obtain a good statistical representation

of the parameters, including the obtained averages as well

as confidence intervals (we report 95% confidence intervals).

The process consisted of sampling with replacement, where

the partitioning is done multiple times, randomly splitting the

set into the two partitions. This corresponds to taking random

samples of the population of power traces to run them through

the classifier with the rest of the power traces being used to

construct the training database.

Table I summarizes the results, including execution of AES

encryption and the SHA update function, part of the Security

section of MiBench [15]. The ± figures indicate the 95%

confidence interval for the given parameter.

TABLE I
CLASSIFIER PARAMETERS

Precision Dist. between centroids

AES encrypt

Unoptimized 56.53% ± 0.26 118753

Optimized 63.76% ± 0.3 259506

SHA update

Unoptimized 99.0% ± 0.04 1855802

Optimized 98.83% ± 0.05 1839577

ADPCM coder

Unoptimized 58.11% ± 0.22 130781

Optimized 59.19% ± 0.19 144209

We can draw some important insights from these results.

We observe that the effect of the technique varies for different

functions. Perhaps surprisingly, for the SHA blocks, the tech-

nique reduced the precision. However, the ranges are so close

that the difference may be due to measurement or experimental

artifacts. Also, with the code being so highly distinguishable

in its normal form, we can suspect that the reorderings that

the optimizer did were in a sense “driven by noise”.

The results for AES, on the other hand, show a remarkable

and favorable aspect: the fragment of code below (from

MiBench’s aes.c) shows the two sibling nodes for.body

and for.end corresponding to the body of the loop and the

statement that follows the loop:

for(rnd = 0; rnd < cx->Nrnd - 1; ++rnd)

{

round(fwd_rnd, b1, b0, kp);

l_copy(b0, b1); kp += nc;

}

round(fwd_lrnd, b0, b1, kp);

We observe that the two blocks are essentially identical

(fwd_rnd and fwd_lrnd are two macros that expand to

the same code, using different data). It is expected that the

unoptimized code produced by the compiler would be essen-

tially identical, and the precision greater than 50% could be

a result of low-level hardware features that cause a difference

between the trace when execution remains within the loop vs.

when it leaves the loop.

The results show that the reordering of the instructions

corresponding to those blocks plays an important role in

the distinguishability between those two otherwise identical

blocks. Even though 63.76% is not a particularly high preci-

sion, it is still a remarkable result considering that we achieve a

reasonable level of distinguishability between two blocks that

are normally almost indistinguishable. We should also remark

the fact the these blocks are short and thus obtaining a high

precision is challenging. This could be compensated for by

using CFG expansion to classify based on distances for longer

sequences of blocks. This is, however, beyond the scope of this

work and is an area that would benefit from future research.

Our results also include computed values corresponding to

parameters obtained by the compiler during the optimization

stage. Specifically, we computed the total distance for some

programs in the MiBench suite before and after optimization

by our compiler stage. We also reversed the optimization

in order to minimize the total distance, generating the least

distinguishable version of a program. The increase against

the default case represents the improvement in distance over

instruction ordering that the compiler generated with no inter-

vention, while the increase against the worst case represents

the improvement in distance over the least distinguishable

version. In the case of adpcm.c for ARM, the default case

that the compiler generated was indeed the worst case, which

is why the increase in distance over them is identical. Table II

shows these values. For example, the first row shows that,

for the benchmark adpcm.c the improvement for ARM was

21.4% above both the default and worst case versions, while

1560 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)



the improvement for AVR was 6.15% over the default and

16% over the worst case.

TABLE II
IMPROVEMENT IN DISTANCE METRIC FROM OPTIMIZATION

Bench % Increase (default) % Increase (worst)

ARM AVR ARM AVR

adpcm.c 21.4 6.15 21.4 16.0

aes.c (unrolled) 94.2 120.3 105.9 123.2

aes.c 159.4 272.0 186.4 275.6

crc 32.c 8.27 18.97 120.6 60.2

fftmisc.c 8.24 2.37 18.6 15.9

sha.c 58.2 13.14 121.2 27.2

VI. DISCUSSION AND SUGGESTED WORK

Many interesting aspects were observed during the design and

implementation of the experiments, as well as from the results

obtained. Perhaps the most interesting aspect to discuss is the

effect of the code structure and size on the effectiveness of our

technique. The precisions obtained for the various functions

exhibit large variations. The results, combined with inspection

of the various fragments of code being considered, suggest

that it is mostly the structure and size of the code that can

have a bigger impact on the potential effectiveness of the

method. We still claim that the technique is valuable and

has a tremendous potential for applicability in practice. One

can reasonably expect actual code in real-life applications to

include fragments with varying characteristics and structure.

Thus, for practical applications, we believe that the technique

is bound to work well for a fraction of the blocks being

considered, and have little or no effect for the rest, leading

to a net increase in the overall performance. Further research

could be valuable in getting a more definitive answer to these

claims. Additional research could also uncover patterns or

relationships between characteristics of the source code and

the effectiveness of the technique.

Additional techniques related to the use of the CFG for

classification of sequences could help obtain a high precision

even at the fine granularity level of basic blocks in the CFG.

It would be interesting to study the interaction between our

proposed technique and any approaches that the classification

system could adopt as means to increase either the perfor-

mance or the computational efficiency (or both).

Future research is also suggested for the purpose of devel-

oping more effective and efficient optimization algorithms that

would be applicable in the context of our framework.

As a last remark, it is worth noting that another potential

application of our proposed technique is the creation of a rogue

(malicious) compiler that could manipulate code generation

to facilitate side-channel analysis, in particular power analy-

sis [16], on devices with binaries created by such compiler.

Embedded systems security engineers should be aware of this

aspect, even if its applicability in practice may be a remote

possibility.

VII. CONCLUSIONS

In this work, we presented a novel approach for increasing the

effectiveness of power-based program tracing techniques. We

showed that by reordering instructions we gain some control

over the power traces and can choose reorderings that lead to

power traces that are maximally distinguishable. Experimental

results confirmed that our approach is viable and has potential

applicability in practice.

Important insights were gained from the design of the

experiments, implementation, and results. Since this paper

introduces a novel idea that can potentially address important

problems in the field of embedded systems and in particular

embedded systems security, there are many opportunities for

future work. As part of this work, we highlighted some of

these areas where additional research may prove valuable.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable suggestions and ideas, Brad Lushman and Nomair

Naeem for their advice on compiler optimizations, and Aaron

Severance for suggesting a comparison against the worst-case.

This research was supported in part by the Natural Sciences

and Engineering Research Council of Canada and the Ontario

Research Fund.

REFERENCES

[1] C. Moreno, S. Fischmeister, and M. A. Hasan, “Non-intrusive Program
Tracing and Debugging of Deployed Embedded Systems Through Side-
Channel Analysis,” LCTES’13, pp. 77–88, 2013.

[2] A. R. Webb and K. D. Copsey, Statistical Pattern Recognition, 3rd ed.
Wiley, 2011.

[3] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Channel
Based Disassembler.” Springer Berlin Heidelberg, 2010, pp. 78–99.

[4] S. S. Clark et al., “WattsUpDoc: Power Side Channels to Nonintrusively
Discover Untargeted Malware on Embedded Medical Devices,” USENIX

Workshop on Health Information Technologies, 2013.
[5] C. N. Fischer, R. K. Cytron, and R. J. L. Jr., Crafting a Compiler.

Addison-Wesley, 2009.
[6] C. Lattner and the LLVM Developer Group, “The LLVM Compiler

Infrastructure – online documentation,” http://llvm.org.
[7] Atmel Corporation, “SAM D ARM Cortex-M0+ Microcontrollers,”

2015, http://www.atmel.com/products/microcontrollers/arm/sam-d.aspx.
[8] C. Lee, J. K. Lee, and T. Hwang, “Compiler Optimization on Instruction

Scheduling for Low Power,” in International Symposium on System

Synthesis, 2000, pp. 55–60.
[9] N. Chabini and M. Wolf, “Reordering the assembly instructions in basic

blocks to reduce switching activities on the instruction bus,” Computers

Digital Techniques, IET, vol. 5, no. 5, pp. 386–392, September 2011.
[10] Y.-C. Ma, T.-A. Liu, and W.-S. Chao, “Energy-Aware Compiler Opti-

mization for VLIW-DSP Cores,” in Advances in Intelligent Systems and

Applications - Volume 2. Springer Berlin Heidelberg, 2013, vol. 21.
[11] M.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and

Minimization Techniques for Embedded DSP Software,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 1997.
[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical

Recipes in C, Second ed. Cambridge University Press, 1992.
[13] D. E. Knuth, The Art of Computer Programming. Volume 2: Seminu-

merical Algorithms, Third ed. Addison-Wesley, 1998.
[14] A. J. Canty, “Resampling methods in R: the boot package,” R News,

vol. 2, no. 3, pp. 2–7, 2002.
[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite.” IEEE Computer Society, 2001.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances

in Cryptology – CRYPTO’ 99, pp. 388–397, 1999.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1561



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


