
Improved Performance of 3DIC Implementations Through Inherent
Awareness of Mix-and-Match Die Stacking

Kwangsoo Han†, Andrew B. Kahng†+
and Jiajia Li†

UC San Diego, †ECE and +CSE Depts., La Jolla, CA 92093, {kwhan, abk, jil150}@ucsd.edu

Abstract—3D logic-logic integration is an important future lever for
continued cost and density scaling value propositions in the semiconductor
industry. In the 3DIC context, several works have proposed “mix-and-
match” of multiple stacked die, according to binning information, to
improve overall product yield. However, each of the stacked die in these
works is independently designed: there is no holistic “design for eventual
stacking” of any of the die. Separately, many approaches have been
proposed for design partitioning and implementation with multiple die,
including 3D stacked-die implementation. However, the signoff criteria
used to implement such a multi-die solution must necessarily validate
timing correctness for all combinations of process conditions on the
multiple die. To our knowledge, no previous work has examined the
fundamental issue of design partitioning and signoff specifically for mix-
and-match die stacking. In this work, we study performance improvements
of 3DIC implementation that leverage knowledge of mix-and-match die
stacking during manufacturing. We propose partitioning methodologies
to partition timing-critical paths across tiers to explicitly optimize the
signed-off timing across the reduced set of corner combinations that can
be produced by the stacked-die manufacturing. These include both an ILP-
based methodology and a heuristic with novel maximum-cut partitioning,
solved by semidefinite programming, and a signoff timing-aware FM
optimization. We also extend two existing 3DIC implementation flows to
incorporate mix-and-match-aware partitioning and signoff, demonstrating
the simplicity of adopting our techniques. Experimental results show
that our optimization flow achieves up to 16% timing improvement as
compared to the existing 3DIC implementation flow in the context of
mix-and-match die stacking.

I. INTRODUCTION

Small footprint and high transistor density in three-dimensional
integrated circuits (3DICs) make 3D logic-logic integration an
important future lever for cost and density scaling. Specific to 3DICs,
a number of works [2] [5] [7] [12] have pointed out that “mix-and-
match” of multiple stacked die, according to binning information, can
improve overall product yield.1 Without loss of generality, assuming
that dies are classified into two process bins, SS and FF, the example
in Figure 1 shows that mix-and-match die stacking can offer 75ps
timing improvement for a small 28nm FDSOI block as compared to
the conventional worst-case analysis.2 However, in the previous works
each of the stacked die is independently designed, that is, there is no
holistic “design for eventual stacking” of any of the die.

Fig. 1: Worst negative slack (WNS) of design AES [25] at 28FDSOI
technology. Clock period = 1.2ns. SS-SS, SS-FF and FF-SS respectively
indicate SS Tier 0 + SS Tier 1, SS Tier 0 + FF Tier 1 and FF Tier 0 +
SS Tier 1. Mix-and-match die stacking offers 75ps improvement of WNS over
the conventional worst-case analysis. In this example, the AES implementation
was simply bipartitioned for minimum net cut using MLPart [1] [24].

Separately, many works [3] [10] [11] [18] [20] [21] have suggested
approaches for partitioning of logic into multiple die, e.g., to obtain the
wirelength (hence, power and delay) savings implied by implementing

1The mix-and-match stacking optimization is also applicable to wafer-to-
wafer bonding integration where SS wafers are integrated with FF wafers, and
to monolithic 3D integration with adaptive adjustment of the top-tier process
according to the bottom-tier process condition. For simplicity, we use “(die)
stacking” to refer collectively to these multiple contexts.

2In the following discussions and our experiments, we assume that dies are
classified into two process bins, SS and FF. However, given matched pairs of
process bins based on die-level and/or wafer-level stacking optimization, our
approaches can be extended to scenarios with > 2 process bins, e.g., additional
combinations can be { SS Tier 0 + TT Tier 1, TT Tier 0 + SS Tier 1, FF Tier
0 + TT Tier 1, TT Tier 0 + FF Tier 1, TT Tier 0 + TT Tier 1 } when we also
consider the TT process bin.

a 1 x 1 die area into two stacked 0.7 x 0.7 dies. However, the signoff
criteria used to implement such a multi-die solution must necessarily
validate timing correctness for all combinations of process conditions
on the multiple die – e.g., the four combinations { SS Tier 0 +
SS Tier 1, SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1, FF
Tier 0 + FF Tier 1 }.3 Satisfying this combinatorial number of signoff
constraints induces area and power overheads as a result of the sizing
and buffering operations needed to close timing.

To our knowledge, no previous work has examined the fundamental
issue of design partitioning and signoff specifically for mix-and-match
die stacking. In particular, if we know a priori that, say, SS Tier 0
and SS Tier 1 die will never be stacked together, or that FF Tier 0 and
FF Tier 1 die will never be stacked together, this changes our signoff
criteria. Even more, this a priori knowledge allows us to partition
timing-critical paths across tiers to explicitly optimize the design’s
performance in the regime of mix-and-match stacking. The simple
example in Figure 2, explained in the figure caption, illustrates how
the partitioning solution can impact design signoff timing in the regime
of mix-and-match stacking.

Fig. 2: Partitioning solutions affect a design’s performance in the regime of
mix-and-match stacking. Assuming that SS Tier 0 + FF Tier 1 and FF Tier 0
+ SS Tier 1 are utilized for die stacking, the partitioning solution indicated
by the blue dotted line has the maximum timing slack, while the partitioning
solution indicated by the red solid line has the minimum timing slack.

In this work, we propose partitioning methodologies and signoff
flows that are aware of mix-and-match die stacking to improve design
timing (i.e., to improve worst negative slack (WNS)). However, 3D
partitioning for mix-and-match die stacking is nontrivial. First, the
optimal cut locations on one timing path might conflict with those
on other timing paths. Thus, the partitioning optimization must trade
off timing optimizations among timing paths. This can be quite
challenging in a design with a large number of potentially critical paths
and shared logic cones among multiple pairs of timing startpoints-
endpoints. Further, the partitioning optimization must comprehend
the timing impact of vertical interconnects or VIs (i.e., the vertical
electrical connections (vias) between tiers, such as through-silicon
vias), and can no longer “freely” partition a timing path into segments.
In addition, delay variations across different process conditions can be
different for cells of different types (e.g., INV, NAND or NOR), sizes
and VT flavors. Last, asymmetric distribution of process bins (e.g., 3σ
FF + 2σ SS) as discussed in [14] will also increase the difficulty of
the partitioning optimization. Figure 3 shows a simple example with
different optimal partitioning solutions that respectively minimize (a)
delay of path A-C, (b) delay of path B-C, and (c) the worst case over
the two paths. Moreover, the optimal partitioning solution changes
with increased VI delay impact, as shown in Figure 3(d).

Our contributions in this work are as follows.

• We are the first to study design-stage optimization specifically for
mix-and-match die stacking.

• We develop partitioning methodologies that are inherently aware
of mix-and-match die stacking. Our approaches achieve up
to 16% timing improvement as compared to a min-cut based
partitioning approach.

• We extend the existing 3DIC implementation flows to incorporate
mix-and-match-stacking-aware partitioning and signoff, demon-
strating the simplicity of adopting our techniques.

3Here, a tier refers to one stacked die in a 3DIC. In a two-tier 3DIC, Tier 0
is the bottom tier and Tier 1 is the top tier.

61978-3-9815370-6-2/DATE16/ c©2016 EDAA

Fig. 3: Area-balanced partitioning solutions on path A-C (26 stages) and path
B-C (30 stages) which respectively minimize (a) delay of path A-C (DAC),
(b) delay of path B-C (DBC), (c) worst-case delay over the two paths, and (d)
worst-case delay over the two paths in the regime of large VI delay impact
(dV I). Red bars are VIs. We assume the same stage delay (30ps at SS, 10ps
at FF) for every stage in the two paths. Timing analysis is aware of mix-and-
match stacking (i.e., { SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) and
assumes ideal clock.

II. RELATED WORKS

We classify related works into two categories: (i) mix-and-match
die stacking optimization, and (ii) 3D netlist partitioning.

Mix-and-match optimization. Several works propose approaches for
mix-and-match die stacking optimization. Ferri et al. [5] propose
methodologies to benefit from the flexibility of die-to-die and/or die-to-
wafer 3D integration with awareness of the inter-die process variation.
Their optimization improves performance and parametric yield of
3DICs with one CPU die and one L2 cache die. Garg et al. [7]
formulate mathematical programs to improve the performance yield
of 3DICs via mix-and-match die stacking. Chan et al. [2] propose
an integer linear programming-based method as well as a heuristic
method to optimize reliability of 3DICs (i.e., to improve the mean
time to failure). To avoid the large runtime of thermal simulation,
Juan et al. [12] develop a learning-based model for temperature
prediction in 3DICs. Based on the model, they perform thermal-
aware matching and stacking of dies to improve thermal yield. These
optimization approaches operate at die level or wafer level (essentially,
post-manufacturing). By contract, our work addresses design-stage
optimization and signoff for mix-and-match die stacking.

3D netlist partitioning. As mentioned above, quite a few works study
3D partitioning. Li et al. [18] use a simulated annealing engine to
partition blocks across tiers during the floorplanning stage to minimize
wirelength. Several works cast 3D partitioning as a form of standard
hypergraph partitioning. Thorolfsson et al. [21] use hMetis [16] to
partition the design into balanced halves while minimizing the number
of cuts. A multilevel partitioning methodology is proposed in [10],
which first applies Hyperedge Coarsening (HEC) techniques to coarsen
the netlist, then performs an FM-like K-way partitioning procedure
to partition the netlist such that the number of VIs is minimized.
An integer linear programming for 3D partitioning is formulated
in [11], where the objective is to reduce the number of VIs subject
to area balancing constraints. Partitioning methodologies based on
an initial 2D implementation solution are also proposed in previous
literatures. Cong et al. [3] assign cells to tiers through folding-based
transformations of an initial 2D placement solution. Based on a 2D
implementation solution with scaled dimension (i.e., 0.7 x), Panth
et al. [20] perform routability-driven partitioning to minimize the
overall routing overflow; this can mitigate routing congestion and help

minimize wirelength. Compared to these works, our work is again
distinguished by being the first to inherently comprehend mix-and-
match die stacking integration. In particular, unlike previous works,
our partitioning methods directly maximize the design’s timing slack
in the mix-and-match regime.

III. PROBLEM FORMULATION

We formulate the partitioning problem for mix-and-match die
stacking as follows.

Given: post-synthesis netlist, Liberty files according to various process
bins, vertical interconnect (VI) parasitics, timing constraints and area
balancing criteria,
Perform: 3D partitioning to determine the tier index for each cell,
such that the worst timing slack is maximized in the context of mix-
and-match die stacking.4

In the next section, we describe an ILP-based partitioning
methodology which is able to achieve near-optimal solutions.
Section V then proposes a heuristic partitioning methodology in which
we (i) perform maximum-cut partitioning on the subgraph of the
sequential graph that is induced by timing-critical pairs of startpoints
and endpoints, then (ii) apply a signoff timing-aware FM optimization
for further slack improvement.

IV. ILP-BASED PARTITIONING METHODOLOGY

We now formulate an integer linear program (ILP) to partition
the netlist into two tiers such that the worst timing slack, over the
corner combinations that can be formed by mix-and-match stacking,
is maximized. Table I summarizes our notations.

TABLE I: Description of notations used in our work.
Term Meaning

α j process condition (corner), (1 ≤ j ≤ J)
P set of timing paths
pk kth timing path (pk ∈ P)
C set of cells
ci ith cell (ci ∈C)
ai area of cell ci

yi binary indicator whether cell ci is on Tier 0 (yi = 0) or on Tier 1 (yi = 1)
βi,i′ binary indicator whether a cut (VI) exists between adjacent cells ci and ci′ ,

(βi′ ,i) where cell ci is on Tier 0 (Tier 1) while cell ci′ is on Tier 1 (Tier 0).

d
j
i stage delay of cell ci and its fanout wire at α j

Dk maximum delay of path pk over all pairs of process corners
Dmax maximum delay over all paths among all pairs of process corners
dV I delay impact of VI insertion
θ area balancing criterion

Minimize Dmax

Sub ject to

βi,i′ ≥ yi′ − yi ∀ adjacent cells ci,ci′ ∈C (1)

βi′,i ≥ yi − yi′ ∀ adjacent cells ci,ci′ ∈C (2)

βi,i′ +βi′,i ≤ 1 ∀ adjacent cells ci,ci′ ∈C (3)

∑
ci∈pk

(d j
i · (1− yi)+d

j′
i · yi)+ ∑

ad jacent ci,ci′ ∈pk

(Δ j, j′
i′ ·βi,i′ +Δ j′, j

i′ ·βi′,i)

+ ∑
ad jacent ci,ci′ ∈pk

(βi,i′ +βi′,i) ·dV I ≤ Dk ∀(α j,α j′), pk ∈ P (4)

Dk ≤ Dmax ∀pk ∈ P (5)

∑
ci∈C

ai · yi − ∑
ci∈C

ai · (1− yi) ≤ θ · ∑
ci∈C

ai (6)

∑
ci∈C

ai · (1− yi)− ∑
ci∈C

ai · yi ≤ θ · ∑
ci∈C

ai (7)

Our objective is to minimize the maximum path delay Dmax over
all paths pk ∈ P, across all relevant pairs of process corners in the
context of mix-and-match die stacking. yi is a binary indicator of cell
ci’s tier assignment, with yi = 0 (resp. yi = 1) indicating that ci is
on Tier 0 (resp. Tier 1). For any pair of adjacent cells ci and ci′ , we
use Constraints (1) and (2) to force either βi,i′ or βi′,i to be one when
cells ci and ci′ are on different tiers. In other words, βi,i′ and βi′,i are
indicators of a cut (or VI) such that βi′,i = 1 (resp. βi,i; = 1) when ci is
on Tier 0 (resp. Tier 1) while ci′ is on Tier 1 (resp. Tier 0). Therefore,
βi,i′ and βi′,i are mutually exclusive.

4In this paper, we only consider partitioning into two-tier 3DICs. But, our
formulation generalizes easily to larger numbers of tiers.

62 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Constraint (4) defines the maximum delay Dk for each path pk ∈ P
among all pairs of process corners with mix-and-match stacking. The
first term on the left-hand side of Constraint (4) is the sum of stage
delays along path pk. We extract stage delays at a particular corner α j
based on the timing analysis assuming all cells are at α j. However,
such an assumption can lead to an inaccurate stage delay estimation
because cells of different process corners output different slews, which
affect the delays of downstream cells. For example, our assumption can
be pessimistic for a cell at SS when its driver is at FF. This is because
to estimate the stage delay at SS, our timing analysis assumes all cells
(including its driver) are at SS, which results in pessimistic input slew
estimation. To compensate for such inaccuracy, we pre-calculate the
delta stage delays (that is, the second term) between the case where
the driver cell ci and driven cell ci′ are at different process corners
(i.e., ci is at α j, and ci′ is at α j′) versus the case where the ci and ci′

are at the same process corner.5 We denote such delta stage delays as

Δ j, j′
i′ . Incorporating the second term, i.e., the sum of delta stage delays

along path pk, enables us to achieve a more accurate delay estimation.6

The third term on the left-hand side of Constraint (4) accounts for VI
delay impact along the path. Note that VI insertion at the output pin
of a small-size cell can have quite large delay impact. However, such
delay impact will be addressed with sizing/VT-swapping optimization
during the P&R (placement and routing) flow. Since no sizing/VT-
swapping optimization is involved during the partitioning stage, to
avoid pessimism in estimation of VI delay impact, we simply use a
constant value to estimate the delay impact of one VI insertion. In
Constraint (5), we obtain the maximum delay Dmax over all paths
pk ∈ P. Last, our formulation satisfies area balancing criteria which
are indicated by θ in Constraints (6) and (7). We set θ as 5% in our
experiments.

V. HEURISTIC PARTITIONING METHODOLOGY

Although the ILP-based methodology can achieve near-optimal
partitioning solutions, its runtime can be large. Moreover, it is
practically impossible to extract all timing paths for a large design.7

We therefore propose a timing-aware FM partitioning methodology
with better scalability. Our heuristic partitioning methodology contains
two optimization stages – (i) the global optimization performs
maximum cut on the timing-critical sequential graph (i.e., a partial
sequential graph which contains only startpoints and endpoints of
timing-critical paths) and (ii) the incremental optimization performs
timing-aware multi-phase Fiduccia-Mattheyses (FM) optimization to
achieve the final partitioning solution. Unlike previous works which
minimize the number of cuts [16] or the number of paths passing
across different partitions [15], we directly target the timing slack
improvement during our partitioning optimization. Our objective is
to minimize the maximum path delay (i.e., maximize the worst
timing slack) for mix-and-match die stacking. Further, we show that
a maximum-cut partitioning is more suitable than the traditional
minimum-cut partitioning for 3DICs in the mix-and-match regime. To
our knowledge, few if any previous works have applied a semidefinite
program-based maximum cut optimization [8] to VLSI design.

A. Maximum-Cut Partitioning on Timing-Critical Sequential Graph

We first study the tradeoff between delay impact of VI insertions
versus timing improvement from mix-and-match stacking. Without
loss of generality, we assume a die stacking of { SS Tier 0 + FF
Tier 1, FF Tier 0 + SS Tier 1 }. We denote the path delay of path pk
at SS (resp. FF) as DSS

k (resp. DFF
k), and the total number of stages

along pk as lk. Approximating the path delay as a linear function of
the stage number and assuming that there are l′k stages on Tier 0,

5Our separate study shows that delay impact caused by cells more than one
stage upstream of the current cell is negligible (i.e., < 2ps). We therefore only
consider the slew change due to current cell’s direct fanins.

6We note that since the partitioning optimization is performed before
placement and routing, the wire delay and accurate wire load information are
not available, which might lead to suboptimality in the partitioning solution.

7Slight suboptimality of the ILP comes from the estimations of stage delay
and delay impact of VI insertions, which are inputs to the ILP. The runtime to
extract timing path information and solve the ILP can be even larger if there
are more process bins, which makes the ILP-based methodology infeasible.
The runtime of the ILP on AES (with 11K instances and 254K timing paths)
is > 24 hours.

the corresponding path delay without considering delay impact of VI
insertion can be estimated as

l′k ·
DSS

k

lk
+(lk − l′k) ·

DFF
k

lk
(8)

l′k ·
DFF

k

lk
+(lk − l′k) ·

DSS
k

lk
(9)

where (8) assumes the stacking of SS Tier 0 + FF Tier 1, and (9)
assumes the stacking of FF Tier 0 + SS Tier 1. Maximizing the
minimum value between (8) and (9) corresponds to having (8) = (9)
and l′k = lk/2. We therefore estimate the timing improvement from
mix-and-match stacking over the worst-case analysis (i.e., SS Tier 0
+ SS Tier 1) as (DSS

k −DFF
k)/2. Furthermore, we denote the worst

slack of pk among combinations of process conditions (i.e., { SS Tier
0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) as sk, and denote the delay
increase due to an inserted VI as dV I . Based on the above, we classify
timing paths of a design into three categories:

1) Type I: Timing non-critical paths (sk ≥ sth);
2) Type II: Timing-critical paths without tolerance of VI insertion

(sk < sth &&
DSS

k −DFF
k

2 ≤ dV I + sgb);
3) Type III: Timing-critical paths with tolerance of VI insertions

(sk < sth &&
DSS

k −DFF
k

2 > dV I + sgb);

Here, sth is the threshold of timing slack to define the timing-critical
paths (i.e., sth = 10% of clock period); and sgb is the slack guardband to
evaluate tradeoff between delay impact of VI insertions versus timing
improvement from mix-and-match stacking.8 We note that when the
delay of a VI insertion is so large that most of the timing-critical paths
are Type-II paths, the timing benefits from mix-and-match die stacking
will be limited.

Our optimization focuses on timing-critical paths (i.e., Type-II
and Type-III paths). Our optimization ensures that startpoint and
endpoint of a Type-II path are assigned to the same tier. Further,
our optimization maximizes the number of Type-III paths being
cut, so as to improve the potential timing benefits from mix-and-
match die stacking. The procedure of our optimization is described
in Algorithm 1. To construct the sequential graph, each startpoint or
endpoint (e.g., register, PI or PO) becomes one vertex, and a directed
edge is inserted between two vertices if there exists a (combinational)
timing path between the vertices when they are taken as startpoint
and endpoint. Note that in this optimization we only consider the
maximum-delay path between any startpoint-endpoint pair. We use
the algorithm in [8] for our maximum-cut optimization, in which the
maximum-cut problem is relaxed to a semidefinite program (SDP).
The SDP solution is then randomly rounded to achieve a partitioning
solution. We use SDPA [27] as our semidefinite programming solver.

Algorithm 1 Partitioning of the sequential graph.

1: Extract restricted sequential graph G0 that contains only Type-II and Type-
III paths.

2: Collapse vertices connected with Type-II paths (edges) into one vertex to
obtain a new graph G1.

3: Perform maximum cut on G1.

Fig. 4: Example of maximum-cut partitioning of the sequential graph. Types of
paths are shown in edge labels. The dotted line indicates the final maximum-cut
solution. We assume the same weight for all edges.

8The value of sth needs to be empirically determined such that timing-critical
paths are optimized. However, a too-large value of sth can result in a large
number of VI insertions and large runtime for timing analysis. Slack guardband
sgb is a flat timing margin, where the timing improvement from mix-and-match
must exceed the VI delay impact by more than sgb.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 63

Figure 4 illustrates Algorithm 1 with an example consisting of five
vertices and eight edges. The figure shows each updated graph, and
the dotted line indicates the final maximum-cut solution.

B. Timing-Aware Multi-Phase FM Partitioning

Based on the maximum-cut partitioning solution of a timing-critical
sequential graph, we fix the tier assignments of flip-flops and then
perform timing-aware multi-phase partitioning to achieve the final
partitioning solution. At each phase of our optimization, we perform
optimizations in parallel with multiple threads. Optimization in each
thread first clusters cells such that the size of the cluster is within
a given range (i.e., [Nlb, Nub]). Based on the clustered netlist, each
thread then performs Fiduccia-Mattheyses (FM) optimization [6] to
improve the partitioning solution in terms of the worst timing slack in
the context of mix-and-match stacking. We vary the range of cluster
sizes across different threads during our optimization. At the end of
each phase, we select the partitioning solution with the maximum
timing slack as the input to the next phase.

In our FM optimization, the gain function of a cluster u is defined
as

gain(u) =
Δslack(u)

slack(u)−WNS
(10)

where slack(u) is the worst slack of cluster u; Δslack(u) is the slack
change when moving u across tiers; and WNS is the worst negative
slack of the entire design.

Clustering cells at each phase before the FM optimization not
only reduces the runtime of FM optimization but more importantly
also improves the solution quality. Figure 5 shows an example in
which moving one cell with negative gain can eventually lead to slack
improvement after moving its neighbor cells. In the example, although
moving one cell across tiers degrades the slack of the path due to VI
insertions, moving its neighbor cells compensates for the delay impact
of VI insertions and eventually improves the path timing for mix-and-
match stacking. However, during the FM optimization, it is difficult
and expensive (in terms of runtime) to “foresee” such slack benefits.
In other words, to evaluate the gain function of one cell including its
future impact, one must consider a large number of potential moves
of its neighbor cells. The number of potential future move sequences
can be large if only moving multiple stages of cells can compensate
for the delay impact of VI insertions.9 We therefore cluster cells such
that timing improvement from moving a cluster can compensate for
the delay impact of VI insertions. Further, since the goal of clustering
and partitioning is to balance cell delays across tiers along each timing
path, the desired cluster size highly depends on number of stages along
the paths, fanout number at each stage, and netlist topology. Given that
the number of stages along the path is limited by timing constraints,
along with the maximum fanout constraint, a too-large cluster size
might not help to balance delays across tiers along a timing path.
We empirically set the cluster size to be no larger than 120 in our
experiments.

Fig. 5: Example to optimize a cell with a negative gain value. Assume that
the difference between cell delays at SS and FF is 30ps, delay impact due to
VI insertion is 50ps, and all cells along the path (only a segment of five cells
is shown) are initially on Tier 0. Also assume that a stacking of SS Tier 0 + FF
Tier 1 is applied. (a) Initial path with zero slack. (b) Moving one cell to Tier 1
degrades the slack by 70ps due to VI insertions. (c) Further optimization on
the shown segment improves the slack by 50ps.

Algorithm 2 shows our clustering procedure. We first sort all cells
in increasing order of their slacks (Line 1). We use topological
order to break ties. We then select an unclustered cell from the
ordered list as the starting point for clustering (Line 2). Based on

9We are aware of “lookahead” approaches, such as gain vectors, CLIP/CDIP
and LIFO gain buckets, etc. [4] [9] [17]. However, these are cut-centric and
not path-aware, hence inapplicable to our current problem.

the selected cell, we evaluate its slack changes due to moves (i.e.,
tier re-assignment) on its neighbor cells. If slack improves, we add
the corresponding neighbor cell into the cluster (i.e., u), and further
consider moves on neighbor cells of the new added cell (Lines 7-11,
15). However, when no move with slack improvement is available, we
select the neighbor cell corresponding to the move with the minimum
slack degradation and add it to the cluster (Lines 17-22, 27-30).
The clustering procedure terminates when the cluster size meets the
required range (i.e., [Nlb, Nub]) or there is no unclustered neighbor
cell (Lines 12-14, 24-26).

Note that each cluster contains cells originally belonging to the
same tier. The slack of a cluster (i.e., slack(u)) is defined as the worst
slack of cells within the cluster. Further, the estimation of slack({c,u})
comprehends mix-and-match stacking (i.e., worst case over SS Tier
0 + FF Tier 1 and FF Tier 0 + SS Tier 1). Moreover, our timing
analysis takes into account the delay impact of VI insertions (Figure 6
shows one example). Assuming that the incremental timing analysis is
performed in constant time,10 the runtime complexity of our clustering
algorithm is O(|C|3).
Algorithm 2 Clustering.

1: cell list ← sort all cells in increasing order of their slacks
2: for all c ∈ cell list that is not clustered do
3: queue.push f ront(c); u ← /0 // initialize cluster u
4: while |u| < Nub do
5: s′ ← −∞; c′ ← /0; queue′ ← /0
6: while |queue| > 0 do
7: c ← queue.pop f ront()
8: su ← slack(u); sc ← slack(c)
9: move c to a different tier; incremental timing analysis

10: if |u| == 0 || slack(u) ≥ su && slack(c) ≥ sc then
11: u ← u∪{c}
12: if |u| ≥ Nub then
13: break
14: end if
15: queue.push back(neighbors of c that are not clustered)
16: else
17: if min(slack(c),slack(u)) > s′ then
18: s′ ← min(slack(c),slack(u)); c′ ← c
19: end if
20: queue′.push back(c)
21: recover c to its original tier; incremental timing analysis
22: end if
23: end while
24: if |u| ≥ Nub || |queue′| == 0 then
25: break
26: end if
27: move c′ to a different tier; incremental timing analysis
28: u ← u∪{c′}
29: queue.push back(neighbors of c′ that is not clustered)
30: queue.push back(queue′); queue′ ← /0
31: end while
32: end for

Fig. 6: Example of VI insertion/removal due to cell movement across tiers.
Shaded cells are on Tier 1 and the others are on Tier 0.

In each run of FM optimization, we iteratively select the cluster
with the maximum gain value and move it across tiers. We lock
the clusters (cells) that have been moved. After each move, we
perform incremental timing analysis and update the gain values of
the neighboring clusters of which the worst slack is changed. We
empirically observe that the slack improvement at the later stages of
an FM run is small (e.g., shown Figure 7). Therefore, we terminate
each FM iteration when 25% of clusters have been moved. Given
that the initial partitioning solution is not area-balanced, in the first

10In incremental timing analysis, we propagate slew and update cell delay
through interpolation in Liberty lookup tables. Starting from the moved cell, we
traverse the timing graph both forwards and backwards until there is no slack
change. Given the maximum fanout constraints (e.g., 20) and limited number
of stages to which “ripple effects” propagate (e.g., ∼2-3 stages at most), in
practice there is a constant bound on the number of cells updated during the
incremental timing analysis.

64 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

FM iteration we terminate the optimization when the area balancing
criterion is met. Figure 7 shows an example of our FM optimization
on design AES. The optimization has three phases, where each phase
contains two runs of FM optimization. We observe that the worst slack
improves from -200ps to -14ps in this example with ∼3000 moves.

Fig. 7: An example of our multi-phase FM optimization. Design: AES.
Technology: 28FDSOI. Cluster size ranges are [60, 70], [30, 40] and [15,
20]. Each phase contains two runs of FM optimization shown as red and blue
curves. WNS improves from -200ps to -14ps. Runtime = 565 seconds on a
2.5GHz Intel Xeon server.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Our partitioning methodologies for mix-and-match stacking are
implemented in C++. We use CPLEX v12.5 [22] as our ILP
solver and SDPA [27] as our semidefinite programming solver.
Our SP&R (synthesis, placement and routing) flow uses Synopsys
Design Compiler H-2013.03-SP3 [23], Cadence Encounter Digital
Implementation System XL 12.0 [28], Synopsys PrimeTime H-2013.06-
SP2 [26] for logic synthesis, P&R, and timing and power analyses,
respectively. Similarly to [19], we stitch SPEF files of Tier 0 and
Tier 1, with annotated VI parasitics for timing and power analyses.

We use six open-source designs (DMA, USB, AES, MPEG, JPEG,
VGA) [25] and an ARM Cortex M0 in our experiments. These
testcases are generated with foundry 28nm FDSOI 12-track, dual-VT
libraries. We use a BEOL stack of six metal layers for routing.

TABLE II: Testcases used in the experiments.
Design #Instances Clock period (ns)
DMA 2K 0.6
USB 4K 0.8

ARM Cortex M0 9K 1.2
AES 11K 1.1

MPEG 13K 1.2
JPEG 36K 1.4
VGA 73K 1.0

We conduct three experiments to evaluate the performance of our
partitioning methodologies. (i) We validate the solution quality of our
heuristic partitioning optimization by comparing its solutions with
those of the ILP-based method. Due to poor scalability of the ILP-
based method, we perform experiments on two small testcases (DMA
and USB). (ii) We assess the benefit from our heuristic partitioning
method within a brute-force 3DIC implementation flow, which we
refer to as GT2012 [13]. (iii) We further assess the benefit from
our partitioning method within a state-of-the-art 3DIC implementation
flow (Shrunk2D) [19]. In our experiments, we perform three-phase
optimization; each phase contains two FM runs. The ranges we use
for cluster sizes are [100, 120], [80, 90], [60, 70], [40, 50], [20, 30],
[10, 20]. Thus, our optimization uses six threads.

B. 3DIC Implementation Flows

Based on the conventional 2D implementation (P&R) flow, we study
the GT2012 3DIC implementation as shown in Algorithm 3.11 We
first partition the netlist into two tiers (Line 1). After the partitioning,
we place cells on Tier 0, and determine the VI locations based on
that placement (Lines 2-3). With the fixed VI locations, we perform
placement optimization on Tier 0 and Tier 1 separately (Line 4). We
then insert a VI as the clock port on Tier 1. The clock VI location

11This 3DIC flow is similar to early flows that we have seen used, e.g., at
U.S. Department of Energy laboratories.

on Tier 1 is close to the clock port location on Tier 0 to minimize
the cross-tier clock skew. We perform clock tree synthesis (CTS) on
Tier 0 and Tier 1 separately (Lines 6-7). Last, we perform routing
and routing optimization on each tier (Line 9). Note that we perform
3D timing analysis and update timing constraints for each tier after
placement and CTS.

Algorithm 3 GT2012 3DIC implementation flow.

1: Netlist partitioning (MLPart [24] or our partitioning method);
2: Initial placement on Tier 0;
3: VI insertion based on placement of Tier 0;
4: Placement optimization on Tier 0 and Tier 1;
5: Timing constraint update;
6: VI insertion for clock port on Tier 1;
7: Clock tree synthesis (CTS) on Tier 0 and Tier 1;
8: Timing constraints update;
9: Routing and routing optimization on Tier 0 and Tier 1;

We also use the 3DIC implementation flow in [19] to validate our
partitioning method. The flow first performs 2D implementation with
scaled (i.e., 0.7 x) cell sizes and floorplan. Based on the shrunk 2D
implementation, it partitions cells into two tiers. It further modifies the
technology files so that BEOL stacks of two tiers (each has six layers)
are connected as one (12-layer) BEOL stack and performs routing on
both tiers to determine VI locations. Last, it performs routing and
routing optimization on each tier separately. In the flow, all the clock
cells are forced to be on Tier 0. Following [19], we refer to this flow
as the Shrunk2D flow.

To be aware of mix-and-match die stacking, we extend both flows
to perform a multi-view optimization after the netlist is partitioned,
such that the die stacking of { SS Tier 0 + FF Tier 1, FF Tier 0 +
SS Tier 1 } is captured during the P&R optimization. In addition, we
assume face-to-face (F2F) die stacking in both flows.12

C. Experimental Results

Calibration of Heuristic Partitioning. We calibrate our heuristic
partitioning method by comparing its solutions to those of the ILP-
based method. We perform experiments on designs DMA and USB.
We vary the VI insertion delay impact from 10ps to 50ps. We
also assume different combinations of process conditions (i.e., { 3σ
SS + 3σ FF, 2σ SS + 3σ FF, 3σ SS + 2σ FF }). Comparison
results in Figure 8 show that except for one outlier, the timing
slack resulted from our heuristic method is always within 30ps
difference compared to the solution of the ILP-based method, where
the ILP-based solution is considered to be very close to the optimal
solution. This confirms that our heuristic method is able to comprehend
asymmetric distribution of process bins and VI delay impact. The
outlier occurs with the setup of large VI delay impact, where the
problem becomes more challenging.

Validation of Our Method on GT2012 Flow. Table III shows the
timing quality, total cell area, power, gate count, wirelength, number of
VIs and post-routing utilization of implementations using the GT2012
flow and the GT2012 flow with our heuristic partitioning method. Note
that the reported timing and power are the worst cases between SS
Tier 0 + FF Tier 1 and FF Tier 0 + SS Tier 1. We observe that our
partitioning approach leads to up to 16% timing improvement (i.e., on
designs AES and VGA) compared to the GT2012 flow, which uses
conventional min-cut partitioning [1] [24], while achieving similar area
and power. This is a significant improvement, considering that even
20% improvement in performance per new technology generation is
now quite difficult to achieve. The larger wirelength is because of
additional wires routed to the increased number of VIs.

Validation of Our Method on Shrunk2D Flow. Table III shows
design metrics of implementations using the original Shrunk2D
flow [19] and its extension with our partitioning method. We observe
that the extended flow with our partitioning approach achieves up to
7% timing improvement (i.e., on design ARM Cortex M0) with similar

12To maximize the timing benefit from mix-and-match die stacking, large
number of VIs will be inserted. On the other hand, VI insertions will have area
impact in a face-to-back stacking-based implementation. We therefore assume
F2F stacking. We also note that F2F stacking and monolithic 3D integration
are more preferable in the regime of mix-and-match die stacking due to their
small VI area impact.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 65

TABLE III: Validation of our partitioning methodology on GT2012 and Shrunk2D flows.

Design Flow WNS TNS Area Power #Instances Wirelength #VIs Utilization
(ps) (ns) (μm2) (mW) (μm) (bottom / top)

ARM Cortex M0

GT2012 (orig) -178 -56.735 8451 6.701 8816 116966 304 77% / 69%
GT2012 (opt) -23 -0.173 8448 6.210 8780 136631 2744 70% / 76%

Shrunk2D (orig) -89 -11.040 9697 6.499 9855 83462 3715 83% / 86%
Shrunk2D (opt) -13 -0.080 10106 6.985 9982 93495 4490 86% / 90%

AES

GT2012 (orig) -181 -26.113 8536 10.700 10964 129896 250 74% / 70%
GT2012 (opt) -8 -0.012 8554 9.351 10947 156716 4417 65% / 79%

Shrunk2D (orig) -4 0.000 9621 10.600 11302 113209 4787 78% / 81%
Shrunk2D (opt) 56 0.000 9611 10.200 11356 116816 6304 75% / 83%

MPEG

GT2012 (orig) -68 -2.043 18089 13.900 13152 227734 307 69% / 73%
GT2012 (opt) 73 0.000 18125 14.100 13185 321866 4674 74% / 67%

Shrunk2D (orig) 20 0.000 18620 14.800 13275 158386 4741 72% / 74%
Shrunk2D (opt) 79 0.000 18691 15.400 13279 174804 7727 77% / 70%

JPEG

GT2012 (orig) -155 -7.094 44758 32.100 36521 703770 1159 69% / 72%
GT2012 (opt) -52 -0.462 45094 31.800 36631 1007156 12571 76% / 67%

Shrunk2D (orig) -115 -1.760 54457 42.900 52824 520123 14075 85% / 88%
Shrunk2D (opt) -82 -1.210 54637 43.000 52947 562430 20635 88% / 85%

VGA

GT2012 (orig) -244 -6.213 100143 113.300 72682 2201814 1546 76% / 70%
GT2012 (opt) -80 -0.251 102683 117.200 72731 3667133 15353 70% / 80%

Shrunk2D (orig) -47 -0.270 104525 90.000 73950 904742 27780 76% / 77%
Shrunk2D (opt) 11 0.000 104008 86.800 74051 929942 35908 79% / 73%

Fig. 8: Comparison of the solution qualities between the ILP-based method
(which is near-optimal) and the heuristic method.

area, power and wirelength. Note that to maintain the solution of the
2D implementation in the scaled floorplan, we include additional bin-
based area balancing constraints such that we uniformly divide the core
area into N x N bins and set area balancing criteria for each bin during
the FM optimization. We use three bin sizes in our optimizations –
20μm x 20μm, 30μm x 30μm and 50μm x 50μm – and report the result
with the maximum timing slack.

VII. CONCLUSION

In this work, we study design-stage optimization for mix-and-match
die stacking. Our motivating insight is that a priori knowledge of mix-
and-match 3DIC integration should influence multi-die partitioning
optimization and signoff. We propose an ILP-based partitioning
methodology and a heuristic partitioning methodology that performs
maximum cut on the timing-critical sequential graph followed by an
iterative multi-phase FM optimization. We validate our partitioning
optimization on two 3DIC implementation flows, each of which
we have extended to be aware of mix-and-match die stacking. Our
optimization leads to up to 16% timing improvement, as compared to
a flow with min-cut based partitioning solution, when measured by
RC extraction and signoff timing at the post-routing stage. Our study
also indicates that a gate-level 3D integration has more flexibility
and thus larger timing benefits in the mix-and-match regime as
compared to a block-level integration. Our ongoing works include (i)
integration of design-stage optimization and die- and/or wafer-level
optimization for mix-and-match die stacking; (ii) clock tree synthesis

for mix-and-match stacking; (iii) including BEOL variation in our
optimization; (iv) a new abstraction model for slack improvement with
mix-and-match stacking, for faster calculation of gain functions in FM
optimization; and (v) more general formulations of die-level mix-and-
match optimizations. We will also seek to develop more detailed cost
modeling for multi-die integration – e.g., to understand how testability
or other considerations might affect our study and/or its conclusions.

ACKNOWLEDGMENTS

We thank authors of [19] for providing their 3DIC implementation
flow scripts.

REFERENCES
[1] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Algorithms for

Hypergraph Bipartitioning”, Proc. ASP-DAC, 2000, pp. 661-666.
[2] T.-B. Chan, A. B. Kahng and J. Li, “Reliability-Constrained Die Stacking Order in

3DICs under Manufacturing Variability”, Proc. ISQED, 2013, pp. 16-23.
[3] J. Cong, G. Luo, J. Wei and Y. Zhang, “Thermal-Aware 3D IC Placement Via

Transformation”, Proc. ASP-DAC, 2007, pp. 780-785.
[4] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-removal Using Iterative

Improvement Techniques”, Proc. ICCAD, 1996, pp. 194-200.
[5] C. Ferri, S. Reda and R. I. Bahar, “Parametric Yield Management for 3D ICs:

Models and Strategies for Improvement”, ACM JETCS 4(4) (2008), pp. 19:1-19:22.
[6] C. M. Fiduccia and R. M. Mattheyses, “Linear Time Heuristic for Improving

Network Partitions”, Proc. DAC, 1982, pp. 175-181.
[7] S. Garg and D. Marculescu, “Mitigating the Impact of Process Variation on the

Performance of 3-D Integrated Circuits”, IEEE TVLSI 21(10) (2013), pp. 1903-
1914.

[8] M. X. Goemans and D. P. Williamson, “Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems Using Semidefinite Programming”, J.
ACM 42(6) (1995), pp. 1115-1145.

[9] L. W. Hagen, D. J.-H Huang and A. B. Kahng, “On Implementation Choices for
Iterative Improvement Partitioning Algorithms”, IEEE TCAD 16(10) (1997), pp.
1199-1205.

[10] Y. C. Hu, Y. L. Chung and M. C. Chi, “A Multilevel Multilayer Partitioning
Algorithm for Three Dimensional Integrated Circuits”, Proc. ISQED, 2010, pp. 483-
487.

[11] I. H.-R. Jiang, “Generic Integer Linear Programming Formulation for 3D IC
Partitioning”, Proc. IEEE ISOCC, 2009. pp. 321-324.

[12] D.-C. Juan, S. Garg and D. Marculescu, “Statistical Peak Temperature Prediction and
Thermal Yield Improvement for 3D Chip Multiprocessors”, ACM TODAES 19(4)
(2014), pp. 39:1-39:23.

[13] M. Jung, personal communication, 2013.
[14] A. B. Kahng, “New Game, New Goal Posts: A Recent History of Timing Closure”,

Proc. DAC, 2015, pp. 1-6.
[15] A. B. Kahng and X. Xu, “Local Unidirectional Bias for Smooth Cutsize-Delay

Tradeoff in Performance-Driven Bipartitioning”, Proc. ISPD, 2003, pp. 81-86.
[16] G. Karypis and V. Kumar, “Multilevel K-Way Hypergraph Partitioning”, Proc. DAC,

1999, pp. 343-348.
[17] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI

Networks”, IEEE Trans. on Computers 33(5) (1984), pp. 438-446.
[18] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani, C.-K. Cheng,

“Hierarchical 3-D Floorplanning Algorithm for Wirelength Optimization”, IEEE
Trans Circuits Syst I 53(12) (2006), pp. 2637-2646.

[19] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Design and CAD Methodologies for
Low Power Gate-level Monolithic 3D ICs”, Proc. ISLPED, 2014, pp. 171-176.

[20] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Placement-Driven Partitioning for
Congestion Mitigation in Monolithic 3D IC Designs”, IEEE TCAD 34(4) (2015),
pp. 540-553.

[21] T. Thorolfsson, G. Luo, J. Cong and P. D. Franzon, “Logic-on-logic 3D Integration
and Placement”, Proc. 3D Systems Integration Conference, 2010, pp. 1-4.

[22] IBM ILOG CPLEX. www.ilog.com/products/cplex/
[23] Synopsys Design Compiler User Guide. http://www.synopsys.com
[24] MLPart. http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart
[25] OpenCores: Open Source IP-Cores. http://www.opencores.org
[26] Synopsys PrimeTime User Guide. http://www.synopsys.com
[27] SDPA Official Page. http://sdpa.sourceforge.net/
[28] Cadence SOC Encounter User Guide. http://www.cadence.com

66 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

