
Integration of ROP/JOP Monitoring IPs in an
ARM-based SoC

Yongje Lee, Jinyong Lee, Ingoo Heo, Dongil Hwang and Yunheung Paek
Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center (ISRC)

Seoul National University, Seoul, Korea

Email:{yjlee, jylee, igheo, dihwang, ypaek}@sor.snu.ac.kr

Abstract—Code reuse attack (CRA) is a powerful technique
that allows attackers to perform arbitrary computation by reusing
the existing code fragments. To defend from CRAs while com-
plying with the conventional ARM-based SoC design principles,
the previous hardware solution suggests the use of the ARM
debug interface to acquire the control flow information of an
application running on the host. However, it requires tremendous
storage space to store the complementary data necessary to trace
the execution flow. In this paper, we propose a new hardware
CRA monitor which gives both low storage overhead and high
performance. For this, we have used an instrumentation technique
which transforms the original ARM binary code into a form
which will ease the CRA monitor to efficiently extract through
the debug interface all crucial pieces of runtime information
from the trace outcomes. In addition, while the previous solution
was only built to detect one type of CRAs, called return-
oriented programming (ROP), ours has been designed to unify the
detection logics for ROP and another important type of CRAs,
called jump-oriented programming (JOP). Empirical results show
that our solution dramatically reduces the storage overhead for
CRA detection, yet successfully detecting both ROP and JOP
attacks simultaneously with negligibly low runtime overhead and
moderate area overhead.

I. INTRODUCTION AND PREVIOUS WORK

As smart mobile devices become our main devices for
everyday communication, they are becoming more appealing
targets of numerous software-oriented attacks. Among them,
the code reuse attack (CRA) is a recently introduced technique
that collects from the existing code blocks a set of small
code sequences called gadgets, and chains them to perform
malicious actions. Doing so empowers an adversary to perform
Turing-complete computation without any attacker injected
code [1], thus successfully defeating the well-known and
widely adopted technique, generally called the W⊕X (Write
XOR eXecute) protection [2].

As the CRA threat is continuously escalating, many solu-
tions have been proposed [2]–[6]. These solutions have come
in various forms of either software or hardware. The clear
advantage of software solutions is that they can be easily
adapted to the present machine platform. Their drawback,
however, is that they may impose tremendous computational
loads upon the host machine mainly because the original
program must be augmented with extra code that will be
executed periodically to check abnormal control transfers on
the host during runtime [3], [4]. On the other hand, hardware
solutions [2], [5]–[8] tend to exhibit high performance by
accelerating the CRA detection process with the assistance of
customized hardware logics for this task. In specific, authors
in [2], [5], [6] proposed solutions where the hardware logics
are tightly coupled with the host CPU for close monitoring
of every control transfer during code execution. Despite their
dramatic performance enhancement, the main drawback of
these approaches is that they require the redesign of the
existing processor architecture, which would stymie the direct

deployment of these solutions into commercial smart mobile
devices. The reason is that such modification to the core inter-
nal is contradictory to the common design practice for a smart
mobile device in industry today. As the central computing
platform for applications running on the device, an application
processor (AP) in the form of SoC lies in each device. To meet
ever-increasing demands for low design cost, high performance
and fast time-to-market, the general design rule of SoC is
now to integrate commodity processors and supporting IPs
(intellectual properties) for specific functions together. Thus,
if the AP vendors adopt some of these hardware solutions
for their products, they will be compelled to restructure the
CPU core architectures, contrary to the general convention,
thus resulting in tremendous cost for design and verification.

To facilitate the acceptance of hardware solutions for the
CRA detection in todays smart mobile devices, some latest
approaches [7], [8] endeavor to comply with the design rule
of SoC. Their security hardware IPs are practical solutions
for CRAs in a sense that they do not require any internal
modifications to current host architectures but simply external
connections with the host processor to build an SoC. The
biggest challenge of the approaches however is that, being
located outside the host processor, their hardware IPs are
usually difficult to acquire the correct control flow information
of the applications running inside the host, which is essential
to monitor the existence of CRAs. In order to tackle this
challenge, they exploit the built-in debug features to reveal
the runtime information of the host to the outside of the core.
Especially, the work by Lee et al. [8] implements a CRA
monitoring hardware using the debug features supported in
commercial ARM processors, which are the de-facto standard
CPUs for mobile SoCs today. To provide the efficient and
convenient debug/trace environment to software developers,
virtually all ARM processors including Cortex-A8, A9 and
A15 embed the ARM CoreSight debug architecture [9]. The
CoreSight architecture provides features for continuous collec-
tion of the processor execution traces using the hardware trace
unit. Utilizing this unit, the hardware IPs proposed in the work
can obtain the real-time traces of branch outcomes produced
during code execution.

Although these approaches using the tracing hardware could
achieve high performance in CRA detection, they are facing
another challenging problem. In principle, in the debug en-
vironment using the hardware interface like CoreSight, it is
assumed that the debugger has the same binary code running
on the host. Thus, to reduce the quantity of traces delivered
to the debugger, the interface generally does not provide
the information which could be inferred or simply extracted
from the binary code. However, unfortunately, these omitted
pieces of information such as branch types or source addresses
for branch instructions are indispensable for accurate CRA
monitoring. To supplement the lacking information, in previous

331978-3-9815370-6-2/DATE16/ c©2016 EDAA

work, they store in the main memory region the auxiliary
information, called the meta-data, that is necessary for CRA
detection, and make the hardware IPs to read the data at
runtime when the detection scheme needs to reference the
data. In spite of the negligible performance overhead, they
severely suffer from the substantial storage overhead due to
the additional space for their meta-data. According to their
experiments, the size of the required storage for meta-data can
even be double that of the original application. Another limi-
tation of their hardware implementations is that they are only
capable of detecting the return-oriented programming (ROP)
attacks which are to corrupt return addresses stored in a stack
to chain gadgets. Although ROP attacks are representative
examples of CRAs, there is another breed of CRAs, called
jump-oriented programming (JOP) attacks, whose objective
is to alter the target addresses of indirect calls or jumps.
To successfully defend the system against CRAs, therefore,
the CRA monitoring hardware should be implemented with
mechanisms that can detect not only ROP but also JOP attacks.

In this paper, we present a hardware-based CRA solution
that can simultaneously monitor both ROP and JOP attacks
on the system. For applicability of our solution to existing
smart devices, we have built a unified ROP/JOP monitor that
is integrated as IPs into an ARM-based SoC. As in previous
work [8], the monitor is connected with the ARM CPU via the
CoreSight interface and system bus to keep track of the host
execution traces from outside in a timely fashion. In addition,
for efficient monitoring, we have also made an effort to avoid
substantial storage overhead due to meta-data in the previous
work. For this, we analyze the program binary with the help
of compiler analysis techniques and instrument the binary in a
way that missing essential information for CRA monitoring
can be efficiently delivered on the fly from the host CPU
via the debug interface, thereby eliminating the need to store
meta-data a priori for our monitor. However, a problem with
this approach is that the two independent interfaces (i.e., the
debug interface and the system bus) through which our external
monitoring IPs receive host’s runtime information are not per-
fectly synchronized; that is, when at some point in the code the
CPU executes an instruction, proper pieces of the information
for that execution will be generated and eventually transferred
to our monitor through each interface, but not necessarily at
the same time. Obviously, our monitor must correctly puzzle
together these information pieces asynchronously arriving from
two different sources to grasp the exact execution behaviors
on the host for CRA detection. To resolve this issue, we
added a special hardware logic to synchronize the incoming
information from the two sources.

II. ASSUMPTIONS AND THREAT MODEL

We use the same assumptions on CRA taken by previous
studies [2], [3]. We first assume that the target mobile device
is under the protection of the W⊕X policy and the OS is
trusted. Considering that the modern OSes and processors
usually cooperate to enforce the W⊕X security protection
rule [10], we believe this assumption is reasonable. Under
this assumption, to circumvent the defense mechanism, the
adversaries must gain sufficient privileges for the first time.
We assume that, other than CRAs, there are no other attack
vectors or security holes which can directly escalate adversarys
privilege. As another assumption, adversaries might have full
control over the stack or heap to exploit common memory
vulnerabilities like buffer overflows and therefore can initiate a

code-reuse attack. Also, the OS kernel and hardware are trusted
until the underlying system is compromised through CRAs. We
also assume that adversaries know all implementation details
of the target application, thus being able to locate the exact
address of available gadgets. This means that the adversary
can bypass any code randomization techniques such as address
space layout randomization (ASLR) [11]. Lastly, the self-
modifying code is not considered in our assumptions because
it conflicts with the W⊕X security protection.

III. OVERALL SYSTEM ARCHITECTURE

A. SoC Prototype Overview
Figure 1 depicts our overall SoC design. The monitoring

modules for ROP/JOP detection were designed and imple-
mented as a subsystem, called the CRA monitor, which is
then integrated in a SoC platform with an ARM CPU. In our
platform, the host CPU is an ARM Cortex-A9 processor, which
has been installed in a large number of commercial devices
these days. The host CPU and our monitor are connected
via the standard AMBA3 AXI interconnect. To obtain the
results of branch operations performed on the host, we utilize
the built-in hardware modules of the ARM CoreSight debug
architecture, which are the program trace macrocell (PTM)
and the trace port interface unit (TPIU). Being tightly coupled
with the host core, the two modules deliver the branch traces
generated from the host to the CRA monitor. It is noteworthy
that, in terms of hardware design, the goal of our work is to
build a practical and deployable hardware solution for CRAs
on ARM-based smart computing devices. To achieve the goal,
we adhere to the design convention of the commercial SoC
platforms, where off-the-shelf ARM processors and newly
designed hardware modules are integrated and connected only
through the existing communication channels, such as the
system interconnect and the debug interface. As shown in the
figure, our CRA monitor is divided into two modules: the PTM
Trace Analyzer (PTA) and the CRA detector. To reduce the
amount of transferred data, TPIU basically provides runtime
traces in a highly compressed form. Thus, PTA analyzes
and decompresses the incoming information from TPIU, and
delivers to the CRA detector the refined branch traces which
are necessary for the CRA detection. Upon receiving all the
traces from PTA, the detector determines whether or not the
traces exhibit any symptom of CRAs. In Section IV, more
details of the hardware modules will be explained.

Host Processor

Cortex-A9 Core

PTM TPIU

AXI Interconnect (Master/Slave)

Memory
Controller

PTM
Trace

Analyzer

CRA
Detector

Main
Memory

CRA Monitor

Fig. 1. Overall architecture of our SoC design

B. CRA Detection Process
As stated in Section I, our CRA monitor detects both ROP

and JOP attacks. To determine an attack from outside the
host CPU, it must be provided with the necessary runtime
information inside the CPU. In our work, to detect both types
of attacks, we have realized in hardware the detection algo-
rithms based on those proposed in [12] and [5], respectively.

332 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

For ROP, we copy the return address of every call instruction
in a special stack buffer called the shadow stack and check
the target address of each return instruction with the value
retrieved from the top of the shadow stack. Therefore, the
necessary information to implement the shadow stack into
our system are (1) the target address of return instructions
and (2) the source address of call instructions to calculate
the address to be returned later. Unlike ROP, JOP usually
creates a code sequence by linking gadgets together with
indirect jumps or calls. Hence, to launch JOP attacks, instead
of altering return values stored in the stack, attackers try to
corrupt code pointers such as function pointers, which will
be used as the target addresses of indirect calls or jumps to
point to their gadgets. The JOP detection algorithm is on the
ground of a simple invariant ruling the normal behaviors of
branches in a programming language. The invariant rule says
that, in a normal program execution, the target address of a call
instruction should point to the address of a function entry, and
that of each indirect jump should always point to an address
within the same function that the instruction belongs to. To
check this legitimacy to detect JOP attacks, the CRA monitor
has to obtain the information about (1) the target address
of call instructions, (2) the target address of indirect jumps
and (3) function boundaries which contain the entry and end
addresses of functions. To summarize, the essential information
to simultaneously check the existences of ROP/JOP attacks
from outside the CPU is categorized into four classifications:

(1) Target address of indirect branches (i.e., indirect calls,
indirect jumps and returns)

(2) Source address of call instructions

(3) Function boundaries

(4) Branch type to classify the branch instructions

Recall that, to reduce the quantity of generated traces,
the ARM debug interface generally does not provide the
information which can be directly derived from the binary
code. In fact, only the target address of an indirect branch
and the direction (taken/not taken) of a direct branch can be
acquired from the traces coming through the debug interface.
Gathering the target addresses of indirect branches are quite
straightforward in our solution as the ARM debug interface
is designed to provide such information. However, the other
classes of information cannot be directly acquired from the
debug interface, and therefore we have devised a special
mechanism where we instrument the original binary to supply
the lacking information. For this purpose, we built an in-
house tool called the binary instrumentor that can statically
instrument the target binary (phase 1). It basically analyzes
and generates binary code in a way that all lacking pieces of
the information for CRA detection will be explicitly delivered
to the CRA monitor, either through the ARM debug interface
or the system bus. When the program binary is downloaded
by the OS kernel into the local storage such as a disk or
a flash memory, the instrumentor generates the instrumented
version of the binary and stores it into the storage. More
detailed explanation will be given in Section IV. After the
instrumented code is loaded, the CRA monitor performs its
task of constantly watching the runtime traces gathered from
both TPIU and the system bus and checking if there is any
behavior possibly related to CRAs (phase 2).

IV. IMPLEMENTATION DETAILS
A. Binary Instrumentation

As briefly discussed in Section III, we propose a binary
instrumentation technique that enables us to derive from the
branch traces of the host system more information including
not only the target addresses of indirect branches but also the
branch types and the source addresses of call instructions. As
the first step of the instrumentation, the binary instrumentor
scans the entire code to find all function call instructions,
which are executed by either a bl (branch with link) or a
blx (branch with link and exchange) instruction in the ARM
architecture. In order to deliver the information associated with
the call instructions, we introduce a new code section called the
trampoline. Each call instruction in the original code is moved
to an associated location in the trampoline and the original
instruction is replaced with an indirect jump which targets the
associated place; specifically, each direct call (bl or blx with
an immediate offset) moved to the trampoline is manipulated
by the instrumentor so that it can target the same address
as the original instruction pointing to. In addition, for each
call in the trampoline, there is a unique stub which contains a
direct jump to the next address of the original call. This stub is
the target of the subsequent return instruction executed in the
callee function. In Figure 2, we present an example to explain
our instrumentation technique.

section .text;
main :
.
call foo;
.

foo :
.
indirect_jump;
.
return;

section .text
main :
.
indirect_jump;
.

foo :
store func_info;
.
indirect_jump;
.
return;

section .trampoline:
call foo;
direct_jump;
call bar;
direct_jump;

@A
@A+0x4
@A+0x8
@A+0xC

Binary
Instrumentation

Fig. 2. Original vs. instrumented binary (newly added parts are written in
boldface)

As shown in the Figure, when the address of the tram-
poline entry is A, every call instruction is aligned at ad-
dresses A+ 8 ∗ n, while the targets of return instructions are
aligned at A+ 8 ∗ n+ 4 (n is an integer and 0 ≤ n <
total number of calls) . Using these aligned data, the types
of the executed branch instructions can be classified by simply
checking the target address coming from TPIU. Especially for
a call instruction, when an indirect jump to the trampoline is
followed either by a target address or by a direction (taken/not
taken) in the branch traces from TPIU. When a target address
follows the indirect jump, the branch type is considered to
be an indirect call. Otherwise, it is decoded as a direct call.
Note that all the calls are pointed to by indirect jumps as a
result of the instrumentation. It means that the source address
of each call can now be obtained from TPIU because the target
address of the indirect jump pointing to A+ 8 ∗ n becomes the
source address of the call, allowing our monitor to calculate
the legitimate destinations of return instructions which are
necessary to maintain the shadow stack for ROP detection.
Also, to detect JOP attacks, the function boundary information
is indispensable to check if the target address of an indirect
jump falls inside the function body where the current PC
resides. Thus in our instrumentation scheme, each function

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 333

is transformed in a way that it can start with an annotation
code (store func_info; in Figure 2(b)) which writes the
entry address and size of the function to the memory-mapped
addresses of our hardware modules through the system bus.
The binary instrumentor can identify the entry address and size
of each function by referring to the symbol tables of executable
formats such as executable and linkable format (ELF).

B. Hardware Architectures
Figure 3 shows the hardware structure of our CRA monitor

including PTA. In our SoC prototype implementation, the
output signals of TPIU are directly routed to the on-chip ports
of our CRA monitor so that we can utilize the CoreSight
modules. As the host CPU generally operates far faster than
other hardware IPs such as our CRA monitor. Therefore, to
transfer the PTM traces from the host to the monitor, we
implement an asynchronous buffer, called the branch trace
FIFO, which temporarily stores the traces coming from TPIU.
When the traces are stored in the FIFO, another submodule
in PTA called the trace decoder analyzes the saved traces to
obtain the target addresses of indirect branch instructions and
the direction (taken/not taken) of the direct branches. With
this information, the decoder further extracts the branch types
and source addresses of calls as mentioned in the previous
subsection. Finally, for each branch instruction, its type and
associate information (i.e., source addresses for calls and target
addresses for indirect branches) are conveyed to the CRA
detector for monitoring CRAs.

PTM Trace Analyzer
Branch
Trace
FIFO

Trace
Decoder

AXI Interconnect

from TPIU
CRA

Detector

branch type/
source address/
target address

from instrumented binary entry address and size of functions

CRA Monitor

Fig. 3. CRA monitor hardware architecture

Figure 4 shows the unified hardware architecture of our
CRA detector which keeps track of the host execution traces to
simultaneously detect both ROP and JOP attacks. To find the
existence of CRAs, our detector relies on the aforementioned
branch information fed by PTA and the entry address and the
size of functions coming through the system bus.

Recalling that the information from different sources (i.e.,
TPIU and the system bus) have no ordering restrictions, the
CRA detector has to combine and rearrange the information

Fig. 4. Hardware architecture of the CRA detector

from the two sources to keep track of the original program
sequence of the application. In order to perform this task, the
detector has two separate First-In-First-Out (FIFO) buffers,
called the PTM FIFO and the MMIO FIFO, to temporarily
store the information received respectively from PTA and the
bus. The output signals of the FIFOs are given as input to
the trace combiner (TC), which is in charge of combining the
information from the two FIFOs and extracting the original
program execution behaviors. We present the example of the
information flow from the two sources and how they are
combined by TC in Figure 5.

TYPE(DC)

F.B1 F.B2From the system bus

From PTA

Increasing Time DC : Direct Call, IC : Indirect Call, R : Return, IJ : Indirect Jump
S.A : Return Address, T.A : Target Address, F.B : Function Boundaries

F.B0

Application Starts

S.A

TYPE(IC)

S.A T.A

TYPE(R) TYPE(IJ)

To CDC

T.A T.A

Combined by TC

F.B0 F.B1

TYPE(DC)

S.A

TYPE(R)

T.A

TYPE(IJ)

T.A

F.B2

TYPE(IC)

S.A T.A

Fig. 5. Information flow diagram processed by the Trace Combiner

As exemplified in the figure, when the application begins,
the program flow encounters the initially invoked function (i.e.,
main()) for the first time. This special event is notified to TC
via the MMIO FIFO so that TC can start operation (presented
in Figure 5 as F.B0). At runtime, when the program runs into
a call instruction, the instrumented code at a function prologue
is executed right after the call instruction, thus delivering the
branch information (branch type and the associated informa-
tion) and the function boundary information via the PTA and
the system bus, respectively. When any of these events arrives
and is stored in either the MMIO FIFO or the PTM FIFO, TC
reads it to take an appropriate action. If the function boundary
information is written to the MMIO FIFO, TC waits for an
event to come from the PTM FIFO. Once the PTM FIFO gets
an entry, TC checks the branch type, and if it is either a direct
or an indirect call, TC combines the pieces of information from
the both FIFOs (i.e., the branch type, the function boundary
information and the source address for a direct call as shown
in Figure 5); otherwise, only the information from the PTM
FIFO is selected. The information is then delivered to the CRA
detector controller (CDC) whose mission is to make the final
decision about the existence of CRAs.

After the application starts, CDC expects the information of
the initially invoked function fed by TC before anything else.
Upon receiving the information, CDC calculates the entry and
end address (= entry address + size) of the callee function
and stores them into a register called FUNC_BOUNDS. Later
when the branch type coming from TC is a call, CDC also
obtains the entry address and size of the callee function from
TC. Especially for an indirect call, if its target address is not
matched with the incoming function entry address, it means
that the call jumped to an unknown address, which is a typical
behavior exhibited by a JOP attack. If the call instruction is a
direct one or verified to benign, CDC pushes the concatenated
value of the return address (= source address + 0x4) and
FUNC_BOUNDS onto the shadow call stack, whose job is to
maintain a shadow copy of the call stack on the host. The
reason why FUNC_BOUNDS is saved into the stack is that its

334 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

value should be restored when the callee function returns later.
At the same time, CDC overwrites FUNC_BOUNDS with the
newly calculated entry and end addresses of the callee function.
When a function returns, CDC pops the top entry of the
stack and compares the saved return address against the target
address coming from TC. If there is a mismatch, it means that
the return address in the host stack is maliciously manipulated
by ROP attacks, and consequently CDC issues an interrupt.
Otherwise, CDC overwrites FUNC_BOUNDS again with the
saved function boundaries. When an indirect jump is made in
the host, CDC will check whether or not its target address falls
between the entry and end addresses of the currently running
function by referring to FUNC_BOUNDS. If the address points
to outside the function boundaries, CDC deems that this is the
act of a JOP attack, and spontaneously notifies the host of this
attack by setting the interrupt signal on.

Note that the shadow call stack has a finite number of
entries, 16 in this work. Therefore, it would be overflown if
the target application has more than 16 times nested function
calls. To cope with this limitation, we implemented a special
stack management module called the shadow stack manager
(SSM). When the shadow call stack fills up with deeply nested
calls, SSM copies the oldest 8 entries to the pre-defined region,
called the CRA region, in the main memory through the AXI
Master Interface in SSM. Also, we implemented a register
called VICTIM_ENTRY which plays a role as a victim cache
storage to temporarily store the most recently evicted 8 entries.
Moreover, there is an exceptional case that the host program
calls the same function recursively. For handling this case,
CDC has a counter register, which we refer to as REC_CNT,
to store the number of recursive calls. When the same function
is called in a row, CDC increase the counter value by one
without pushing any value onto the stack. When the function
returns and REC_CNT has a non-zero value, CDC decreases
the counter value by one instead of reading the top stack value.

V. EXPERIMENTAL RESULTS
To evaluate our approach, we implemented a full SoC pro-

totype on the Xilinx Zynq-7000 XC7Z020 evaluation board,
which is equipped with a dual-core ARM Cortex-A9 processor,
AMBA3 AXI interconnect, 1GB DDR3 SDRAM, an FPGA
chip and other peripherals. We used Linaro Ubuntu Linux
version 3.8.0 as our host kernel. Also, we enabled the Core-
Sight modules (i.e., PTM and TPIU) in the host processor
and controlled them with the device driver which is extended
according to our purpose. Our CRA monitor and the host CPU
commonly operate at 60 MHz. Based on the above design
parameters for the prototype, we synthesized the CRA monitor
onto the FPGA chip and measured the required logic count in
terms of lookup tables for logic (LUTs) and memory elements.
The synthesis result shows that our CRA monitor occupies
10.12% (5,387/53,200) of total LUTs and 0.13% (24/17,400)
of total memory elements.

To measure the detection capability of our monitor, we
implemented five CRA instances based on the Shell-storm
shellcode [13] as shown in Table I. Especially, A2 and A5
contain long-gadgets to bypass the signature-based CRA so-
lutions proposed in [2], [3], which use the small number of
instructions in a gadget as the distinctive feature of CRAs.

With the implemented attacks, we tested the detection capa-
bility of our monitor. As expected, all the ROP samples (A1-
A3) are detected by our CRA monitor. Since they violate the
general convention of the function invocation, their malicious

Attack No. Type Goal Advanced Skill Detection
A1 ROP Open a shell -
A2 ROP Open a shell Long-gadget
A3 ROP Invoke a mprotect system call -
A4 JOP Open a shell -
A5 JOP Open a shell Long-gadget

TABLE I. THE DESCRIPTION OF IMPLEMENTED CRAS AND

DETECTION RESULTS OF THE ATTACKS

behaviors are detected by our CRA monitor even when the
attacks contain long-gadgets which is an advanced skill for
circumventing the state-of-the-art CRA detection schemes. The
JOP samples (A4-A5) are crafted by using blx (indirect call)
or bx (indirect jump) instructions of ARM ISA to link their
gadgets. In these attacks, every blx instruction used to link
gadgets does not target an entry of a function. Similarly, all
the target addresses of bx instructions are always beyond
the current function bounds. Consequently, all their illegal
behaviors are detected by our CRA monitor. Based on this
result, we assert that our CRA monitor can protect the target
system from any type of CRAs.

To measure the performance overhead of our CRA mon-
itor, we chose eight applications from the SPEC CPU2006
benchmark suite [14]. We compared the running time for the
applications using two configurations. The first one is Base
which acts as the control group where the execution of the
original code runs on the host processor with the CRA monitor
disabled, thus being exposed to CRA attacks. The other is
wCRA that refers to the same code execution with the CRA
monitor enabled. We show the performance numbers of wCRA
in Figure 6 where the execution time of each application
with wCRA is normalized to that of Base. The empirical
results show the running time overhead of 4.51%/10.68%
(average/max) over Base.

Also, we compared the storage overhead due to our in-
strumentation with the overhead incurred by the meta-data
proposed in [8]. Even though the meta-data has been intro-
duced to accelerate the overall detection process, it induces
substantial storage overhead proportional to the code size of
the target application. Although our approach also requires the
binary code running on the host CPU to be instrumented with
additional instructions, we argue that the amount of additional
code is rather small compared to the previous approaches. To
support this argument, we measured the amount of memory
required for the CRA detection suggested in [8] and ours, as
presented in Table II. As seen in the figure, our approach needs
slightly more memory than the original, uninstrumented code,
but requires far less memory (on average 16.58%) than that of
the technique proposed in [8] (on average 145.54%).

1.0151
1.0027

1.0175

1.0954

1.0494

1.0123

1.1068

1.0614
1.0451

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

1.12

Fig. 6. Benchmark execution time when the CRA monitor is enabled

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 335

increased code (b) (b)/(a) meta-data (c) (c)/(a)
bzip2 503,664 88,020 0.1748 797,144 1.5827
mcf 464,775 82,836 0.1782 725,992 1.5620
milc 588,408 114,564 0.1947 1,169,487 1.9875
gobmk 3,973,190 286,032 0.0720 1,856,400 0.4672
hmmer 764,042 156,472 0.2048 1,147,512 1.5019

libquantum 561,254 96,804 0.1725 863,652 1.5388
h264ref 1,000,235 143,916 0.1439 1,474,460 1.4741
astar 579,187 107,604 0.1858 885,456 1.5288

average

Ours [8]
Benchmark Original size (a)

TABLE II. COMPARISON OF BINARY SIZES BETWEEN OURS AND [8]

The above results clearly show the advantage of our ap-
proach over the previous work [8] in terms of memory usage.
The removal of the meta-data also gives us another advantage
that our hardware IPs no longer need to read a large quantity
of data from the main memory at runtime. Although the
experiment in [8] reported that their performance overhead is
about 3% due mainly to memory contention between the host
and their monitor, which is slightly better than ours, we have
discovered that their approach relying on massive memory
accesses for meta-data inherently entails a serious flaw. In their
work, the latency to the main memory such as DDR has to be
paid for processing each branch trace coming from the debug
interface. Since it requires the reference to the meta-data, the
processing capability of the monitoring hardware is severely
limited. This trend gets more obvious when the user wants to
increase the CPU frequency for the higher host performance or
decreases the DDR frequency for the less power consumption.
In these conditions, branch traces are more likely to be dropped
without being analyzed. To put forward evidence to support the
hypothesis, we measured the operable frequency gap between
the host CPU and our CRA monitor. For this experiment, we
implemented the ROP monitor in [8] and checks how slow
their monitor can operate while correctly performing the CRA
detection. Then, we compared the result with that of ours in
Table III. Both of them are configured to have the same depth
of the input buffers (32 in this experiment) to temporarily store
the incoming traces from TPIU. As we expected, ours tolerates
up to the 5:1 frequency gap without overflowing the buffer.
On the other hand, the work in [8] cannot stand even the 2:1
frequency gap. This result indicates that their solution does not
function correctly for more realistic SoC architecture models
where the host CPU is much faster than external devices like
our monitor. In this sense, we believe that our approach is
more acceptable in real-world systems such as APs of modern
smartphones [15] whose frequency gap between the host CPU
and other auxiliary IPs are typically configured up to 5:1.

VI. CONCLUSION

We have discussed how our hardware solution has been
integrated into an ARM-based SoC to defend the system
against ROP and JOP attacks at the same time. The solution
incurs very low performance overhead for runtime detection of
CRAs by implementing the unified hardware IPs to efficiently
detect both types of attacks. Our solution does not require
any modification in the host ARM processor internal. There-
fore, our hardware modules can be easily integrated with a

ARM CLK:IP CLK 1:1 2:1 3:1 4:1 5:1
Ours o o o o o
[8] o x x x x

TABLE III. FREQUENCY GAP TOLERANCE OF OURS AND [8]
(IP CLK IS FOR BOTH THE MONITOR AND THE DDR MEMORY)

commodity ARM processor core, observing the conventional
SoC design rules so that our solution can be easily implanted
to commercial mobile SoCs. Moreover, our key contribution
is that ours reduces the storage overhead dramatically com-
pared to the previous work. To achieve this, we propose an
instrumentation technique which enables us to make the most
use of the existing debug interface. The experiments revealed
that our current implementation successfully detects synthetic
ROP/JOP attacks, and that the storage overhead incurred by
our solution is acceptably small when being compared to the
previous work.

ACKNOWLEDGMENT

This work was partly supported by IITP grant funded by the
MSIP (No. R0190-15-2010), the Brain Korea 21 Plus Project
in 2015, the MSIP under the ITRC support program (IITP-
2015-R0992-15-1006) supervised by the IITP, and the National
Research Foundation of Korea(NRF) grant funded by the MSIP
(No. 2014R1A2A1A10051792). The ICT at Seoul National
University provides research facilities for this study.

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[2] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection from code
reuse attacks,” in High Performance Computer Architecture, 2013 IEEE
19th International Symposium on, Feb 2013, pp. 258–269.

[3] V. Pappas et al., “Transparent ROP exploit mitigation using indirect
branch tracing,” in Proceedings of the 22Nd USENIX Conference on
Security. USENIX Association, August 2013, pp. 447–462.

[4] P. Chen et al., “DROP: Detecting return-oriented programming ma-
licious code,” in Information Systems Security. Springer, 2009, pp.
163–177.

[5] M. Kayaalp et al., “Branch regulation: Low-overhead protection from
code reuse attacks,” in Computer Architecture (ISCA), International
Symposium on, June 2012, pp. 94–105.

[6] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sulli-
van, O. Arias, and Y. Jin, “HAFIX: Hardware-assisted flow integrity
extension,” in Proceedings of the The 52nd Annual Design Automation
Conference on Design Automation Conference, June 2015, pp. 1–6.

[7] Z. Guo, R. Bhakta, and I. G. Harris, “Control-flow checking for
intrusion detection via a real-time debug interface,” in Smart Computing
Workshops (SMARTCOMP Workshops), 2014 International Conference
on. IEEE, 2014, pp. 87–92.

[8] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practical
solution to detect code reuse attacks on arm mobile devices,” in
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy. ACM, 2015, p. 3.

[9] ARM co., LTD, “ARM CoreSight Architecture Specification v2.0,”
2013.

[10] S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies,” 2004.

[11] PaX Team, “Address Space Layout Randomization,” 2003. [Online].
Available: http://pax.grsecurity.net/docs/aslr.txt

[12] H. Özdoganoglu, T. Vijaykumar, C. E. Brodley, B. Kuperman, A. Jalote
et al., “Smashguard: A hardware solution to prevent security attacks on
the function return address,” Computers, IEEE Transactions on, vol. 55,
no. 10, pp. 1271–1285, 2006.

[13] The shell storm linux shellcode repository, 2014. [Online]. Available:
http://www.shell-storm.org

[14] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[15] Samsung Electronics co., LTD, “Exynos,” 2015. [Online]. Available:
http://www.samsung.com/global/business/semiconductor/product/

336 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

