An Optimized Task-Based Runtime System for
Resource-Constrained Parallel Accelerators

Daniele Cesarinif, Andrea Marongiu'*, and Luca Benini'*
TDEI, University of Bologna, 40136 Bologna, Italy

HIS, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
daniele.cesarini@unibo.it, {a.marongiu, luca.benini}@iis.ee.ethz.ch

Abstract—Manycore accelerators have recently proven a
promising solution for increasingly powerful and energy efficient
computing systems. This raises the need for parallel program-
ming models capable of effectively leveraging hundreds to thou-
sands of processors. Task-based parallelism has the potential
to provide such capabilities, offering flexible support to fine-
grained and irregular parallelism. However, efficiently supportin%
this programming paradigm on resource-constrained paralle
accelerators is a challenging task. In this paper, we present
an optimized implementation of the OpenMP tasking model
for embedded parallel accelerators, discussing the key design
solution that guarantee small memory (footprint) and minimize
performance overheads. We validate our design by comparing to
several state-of-the-art tasking implementations, using the most
representative parallelization patterns. The experimental results
confirm that our solution achieves near-ideal speedups for tasks
as small as 5K cycles.

[. INTRODUCTION

Heterogeneous systems, pioneered in the High-Performance
Computing (HPC) domain by General-Purpose graphic pro-
cessing units (GPGPU), are nowadays adopted virtually at
every scale due to the important benefits they brings in terms
of energy efficiency. Multi-processor on-chip systems (MP-
SoC) are increasingly adopting heterogeneous designs where
a general-purpose host processor is coupled to programmable
many-core accelerators, where highly-parallel computation
kernels of an application can be offloaded to improve overall
performance/watt.

This clearly complicates application development and raises
the need for parallel programming models capable of effec-
tively leveraging hundreds to thousands of processors. As the
complexity of software increases, it is widely acknowledged
that totally laying the burden of handling performance scal-
ability issues on the programmers is unfeasible. Application
designers should focus on outlining available parallelism in
an application, while efficient distribution of parallel tasks on
a manycore should be controlled by system software libraries
and runtime environments (RTE).

Task-based parallelism has the potential to provide such
features, as it provides a powerful conceptual framework to
exploit irregular parallelism in target applications. Several
works have demonstrated the effectiveness of tasking in the
HPC domain. However, a space- and performance-efficient
design of a tasking RTE targeting MPSoCs is a challeng-
ing task, as embedded parallel applications typically exhibit
very fine-grained parallelism. The applicability of the tasking
approach to embedded applications and embedded manycore
accelerators is often limited to coarse-grained parallel tasks,
capable of tolerating the high overheads typically implied in
a tasking RTE. State-of-the-art tasking RTEs for embedded
manycores [1] [2] succeed in achieving low overheads and
enabling high speedups for very fine-grained tasks, but only
for simple flat parallel patterns (where all the tasks are created
from the same parent task). The reason for this limitation lies
in a key design choice: only tied tasks are supported. If a tied
task is suspended (due to synchronization, creation of another

978-3-9815370-0-0/DATE16/ (©) 2016 EDAA

978-3-9815370-6-2/DATE16/ (©2016 EDAA

task, etc.) only the thread that initially owned it is allowed
to resume its execution. This clearly limits significantly the
available parallelism when more sophisticated (and realistic)
parallel execution patterns are considered, like nested tasking
(found, for example, in programs that use recursion). Another
limitation that follows from this design choice is the restricted
set of scheduling policies available. Breadth-first scheduling
(BES) and Work-first scheduling (WFS) are the two most
widely used policies for distributing tasks among available
threads. When fied tasks are used, BFS is the only choice in
practice, as WFS leads to a complete sequentialization of task
executions when nested parallelism is adopted.

In this work we build upon the most lightweight tasking
RTE design for embedded manycores [1] and extend it to
support wuntied task. When suspended, untied tasks can be
resumed by any available thread, thus significantly increasing
the potential for parallelism exploitation. On top of this
extended RTE we implement support for WFS and associated
cutoff policies. Supporting untied tasks required major modi-
fications to the RTE and potentially heavyweight ones, as we
replace a simple BFS loop based on function calls with more
sophisticated mechanisms for task context switching among
multiple threads.

Our experimental results show that:

1) The careful design of the extensions allows us to achieve
nearly identical speedup results to [1] for flat parallel
patterns, enabling efficient support for very fine-grained
tasking (almost ideal speedups for tasks beyond 5K
cycles);

2) WES enables significantly higher speedups (up to 60%)
than BFS when wntied tasks are used in recursive
patterns;

3) Cutoff policies on top of the provided support for
untied tasks allow to achieve nearly-ideal speedups for
recursive patterns for tasks of the same small size of the
flat pattern (around 5K cycles).

In addition, we compare our RTE design to several others
and demonstrate that our solution is one order of magnitude
more efficient than the second best, in terms of task granularity
for which nearly-ideal speedups are achieved.

II. RELATED WORK

Tasking has been successfully used in the high performance
computing (HPC) domain to parallelize complex algorithms
leveraging sophisticated control structures. Notable examples
of task-based programming models are Cilk [4], Inte]l TBB
[12], Wool [11], Apple GCD [5] and the current OpenMP
specification [7]. Researchers have actively explored the effec-
tiveness of OpenMP tasks in the context of HPC applications
and systems [8] [16] [15] [21] [20]. While OpenMP has re-
cently gained much attention also in the embedded domain [2]
[17] [18], not much work has been done on demonstrating the
benefits of tasking for fine-grained embedded workloads or for
proposing lightweight and efficient tasking implementations
for embedded MPSoCs. Kumar et al. [6] present an architec-
ture for efficient execution of fine-grained tasks, demonstrating

1261

the importance of reducing tasking support overheads for
the model to be beneficial in embedded multicores. Burgio
et al. [1] present an efficient implementation of OpenMP
v3.0 for an embedded shared memory multicore cluster, and
the one with the lowest overheads among the available ones
in literature targeting embedded MPSoCs. We thus choose
this implementation as a baseline for our work. The main
limitation of this work (like all other implementations targeting
embedded systems) is the lack of support for untied tasks
and nested parallel patterns, which are the ones for which
task-based parallelism is most beneficial. Our work addresses
these shortcomings and proposes a lightweight tasking runtime
capable of enabling near-ideal speedups for recursive parallel
patterns employing very fine-grained tasks.

III. TARGET ARCHITECTURE

In this section we describe the cluster-based architecture
template targeted in this paper. Clusters are the central building
block of several recent embedded many-cores. These products
consider a hierarchical design, where simple processing units
(PU) are grouped into small-medium sized subsystems (the
clusters) sharing high-performance local interconnection and
memory. Scaling to larger system sizes is enabled by replicat-
ing clusters and interconnecting them with a scalable medium
like a NoC.

Bank 0

test and set | I
TCDM (32 banks)

Bank 31

Data Interconnect
(MoT)

T

Peripheral
Interconnect
(MoT)

A

CORE 0 CORE 15
W s

Crossbar

Wt
NI

Fig. 1. On-chip shared memory cluster

The simplified block diagram of the target cluster is shown
in Figure 1. It contains 16 RISC32 processor cores, each
featuring a private instruction cache. Processors communicate
through a multi-banked, multi-ported Tightly-Coupled Data
Memory (TCDM). This shared L1 TCDM is implemented
as explicitly managed SRAM banks (i.e., scratchpad mem-
ory), to which processors are interconnected through a low-
latency, high-bandwidth data interconnect enabling 1-cycle
L1 accesses. This is compatible with pipeline depth for
load/store for most processors, hence it can be executed in
TCDM without stalls — in absence of conflicts. Note that
the interconnection supports up to 16 concurrent processor-
to-memory transactions within a single clock cycle, given that
the target addresses belong to different banks (one port per
bank). Multiple concurrent reads at the same address happen
in the same clock cycle (broadcast). A true data conflict takes
place only when multiple processors try to access different
addresses within the same bank. In this case the requests
are sequentialized on the single bank port. To minimize
the probability of conflicts i) the interconnection implements
address interleaving at the word-level; ii) the number of banks
can be configured to be an integer multiple M of the number
of cores (in our setup M=1 never leads to a noticeable number
of conflicts).

Processors can synchronize by means of standard read/write
operations within an aliased TCDM address range. Specifi-
cally, adding a constant offset to any TCDM address provides

1262

test-and-set semantics via the interconnect (a single atomic
operation returns the content of the target memory location
and updates it).

This architectural template captures the key traits of ex-
isting cluster-based many-cores such as STMicroelectronics
STHORM [3] or Kalray MPPA [13] in terms of core or-
ganization, number of clusters, interconnection system and
memory hierarchy. As a concrete instance of this template
we built a cycle-accurate SystemC simulator, based on the
VirtualSoC virtual platform [14]. VirtualSoC is a prototyping
framework targeting the full-system simulation of massively
parallel heterogeneous SoCs. The topology that we consider in
this paper consists of a single cluster, plus a memory controller
to the off-chip main memory.

IV. BACKGROUND

In this section we provide background information related
to the OpenMP tasking model and the baseline implementation
on top of which we build our work.

A. Basic Notions of OpenMP Tasking

OpenMP historically relied on a fork/jjoin (FJ) parallel
execution model. The program starts with a single thread
of execution (the master); when a parallel construct is
encountered, n — 1 new threads (n being specified with the
num_threads clause) are recruited into a parallel team.
Several worksharing constructs are provided to specify how
the parallel workload is distributed among threads. Since the
specification version 3.0, on top of the FJ model OpenMP
provides support for task-based parallelism, which is our
focus.

When a thread encounters a task construct, a new task
region is generated from the code contained within the task.
Additional data-sharing clauses specify an associated data
environment, while the execution of the new task can be
assigned to one of the threads in the team, based on additional
task-scheduling clauses that specify i) dependences among
tasks; ii) (conditional) immediate or deferred execution; iii)
task type, between tied and untied (to the thread that first
encounters them).

Tied tasks are the default in OpenMP, as they attempt
to establish a trade-off between ease of programming and
scheduling flexibility (and thus, performance) [9]. If a tied
task is suspended, it can later only be resumed by the same
thread that originally started it. Untied tasks are not bound
to any thread and so in case they are suspended they can later
be resumed by any thread in the team. Using untied tasks
has the potential for significantly increasing the achievable
parallelism, but comes at the cost of a higher programming
effort (the programmer is responsible for avoiding issues such
as deadlock, thread-private memory, etc.).

All tasks bound to a given parallel region are guaranteed to
have completed at the implicit barrier at the end of the parallel
region, as well as at any other explicit barrier construct.
Synchronization over a subset of explicit tasks can be specified
with the taskwait construct, which forces the encountering
task to wait for all its first-level descendants to complete before
proceeding.

OpenMP defines task scheduling points (TSP) in a program,
where the encountering task can be suspended and the hosting
thread can be rescheduled to a different task. TSPs occur
upon (1) task creation and completion, (2) task synchroniza-
tion points such as taskwait, (3) thread synchronization
points such as explicit and implicit barriers. When a thread
encounters a TSP it can begin the execution of a new task, or
resume a previously suspended one, provided that a set of task
scheduling constraints (TSC) are fulfilled. Among TSCs, one
is particularly relevant to this work, as it limits the flexibility
of tied task scheduling. This TSC recites: In order to start the

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

thread 0
: i int i; i
#pragma omp parallel \\ threadl—— T2 1 idle —
num_threads (2) = #pragma omp task
{ thread 0— T Tag | TH Tp | TH| T3 i
- a float a;
#pragma omp task b int b;
for (i=1; i<=3 i++) tied = #pragma omp task
#pragma omp task {
{ ..) . c int c;
T1 T1| d int d; Tl
#pragma omp task thread 1 T2 = Tt—T5 do_work(c, d)
{ } T2 -)
B - T4 - .
, thread 0 —F1% LETRIILE] LEV) ’I‘ do work(a, b)
b } T0
untied :
1 thread

Fig. 2. Example OpenMP program. Tied and untied task scheduling.

execution of a new tied task, the new task must be a descendant
of every suspended task tied to the same thread [...]'.

B. Task schedulers

The two most widespread scheduling approaches for task-
based programming models are Breadth-first scheduling (BFS)
and Work-first scheduling (WFS). Upon encountering a task
creation point: i) BFS will push the new task in a queue and
continue execution of the parent task; ii) WFS will suspend
the parent task and start execution of the new task. BFS tends
to be more demanding in terms of memory, as it creates all
tasks before starting their execution (and thus all tasks coexist
simultaneously). This is an undesirable property — in general
— and in particular for the resource-constrained systems that
we target in this work, which makes WFS a better candidate.
WES also has the nice property of following the execution
path of the original sequential program, which tends to result
in better data locality [16].

However, since tied tasks are the default in OpenMP,
RTE implementations typically use BFS. Figure 2 shows the
behaviour of WFS if used in combination with tied and untied
tasks. If all the tasks are generated from a parent task 7"_0,
untied tasks will be distributed among threads in a balanced
manner thanks to the capability of the system to resume a
suspended task on a different thread. If tied tasks are used,
at each creation point the parent task will be suspended and
the hosting thread will be rescheduled to execute the child
task. The suspended parent, however, cannot be resumed on a
different thread, which will lead to a sequential execution.

C. Baseline Implementation

The baseline implementation [1] is based on a centralized
queue. The authors focus on lightweight support for push and
pop operations on the centralized queue (upon task creation
and extraction, respectively), that relies on fine-grained locking
mechanisms. TSPs are implemented using lightweight events
rather than active polling, which avoids the massive contention
implied by active polling. More specifically, idle threads on
the TSP are put into sleep mode. When a task is created (i.e.,
pushed in the queue) the creator thread sends a signal which
wakes up a single thread (selected using round-robin). After
completing the task execution, the thread returns into sleeping
mode.

The above described queue is implemented with a doubly-
linked-list. This data structure allows to push and pop tasks
from the queue and also remove a task in any position of
the queue. This is key for low overhead, as tasks are not
constrained to execute in-order (except when dependencies are
specified), so their completion and removal from the queue is

unless the encountered task scheduling point is a barrier region.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

4

Fig. 3. tied task suspension in the baseline implementation [1].

STACK

independent of their position. Note that a simple linked list
doesn’t allow this operation.

While this implementation shows excellent performance in
presence of simple flat parallel patterns, where all the tasks are
created from within a single level (i.e., a single parent task),
it is not capable of supporting more sophisticated forms of
parallelism, like nested parallel patterns found in programs that
use recursion, and for which the tasking model was originally
proposed. Consequently, untied tasks are not supported by this
implementation. Due to the limitations of fied tasks described
previously, the scheduling policy relies on BSC, and WFS is
not supported.

In the following we describe how we extend this imple-
mentation to fully support nested parallel patterns and untied
tasks, while keeping the implementation lightweight and not
too memory-hungry. These both are key requirements for any
implementation suitable for embedded MPSoCs, and our main
goal is to achieve comparable efficiency in terms of task
granularity for which near-ideal speedups are achieved.

V. RUNTIME DESIGN

Figure 3 shows how task suspension works in most im-
plementations supporting tied tasks (WFS is assumed, but the
behavior is the same under BFS). The thread on which the code
shown in figure is executing has an associated stack (depicted
on the left). When a task directive is encountered the thread
jumps to a runtime function that manages the creation of a
new task from the enclosed code region. A new stack frame is
activated for this task, like in every regular function call. The
same thing happens at every nested task directive. When
a task is completed, the stack pointer is reset to the top of
the previous active frame. Since the semantics of tied task
scheduling ensure that suspension/resumption can only happen
on the same thread, no explicit bookkeeping to save/restore the
context of a task is required.

The key extension required to support untied tasks is
the capability of allowing to resume a suspended task on
a different thread than the one that started and suspended
it. To achieve this goal we rely on lightweight co-routines
[10]. Co-routines rely on cooperative tasks which publicly
expose their code and memory state (register file, stack), so
that different threads can take control of the execution after
restoring the memory state. Every time that a thread suspends
or resumes a suspended cooperative task a context switch
is performed. We place the required metadata to support
task contexts (TC) in the shared TCDM, which ensures fast
context switch (any thread can access the shared stacks with
the same latency of just 1 cycle) and we use inline assembly
to minimize the cost of the routines to save and restore

1263

thread 0 thread 1

i | «——tint i; i i

;i;kci = #pragma omp task \N\—p0rt—>

thread { untied

b

a float a; ro

STACK 5 int b; L] @
=#pragma omp task \\ 00O

{ untied 200

@ int c; [l a
d int d; rEay 1o @
do_work(c, d) -
task 1 ! T
STACK do_work(a, b)
} TO

7 v

Fig. 4. untied task suspension with task contexts and per-task stacks.

architectural state.

Figure 4 shows how task suspension works in our approach
for untied tasks (WFS is assumed). Initially the thread on
which the code shown in figure is executing uses its own
private stack (in gray). When the outermost task region (7°_0)
is encountered the context of the current task is saved in the
TC (including the current SP), then the thread is rescheduled to
executing the new task 7'_0. The SP of the thread is updated to
the stack of 7"_0 (in blue) and the new task is started. When
the creation point of the innermost task 7°_1 is reached an
identical procedure is followed. The context of T'_0 is saved
in its TC, which is pushed back in the queue, then thread 0 is
pointed to the stack of 7"_1 (in red). Now the suspended 7"_0
can be pulled out of and restarted by thread 1.

On top of this basic mechanism, a number of other design
choices were made to minimize the cost of our runtime
support.

a) Beware the Zombies: Supporting nested tasks re-
quires to keep in the runtime a tree data structure that
represents the task hierarchy. A parent task has a link to its
children and vice versa, to facilitate exchange of information
about execution status. For example, a parent task needs to
be informed about execution completion of its children to
support taskwait. When a parent task completes execution
its children become orphans, and should not care to inform the
parent. The fastest solution to handle parent task termination in
terms of bookkeeping would be not to delete the descriptor, but
just to maintain the task in a zombie status until all children
have completed. This operation would require a simple update
to the descriptor, which can be executed in very short time.
However, this solution brings to a memory occupation that
is not acceptable for our constrained platform. Thus, we opt
for a costlier removal of the descriptor from the free. As a
consequence, all child tasks must receive an update from the
parent to avoid dangling pointers to a deallocated descriptor.

b) Speed up the taskwait: Task level synchronization is
widely used in recursive-based parallel patters. Here typically
a fixed number of tasks is created at every recursion level, and
their execution is synchronized with a taskwait directive.
When a parent task encounters a taskwait it should wait
until all the children (first-level descendants) have completed,
but typically for performance the thread hosting the parent task
is allowed to switch to executing one of the children tasks. In
the baseline implementation this feature is implemented by just
traversing the list of children tasks in the #ree data structure,
and inspecting their status to verify that it is set to WAITING.

We changed this mechanism to rely on two queues per task,
to directly reference children in the WAITING and RUNNING
states, respectively. Upon creation, a task is inserted in the

1264

WAITING queue. Every time that a task starts to execute,
the runtime moves this task from the WAITING queue to the
RUNNING queue, and vice versa in case of suspension.

Decoupling waiting and running tasks requires a costlier
bookkeeping upon task insertion and extraction, but allows
faster support for taskwait, as it is no longer required to
search the tree for WAITING tasks. In the baseline implementa-
tion this benefit was not evident, as the taskwait is virtually
useless for flat parallel patterns. On the contrary, in recursive
parallel patterns it is extensively used, and this design choice
pays off.

c) Only who’s truly ready gets in the queue: The
runtime design rely on a centralized queue where all tasks
in the WAITING state are ready for extraction and execution.
Suspended tasks are also pushed back in this queue. We
found that in presence of recursive parallel patterns it is
important to distinguish between suspended tasks that could
be resumed at any time, and tasks that are suspended due to
a scheduling constraint that needs to be unblocked. A typical
example is, again, tasks suspended upon a taskwait (or
due to a data dependence). As already mentioned, recursive
parallelism extensively relies on such form of synchronization,
thus hosting this type of suspended tasks in the central queue
used to lead to a situation where we would repeatedly pop
from there a task just to realize that the scheduling constraint
was still unsatisfied. We would then have to push back the task
in the queue and retry. Checking the status of the task before
extracting it does not entirely solve the problem, as it requires
time-consuming search operations. To deal with this problem
we changed the implementation so as to not re-insert in the
queue suspended tasks with a unresolved dependence. Such
tasks are kept floating instead, and it is up to the task that will
eventually resolve the dependence to push them back into the
queue. This modification requires some additional checks to
deal with the above mentioned case, but greatly improves the
performance of recursive parallel programs.

d) Pre-allocate is the watchword: To minimize the
overhead for dynamic resource allocation (memory, locks,
task descriptors, ..) we have extensively used pools of pre-
allocated resources. This is significantly faster than malloc-
like primitives and does not require lock-protected operations,
as we adopt thread-private resources. The downside is memory
occupation. Since the targeted architecture relies on scratchpad
memory (the TCDM) rather than data caches, we have to
wisely use the available L1 space. The specific platform in-
stance that we consider features 256KB TCDM. A reasonable
design solution would be to dedicate roughly 10% of this fast
memory to hosting tasking support data structures (=25KB).
The original task descriptor has a size of 80 bytes, while the
extensions that we introduced require another 72 bytes for the
contexts, plus the stacks. Private thread stacks are configured
to be 1KB (a common choice for embedded systems), while
task stacks are by default 1/4 of that size. Clearly all those
values are parameters in our design, and can be changed
depending of the available L1 memory.

Considering these values, our system can host simultane-
ously =300 tied tasks (without context) or 64 untied tasks
(or a mix of the two) in the fast L1 TCDM. When the
available space is over we fallback to main memory (with
much slower access time to the descriptors) or we enable our
cutoff policies.

VI. EXPERIMENTS

To validate our design we performed an extensive set of
experiments considering two microbenchmarks that allow us
to tune the granularity of the tasks considering two relevant
parallel patterns: i) LINEAR (flat parallelism); ii) RECUR-
SIVE (nested parallelism).

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

16 Linear .
A_,__—-—:’-’_—-——M
12
Q.
>
D 8
)]
Q.
(7]
4
0 u/ ! ! 1 !
S IR IR SR S e o
) N
Task Granularity (CPU Cycles)
- BFS tied —aA— BFS untied —&— DATE 2013

WES tied WES untied

Fig. 5. Speedups achieved with the LINEAR policy

Figure 5 shows the speedups enabled by our design for
increasing task sizes. In this experiment we directly compare
to [1] (the DATE 2013 curve), to see the impact that our
enhancements to support untied tasks have on this lightweight
implementation. We test WFS and BFS scheduler using tied
and untied tasks. The figure shows task granularity (cycles,
or ALU operations) on the horizontal axis and speedup on
the vertical axis. The LINEAR microbenchmark is based on a
simple loop from which 1048 tasks are created (one per loop
iteration). Compared to [1] our solution performs only slightly
worse in the very fine grained task region (around 5K cycles).
Beyond that point our implementation is equivalently efficient.

Figure 6 shows the efficiency of our runtime for the re-
cursive parallel pattern, considering tied and untied tasks and
BFS and WFS policies. The RECURSIVE microbenchmark
builds a binary tree of depth N = 11 (2048 tasks) recursively.
This is similar to a classical Fibonacci algorithm, where each
of the two recursive calls is enclosed in a task directive. A
taskwait directive is placed after the creation of the two
tasks. The first result that we observe is that only untied tasks
can achieve the maximum speedup, when WFS is used.

WES and tied tasks imply completely sequential execution,
as we already discussed in Section IV. BFS and fied tasks
(the default for OpenMP, and representative of what could be
achieved by [1]) has a peak at 8 x speedup. This effect is due to
the behavior of taskwait in presence of tied tasks. If a tied
task is stuck on a taskwait and there are no children tasks in
the WAITING state (e.g., few tasks generated at each recursion
level, like in the binary tree), that task is bound to wait until the
children have finished. For the binary tree example this leads
to exactly half of the threads getting stuck, which explains
the maximum speedup observed in this configuration. This
problem is circumvented by untied tasks, which can reschedule
the threads hosting the stuck tasks to other ready tasks.

In general, it is possible to see that RECURSIVE implies
much higher overhead than LINEAR. This is justified by a
significantly increased contention for shared data structures
(queues, trees, etc.), as in this pattern multiple threads are
concurrently creating tasks. Even if we have struggled to
make the lock-protected operations to operate on shared data
structures as short as possible, their sequentialization over
multiple requestor is evident. As a result, it takes an order of
magnitude coarser tasks than in the LINEAR case to achieve
nearly-ideal speedups.

It is well known from literature that cutoff policies are
extremely effective at mitigating this problem [16] [15]. Figure

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Recursive

O AA;-.‘:‘\A'"
o NS
P I R IO SR
Task Granularity (CPU Cycles)

-+ BFS tied —a— BFS untied
WES tied WES untied

Fig. 6. Speedups achieved with the RECURSIVE policy

Recursive with cutoff

o -

%
Task Granularity (CPU Cycles)

-4+ BFS tied —— BFS untied
WEFS tied WEFS untied

Fig. 7. Speedups achieved with the RECURSIVE policy considering cutoff.

7 shows results for the same microbenchmark when a simple
cutoff policy is applied on top of BFS and WFS schedulers.
The cutoff policy simply disregards task directives encoun-
tered in the code when a maximum number of tasks is already
present in the queues. From that point on new tasks will be
folded into a coarse-grained one executing sequentially on the
same thread. Clearly this may lead to unbalanced execution
if the amount of work already distributed to threads is not
evenly distributed at that point. This can be seen in Figure
7, where BFS for untied tasks reaches a plateau at 10x due
to poor load balancing. WFS for the same task type achieves
ideal speedup due to better workload distribution. Clearly these
effects heavily depend of the chosen cutoff policy [15].

The most important result that we can see from Figure 7
is that adding cutoff policies brings back the efficiency of
our runtime support to what was observed in the LINEAR
microbenchmark an in [1]. Near-ideal speedups are achieved
for tasks as small as 5K cycles.

A. Comparison to other tasking runtime implementations

For completeness, we compare our implementation to other
representative commercial and academic ones, targeted at
general purpose and high performance computing systems:

1265

Linear

16

R
8
&Y

L
Q
»

Task Granularity (CPU Cycles)
-4 libgomp —@—iomp --X--nanos —@=—OURS

© & r &
S R

Fig. 8. Speedup of various tasking runtimes using the LINEAR policy.

Recursive

16

Task Granularity (CPU Cycles)
«-@--libgomp —@—iomp =-X--nanos —@— OURS

Fig. 9. Speedup of various tasking runtimes using the RECURSIVE policy.

o libgomp: the GNU OpenMP implementation (GCC
4.9.2);

o iomp: the Intel OpenMP implementation (ICC 15.0.2);

o nanos: the BSC OpenMP implementation (Mercurium
15.06 + Nanos++);

e OURS: our OpenMP implementation.

The same microbenchmarks described above have been used
for this experiment, considering untied tasks and a BFS policy.
As a target platform for these experiments we used a compute
server equipped with two Intel Haswell with 8 cores @ 2.40
GHz. Figures 8 and 9 show that our implementation allows
to achieve near-ideal speedups for one order of magnitude
smaller tasks compared to the others, both for the LINEAR
case and the RECURSIVE case.

VII. CONCLUSION

Task-based parallelism has the potential to provide efficient
exploitation of manycore accelerators, offering flexible sup-
port to the fine-grained and irregular parallelism found in
embedded applications. In this paper, we have presented an
optimized implementation of the OpenMP tasking model for
embedded parallel accelerators. To the best of our knowledge,
the proposed design is the first to enable support for untied
tasks and recursive parallel patterns for the targeted class of
computing systems. We demonstrate that, despite the signifi-
cant extensions in the supported semantics, our solution does

1266

not degrade the efficiency of the most lightweight OpenMP
implementation for embedded manycores. When compared
to OpenMP implementation for high performance computing
systems, our design achieves near-ideal speedups for one order
of magnitude smaller tasks.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the EU FP7 Project
P-SOCRATES (g.a. 611016) and EU ERC Project MULTI-
THERMAN (g.a. 291125).

REFERENCES

[1] P. Burgio et al. Enabling fine-grained OpenMP tasking on tightly-
coupled shared memory clusters.. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE *13). EDA Consortium,
San Jose, CA, USA, 1504-1509.

[2] G. Mitra et al. Implementation and Optimization of the OpenMP

Accelerator Model for the TI Keystone II Architecture. Using and

Improving OpenMP for Devices, Tasks, and More Volume 8766 of the

series Lecture Notes in Computer Science pp 202-214.

D. Melpignano et al. Platform 2012, a many-core computing accel-

erator fgr embedded SoCs: performance evaluation of visual analytics

applications Design Automation Conference, 2012, pp.1137-1142.

[4] R.D. Blumofe et al. Cilk: An efficient multithreaded runtime system. In
Journal of Parallel and Distributed Computing, pages 207-216, 1995.

[5] Apple, Inc. Grand Central Dispatch. https://developer.apple.com/

library/mac/#documentation/Performance/Reference/GCD_libdispatch_

Ref/Reference/reference.html. 2010.

[6] S.Kumar et al. Carbon: architectural support for fine-grained parallelism

on chip multiprocessors. SIGARCH Comput. Archit. News, 35:162—173,

June 2007.

OpenMP Application Program Interface v.4.5.0. http://www.openmp.

org/mp-documents/openmp-4.5.pdf. November 2015.

A. Duran et al. Evaluation of OpenMP task scheduling strategies. In

Proceedings of the 4th international conference on OpenMP in a new

era of parallelism, IWOMP’08, 1»pages 100-110, Springer-Verlag, 2008.

E. Ayguadé et al. The Design of OpenMP Tasks. /EEE Trans. Parallel

Distrib. Syst., 20(3):404-418, Mar. 2009.

Marlin, C. D. Coroutines: A programmin,

design and an implementation Springer

95

o.

Faxén, K. F. Wool-a work stealing library. ACM SIGARCH Computer

Architecture News,36(5), 93-100.

%O(l){einders, Intel Threading Building Blocks. O’Reilly Media, Inc.,

7

Kalray Corporation, Many-core Kalray MPPA, 2012. [Online].

Available:http://www.kalray.eu

Bortolotti, D., Pinto, C., Marongiu, A., Ruggiero, M., & Benini, L.

(2013, May). VirtualSoC: A full-system simulation environment for

massively parallel heterogencous system-on-chip. In Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),

2013 IEEE 27th International (pp. 2182-2187). IEEE.

Duran, A., Corbalan, J., & Ayguadé, E. (2008, November). An adaptive

cut-off for task Earallelism. In High Performance Computing, Network-

éng, %‘tzﬁa)ge and Analysis, 2008. SC 2008. International Conference for

. 1-11). IEEE.

Iggran, A., Corbalan, J., & Ayguadé, E. (2008). Evaluation of OpenMP

task scheduling strategies. In OpenMP in a new era of parallelism (pp.
100-110). Springer Berlin Heidelberg.

Marongiu, A., Capotondi, A., Taghavini, G., & Benini, L. (2015).

Simplifying Manycore-Based Heterogeneous SoC Programming with

Offload Directives. Industrial Informatics, IEEE Transactions on (Vol-

ume:11 , Issue: 4)

Chapman, B., Huang, L., Biscondi, E., Stotzer, E., Shrivastava, A.,

& (gatherer, A. (2009, May). Implementing OpenMP on a high
erformance embedded multicore MPSoC. [n Parallel & Distributed
rocessing, 2009. IPDPS 2009. IEEE International Symposium on (pp.

1-8). IEEE.

Wang, C., Chandrasekaran, S., Chapman, B., & Holt, J. (2013,

February). libEOMP: a portable OpenMP runtime library based on MCA

APIs for embedded systems. In Proceedings of the 2013 International
Workshop on Programming Models and Applications for Multicores and

Manycores (pp. 83-92). ACM.

Podobas, A., Brorsson, M., & Faxén, K. F. (2015). A comparative
erformance study of common and popular task-centric programming

2ra(r§1)ewlor2k§. Concurrency and Computation: Practice and Experience,
7(1), 1-28.

S. Agathos et al. Design and Implementation of OpenMP Tasks in the

gé\g[Pzié;or; il{:r‘ In 15th Panhellenic Conference on Informatics, pages

[3

[t

=

[7
[8

[l

[9
[10

= =

methodology, a language
cience & Business Media,

[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

