
Dynamic Partitioning Strategy to Enhance
Symbolic Execution

Brendan A. Marcellino and Michael S. Hsiao

Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061 USA

Abstract—Software testing is a fundamental part of the soft-
ware development process. In the context of embedded-software
applications, testing can find defects which cause unprecedented
risks. The path explosion problem often necessitates one to
consider an extremely large number of paths in order to reach a
specific target. Symbolic execution can reduce this cost by using
symbolic values and heuristic exploration strategies. Although
various exploration strategies have been proposed in the past,
the number of SMT solver calls for reaching a target is still
large, resulting in long execution times for programs containing
many paths. In this paper, we present a dynamic partitioning
strategy in order to mitigate this problem, consequently reducing
unnecessary SMT solver calls as well. Using this strategy on
SSA-applied code, the code sections are analyzed in a non-
consecutive order guided by data dependency metrics within the
sections. Experimental results show that our dynamic strategy
can achieve significant speedups in reducing the number of
unnecessary solver calls in large programs. More than 1000×
speedup can be achieved in large programs over conflict-driven
learning techniques.

Index Terms—Symbolic execution, software testing, static anal-
ysis, embedded software, partitioning strategies

I. INTRODUCTION

Modern embedded software does not include recursion, in

order to avoid stack overflow. Software testing plays a critical

role in embedded software particularly for the development

process. According to [1], testing makes up roughly 50% of the

total development cost. With increasing code sizes, both scal-

ability and computational costs pose tremendous challenges

for testing. In order to tackle these issues, symbolic execution

have offered some relief by exploring the program state space

with symbolic values and heuristic search strategies.

Several symbolic execution techniques [2], [6], [7] have

been proposed for improving coverage analysis. Depth-First

Search (DFS) strategy, for instance, is a simple and popu-

lar technique. It serves as the basis for several exploration

strategies as it systematically traverses each path in a pro-

gram. However, this strategy is generally not scalable to

large programs due to the path explosion problem, in which

the number of paths grows exponentially with an increasing

number of conditional statements. Another popular technique

is the Breadth-First Search (BFS) strategy. This strategy has a

“Domino Effect” with the previous sections affecting the sub-

sequent sections. As a result, having fewer number of feasible

paths in the earlier sections may be advantageous to analyzing

supported in part by NSF grant 1422054.

those programs that have infeasible path segments early in

the code. Another work proposed by Jaffar [7] showed that

using interpolation for assisting concolic execution process

can prune redundant paths. Such paths can be subsumed if

the interpolant is implied as they can be guaranteed to not be

buggy. One issue with this approach is that path subsumption

is used to skip those paths which can only be guaranteed in

programs annotated with assertions.

A DFS-based strategy with conflict backtracking was pro-

posed in [2] using a conflict-driven learning strategy. This

strategy makes use of the unsatisfiable (UNSAT) core from the

SMT solver to derive any useful information about the conflict-

ing nodes. The idea is when an infeasible path is encountered,

it will nonchronologically backtrack to the nearest conflicting

nodes from its current position. Using this strategy, many

infeasible paths can be skipped to achieve better performance

in terms of a reduced number of calls as compared to the

basic DFS strategy. Even though such a strategy has better

performance than the first technique, extraction of UNSAT

cores may be expensive, and the one returned (from possibly

several UNSAT cores) may not be optimal.

In this paper, we propose a dynamic partitioning strategy

in order to overcome the aforementioned challenges. The idea

of partitioning is to divide the paths in a program into several

sections so that we can better identify the root cause of any

conflict. We introduce metrics to analyze data dependencies

among the sections to determine those sections that should be

grouped first in our analysis. The sections may not be adjacent

or consecutive in their order. As a result, we can potentially

eliminate a significant number of unnecessary solver calls

and better handle large programs. Because the original code

is completely represented in static-single-assignment (SSA)

form, our method will not call a feasible path infeasible,

even after some intermediate sections are removed. We use

Roslyn [8], a .NET compiler platform for static analysis. As

for the constraint solver, we use Z3 from Microsoft Research

[3]. Results show that our strategy can achieve significant

speedups. More than 1000× speedup can be achieved in large

programs over conflict-driven learning techniques.

The rest of the paper is organized as follows. Section II

discusses some backgrounds and fundamental theories. Section

III illustrates the motivation of our work. Section IV describes

our dynamic partitioning strategy. Section V discusses the

performance of the proposed strategy to previous works.

Finally, Section VI provides the concluding summary.

774978-3-9815370-6-2/DATE16/ c©2016 EDAA

II. BACKGROUND

In this section, we provide an overview of symbolic execu-

tion and sequential partitioning strategy.

A. Symbolic Execution

In symbolic execution [4], a program is executed using

symbolic values instead of concrete values. Upon the execution

of a program, a trace consisted of symbolic expressions along

the paths will be generated. The conjunction of all symbolic

expressions within a trace will form a path constraint. This

path constraint can be solved using a number of constraint

solvers, such as the Satisfiability Modulo Theories (SMT)

solver. If the SMT solver returns SAT (satisfiable), then there

would be a set of inputs that satisfy the current path. On

the other hand, if the solver returns UNSAT (unsatisfiable),

there does not exist any valid inputs that can simultaneously

satisfy all constraints along the given path. Even when the

path in infeasible, we can still derive useful information to

find the root cause of the problems by extracting the UNSAT

core which consists of a subset of clauses that the solver

has determined to be unsatisfiable. There may exist multiple

UNSAT cores for an infeasible path. Typically, a solver will

return only one UNSAT core.

Since a path might involve the same variable multiple times,

we need to use Single Static Assignment (SSA), which is com-

monly used in modern compilers, into our work. Using SSA,

we can differentiate variables that are being used in different

program points. This is also necessary because without SSA,

the solver will always return UNSAT for an expression with

conflicting constraints involving the same variable.

B. Sequential Partitioning

Sequential partitioning strategy uses BFS technique in order

to explore the program state space systematically. In this

strategy, code sections are analyzed sequentially which take

advantage of infeasible paths discovered in earlier sections.

By focusing on the limited set of sections, the reason for

any infeasible paths is confined to those sections in question.

This is in contrast to conventional learning strategies which

consider an entire undivided path and might not return the

unsat core that is nearest to the top of the path because there

might exist several reasons for an infeasible path. Thus, the

sequential partitioning helps the pruning process by indirectly

pushing the UNSAT core to near the top of the path. Any

conflicting segments in earlier sections will help to reduce a

significant number of solver calls for the subsequent sections.

III. MOTIVATION

In order to tackle the scalability challenges, a strategy has

been proposed in [2] which uses reachability graph of a

program to determine whether a branch needs to be explored

and introduces a conflict-driven backtracking strategy. In their

approach, an UNSAT core is extracted for every infeasible

path encountered. Since all paths that involve the same conflict

will be infeasible, we can backtrack immediately to the

conflicting node that is at the highest decision level. This

can significantly improve the basic DFS strategy by allowing

for non-chronological backtracking, eliminating many unnec-

essary solver calls.

However, there are limitations on such an approach for

programs with many data dependencies. Note that the solver

may not return the minimum nor the best unsatisfiable core.

It will also not generate all possible sets of conflicting clauses

from the original formula. Hence, the UNSAT core returned

is just one among several from the infeasible path.

An example of CFG is shown in Figure 1 to illustrate

the aforementioned problem. Note that nodes with a single

successor are assignments, while those nodes having two

successors are conditionals. Suppose we are interested in

analyzing a particular path 0 → 1 → 2 → 3 → 4 → 6

as highlighted in bold in Figure 1(a). Suppose this path is

infeasible, the solver will return UNSAT and produce a set of

conflicting clauses (UNSAT core) which is denoted as node

1 and 4 (grayed out) shown in Figure 1(b). Using the non-

chronological backtracking strategy, it will jump backward

multiple levels to the node at the highest decision level

according to the unsat core, which is node 4. The next step is

to store all conflicting nodes into a database so that it will skip

any paths that contain any of the unsat constraints. It will then

change the direction by negating node 4 in order to reach node

5 and continue the searching process from this point onward.

However, there may exist other reasons that can explain the

original infeasible path. One of which is the combination of

node 0 and 1 as shown in Figure 1(c). If this UNSAT core

was returned by the solver instead, it will allow the search

to backtrack more levels to node 1. After negating this node,

it will start analyzing in another direction towards node 8.

The difference in the number of solver calls between Figure

1(b) and 1(c) can be significant. This situation will become

even pronounced if we add more data dependencies in the

program because there might be nested problems within the

analyzed path. Tackling the problems in data dependencies in

large programs becomes our motivation since the SMT solver

may not return the best UNSAT core.

(a) (b) (c)

Fig. 1. An example of UNSAT core problems related to data dependencies

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 775

IV. DYNAMIC PARTITIONING TECHNIQUE

Partitioning a program is critical in this work because our

dynamic strategy will rely on the partition results. Poor parti-

tions will affect the results as they are ineffective in separating

valuable information. Partitioning is performed based on the

primary control statements of the programs. Any loops are

unrolled and function calls are inlined.
In order to make the technique effective, we need to

determine those sections that are best to analyze together

to maximize pruning opportunities. We introduce metrics to

determine which sections should be grouped and analyzed

together. The metrics use the amount of data dependencies

because there might be a higher chance of getting infeasible

paths in the parts of the code that have many data dependen-

cies. In addition, our strategy uses the extracted UNSAT cores

generated by the SMT solver to obtain the infeasible segments.

All infeasible segments will be recorded to avoid making the

same mistake in the future search.
In our work, data dependencies are defined as the relation-

ships between the assignment and conditional expressions of

a variable in a program. A path that assigns some variables

in certain statements and uses them in other conditional

expressions along the path is more likely to be infeasible, when

compared to paths that do not have data dependencies. Static

analysis must be used to analyze data dependencies which

utilizes the abstract syntax tree (AST) created by Rosyln [8].
First, data dependency is computed along each path in a

given section in the initialization phase. If the amount of

data dependency in a section is above a given threshold, then

the corresponding section will be analyzed, and only those

feasible paths are kept. Note that conflict-driven learning is

used in this initialization phase in order to remove any paths

that have conflicting segments. The next step is to compute

data dependency for each section pair. The sections with the

highest levels of data dependency will be chosen and merged

into a single group. Note that the original code is already in

SSA form, so the merged code has the correct versions of the

variable instances in the original context. Since the union of

both sections is considered as a new section, data dependency

should be re-calculated. The complete algorithm of dynamic

partitioning is described in Algorithm 1.

A. Individual Sections

Dynamic partitioning aims to group sections in a non-

sequential order. To do that, we need to determine which

sections should be analyzed first. One approach is to determine

which section has the potential for having the largest number

of infeasible paths. Data dependency plays an important role

in determining such predictions since the chance of getting in-

feasible paths increases as the expressions are more dependent

in each other along the paths.
Recall that data dependency exists in a path when some

variables are used in conditional expressions and the same

variables are assigned in other statements along this path.

The calculation is based on the percentage of paths having

data dependencies involving more than one variable. As the

Algorithm 1 Dynamic Partitioning

1: Initialize and transform programs to CFG

2: Partition programs into sections

3: for each section do
4: PathComb ← store all path combinations

5: α ← store its metric along with PathComb
6: end for
7: for each α > Threshold do
8: FilterPath ← store PathComb within α
9: if FilterPath does not contain UnsatPath then

10: solve() and update all feasible paths

11: end if
12: end for
13: Ω ← list all sections

14: while |Ω| > 1 do
15: for each pairwise combinations in Ω do
16: β ← store metrics for all possible combinations

17: end for
18: SectionComb ← find the largest metrics in β
19: FilterPath ← store path combinations in SectionComb
20: solve() and update all feasible paths

21: Merge all sections in SectionComb and update Ω
22: end while

percentage increases, there is more data dependencies affecting

those sections. Users can control the minimum threshold. A

lower threshold will allow more sections for merger, while

a higher threshold will increase the prediction accuracy by

considering fewer sections at a time. In our experiments, the

optimum threshold to achieve better performance was 80%.

B. Section Pairs

Analysis in individual sections gives a good start in reducing

the number of feasible paths. We now combine those feasible

paths in a section with other feasible paths from different

sections. However, which other section should be brought in?

In this work, we consider all possible section pairs since it is

only quadratic in complexity.

Section pairs that have the largest data dependency will most

likely contain infeasible paths. Thus, this step is to merge these

sections into a group consisted of all path combinations with

their components as well. The merged group is named after

the earliest section in the group. For example, suppose we

have four sections, and let sections 1 and 3 have the greatest

data dependency. After the analysis, they are merged into one

single group, called section 1. Section 3 is then deleted from

the database, as it is absorbed into section 1. Now, the data

dependency needs to be computed for section pairs (1, 2),

(1, 4), and (2, 4). Since the group ordering is important, we

created a novel algorithm to divide and merge all assignments

in an orderly manner when analyzing any selected pair of

sections. When merging the sections, all the involved sections

should be ordered correctly (after SSA is applied). Hence, the

analysis will still be accurate even though the sections are

added non-sequentially.

776 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

C. Coverage Analysis

Our dynamic approach can achieve a full coverage similar

to existing methods. However, we can achieve full coverage

much more quickly. Again, we note that all programs should

be translated into SSA form before performing the analysis.
Theorem 4.1: If a contiguous path in the original code is

feasible, our dynamic approach will never declare any subset

of this path as infeasible.

Proof Given a feasible contiguous path, the conjunction of

all symbolic expressions along the path (in SSA form) will

form its corresponding path constraint. If this path constraint

is feasible, then there exists a set of valid inputs that can

satisfy all constraints on this path. Thus, any subset of this

path constraint will also be satisfied by this valid input set.

Suppose there is a formula f = (S1, S2, S3) which

intersects with 3 sequential sections (S1, S2, and S3) in a

program. If f is satisfiable, then any subset of sections along

this path is also satisfiable, even if an intermediate section is

not considered in f.
Theorem 4.2: If a contiguous path is infeasible, our dynamic

approach may declare any subset of this path as either feasible

or infeasible.

Proof Given an infeasible contiguous path, its path constraint

would be unsatisfiable. For every unsatisfiable instance, there

exist one or more unsatisfiable cores. If an unsat core is

fully contained in the set of constraints for a subset of the

path in question, then this subset would also be unsatisfiable.

However, if no unsat core is contained in this subset, this

subset may be declared as feasible.

Consider an infeasible contiguous path whose path con-

straint is f = (S1, S2, S3). Suppose an UNSAT core involves

nodes in S1 and S2 as they cannot be satisfied together. Hence,

a path analysis involving S1 and S3 might yield satisfiable

since there is not enough information to make such a decision.

This is not a bad result, since this shows that our approach is

conservative. That is, we will never mistake a feasible path to

be an infeasible one.
In order to understand how arbitrary sections can be merged,

we will analyze two cases as shown in Figure 2. In both

examples shown in the figure, S1 and S3 will be intentionally

merged into a single section to be analyzed first, leaving

S2 to be analyzed later. In both cases, variable x is either

reassigned or used in all sections, making this variable is

heavily dependent across the sections. Before partitioning is

performed, the program is first converted to SSA form. In

Figure 2(a), the path constraint after merging S1 and S3 would

be (x1 = 5) ∧ (y = x2). In this case, x2 is treated as

an independent input variable, since its definition was in S2

(currently excluded in the partition). As a result, the analysis

will be based on an over-approximation because the real x2
is not being considered. On the other hand, Figure 2(b) shows

that variable x1 is being used in both sections S2 and S3.

The use of x1 in S2 will have no effect on the merging S1

and S3 since there is no data dependency among all sections.

Thus, our approach is sound as it will eventually identify all

infeasible paths as well.

(a) x is reassigned in S2 (b) x is used in both S2 and
S3

Fig. 2. An example of how arbitrary sections can be merged after translating
into SSA form

Our dynamic approach also orders the sections to be an-

alyzed. This must be done because the program runs in a

sequential order. Changing the order of the sections must not

change the structure of the programs. Given an example in

Figure 2, after merging S1 and S3, we will later add S2 into

our analysis and place it between S1 and S3. Therefore, when

this analysis is conducted, the path will traverse from S1 to

S3 sequentially as in their original order.

V. EXPERIMENTAL RESULTS

The experiments were performed on a 3.2GHz Intel Xeon

machine with 8GB of RAM. They were tested on a number

of control-intensive C# test cases. Any loops are unrolled and

we analyze only the body of the loop to demonstrate the

scalability of the proposed approach. The first set of test cases

are handcrafted with random assignments and the number of

conditionals as the controlling factor. The values of several

variables are modified to be used in later parts of the programs

to create data dependencies among those variables. A second

set of test cases consisted of real-world C# programs are also

reported. Tables I and II consist of the same test cases that

are automatically extracted into 3 and 6 sections, respectively,

using the partitioning technique described in Section IV. #

conds denotes the number of conditionals in the test cases. We

compared the number of SMT solver calls by our partitioning

strategy with the traditional Depth-First Search (DFS) strategy,

the sequential partitioning strategy and the previous work

which uses conflict-driven backtracking strategy (DFS + CDL)

[2]. The speedup was calculated to see the impact of our

dynamic strategy and the sequential strategy to (DFS + CDL)

[2]. In order to make a fair comparison, we used the same SMT

solver, Z3 [3], to evaluate all strategies in each test cases.
Table I compares the results between our partitioning strate-

gies (code divided into 3 sections) with (DFS + CDL). The

DFS strategy is used for evaluating the total number of paths

available in each test cases. In other words, the computation

cost for DFS would be the worst among others due to the

lack of search optimization and will not be considered for

computing the speedup. Instead, the speedup achieved is

compared only against DFS + CDL.
It can be seen from Table I that even sequential partitioning

can outperform the conflict backtracking strategy in most cases

because it helps to restrict the UNSAT core to near the top of

the infeasible path. Our dynamic partitioning achieves another

substantial speedup over sequential partitioning for many

instances. The first test, tc1, is one of the smallest programs

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 777

TABLE I
RESULTS FOR 3-SECTION PARTITIONS

Test Case # conds DFS
DFS+CDL Sequential Dynamic

calls Time (s) calls Time (s) Speedup calls Time (s) Speedup

tc1 24 5184 129 5.4 88 5.42 - 47 4.28 1.26

tc2 24 5184 471 13.8 350 12.36 1.16 114 6.34 2.17

tc3 32 50176 7612 138 204 8.1 17.03 77 5.21 26.48

tc4 44 321489 25269 606 639 22.07 27.45 140 6.7 90.44

tc5 48 531441 29695 648 405 13.95 46.45 127 6.19 105

tc6 48 531441 33515 792 729 24.86 31.85 153 7.06 112

tc7 52 810000 44604 1044 850 30.62 34.09 169 7.26 144

tc8 54 705600 68755 1554 1320 32.39 47.97 212 8.72 178

tc9 58 1.1M 87880 1992 1491 57.58 34.59 225 8.87 225

tc10 62 1.8M 145742 3690 1944 80.08 46.07 261 9.71 380

tc11 64 2.2M 186005 4578 2166 95.09 48.14 286 10.58 433

tc12 68 3.4M - - 2386 123 > 58.53 350 12.94 > 556

’M’: millions ’-’: timeout of 2 hours

TABLE II
RESULTS FOR 6-SECTION PARTITIONS

Test Case # conds DFS
DFS+CDL Sequential Dynamic

calls Time (s) calls Time (s) Speedup calls Time (s) Speedup

tc1 24 5184 129 5.4 47 3.66 1.59 44 3.63 1.61

tc2 24 5184 471 13.8 201 6.9 1.99 127 5.49 2.52

tc3 32 50176 7612 138 69 4.15 33.25 59 4.01 34.41

tc4 44 321489 25269 606 159 6.02 101 111 5.14 118

tc5 48 531441 29695 648 99 4.66 139 105 4.7 138

tc6 48 531441 33515 792 171 6.39 124 111 5.13 154

tc7 52 810000 44604 1044 184 6.65 157 147 6.24 167

tc8 54 705600 68755 1554 296 9.36 166 202 7.18 216

tc9 58 1.1M 87880 1992 313 9.84 202 222 7.97 250

tc10 62 1.8M 145742 3690 378 11.68 316 256 8.65 427

tc11 64 2.2M 186005 4578 412 12.6 363 235 8.42 544

tc12 68 3.4M - - 428 13.59 > 530 255 9.1 > 791

’M’: millions ’-’: timeout of 2 hours

in our experiments with only 24 conditional statements. The

conflict backtracking approach performs worse than our dy-

namic strategy but better compared to the sequential strategy.

Results for all other test cases showed speedups from our

approach, indicating that the non-partitioning strategy does not

scale for larger programs. With three sections, the sequential

partitioning strategy can achieve up to nearly 2 orders of

magnitude speedup while the dynamic partitioning strategy

was able to achieve up to nearly 3 orders of magnitude speedup

over DFS + CDL. In fact, as the programs get bigger and

data dependencies starts playing an important role, dynamic

approach achieved greater speedups over the DFS + CDL

strategy compared to the sequential approach. It can also be

seen that the differences on the number of solver calls between

our strategy and DFS + CDL grew wider. The largest speedup

was seen in tc12, in which the dynamic approach was faster

more than 556× than DFS + CDL.

Table II reports results for the same test cases that are

divided into 6 sections. Partitioning strategies showed effec-

tiveness in dealing with large programs by having significant

speedups in most cases. The biggest speedup was achieved by

dynamic approach in tc12 that has more than 3.4 million paths

which is able to perform 791× faster than DFS + CDL. For

this test case, the DFS + CDL timed out after 2 hours.

In some cases, even when our partitioning strategies have

the same number of solver calls as DFS+CDL, the execution

times can be quite different. This is because with partitioning,

many of the paths that need to be solved involve only a subset

of the sections rather than the complete path, which result in

smaller formula with fewer path-predicates. In tc8 from Table

I and tc9 from Table II, for instance, the total number of solver

calls for both test cases in our dynamic strategy were 212 and

222, respectively. However, tc9 had a smaller execution time

compared to tc8 because more predicates were included on

average in Table I than in Table II due to larger section sizes

in the 3-section case.

778 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

TABLE III
RESULTS FOR REAL-WORLD C# PROGRAMS

Test Case # conds # sections DFS
DFS+CDL Sequential Dynamic

calls Time (s) calls Time (s) Speedup calls Time (s) Speedup

score 11 11 2048 276 8.83 22 2.99 2.95 22 3.3 2.67

score 2 22 22 4.1M - - 44 5.37 > 1340 44 5.2 > 1387

sparsemtx 16 16 65536 145 10.08 32 3.63 2.77 31 3.37 2.99

sparsemtx 2 32 32 4.3B - - 64 5.27 > 1366 63 4.89 > 1472

sequence 42 7 823543 5538 143 49 3.6 39.72 42 3.42 41.81

sequence 2 84 14 > 500B - - 98 6.89 > 1044 91 5.94 > 1212

bubblesort 28 28 268M 77 4.61 56 3.68 1.25 55 3.76 1.22

bubblesort 2 56 56 > 1000B 229 14.47 112 9.23 1.56 111 8.87 1.63

shellshort 61 61 536M 218 12.85 122 8.94 1.43 121 7.65 1.68

shellshort 2 122 122 > 1000B 751 62.51 244 34.87 1.81 243 32.38 1.93

’M’: millions ’B’: billions ’-’: timeout of 2 hours

From Tables I and II, we see that increasing the number of

sections from 3 to 6 generally will reduce the total number

of solver calls, which also significantly reduce the execution

times needed. By having fewer sections, the total number of

individual paths that need to be analyzed will be larger, thus

increasing the overall analysis time. In tc12, for instance, the

number of solver calls in Table II was only 428 (sequential

strategy), which is 5× smaller than 2386 in Table I. This

resulted in a 9× faster execution than the 3-section partition.

The execution times taken for DFS + CDL for most test

cases are generally longer than our strategy. In Table II, the

partitioning strategies took less than 15 seconds for all test

cases while DFS + CDL took less than a minute for only 2

test cases (tc12 and tc22). Starting from tc32, the number of

calls performed by DFS + CDL increased significantly which

also significantly increased the execution times.

In order to see the effect of our strategy in real programs,

we chose five C# programs as shown in Table III and report

the performance of both the previous work (DFS + CDL)

and sequential and dynamic strategies. These programs consist

of arrays, intensive loops and arithmetic/relational operations.

Since our strategy analyzes the loop-free portions of the code,

any loops need to be unrolled before being able to start the

analysis. We also duplicated their structures to assess the

performance of all strategies in large programs. # sections
denotes the number of partitions in the test cases.

It can be seen from Table III that both sequential and

dynamic strategies can outperform previous approaches in all

cases. In some cases, such as score, sparsemtx, and sequence,

when the loop unrolling is doubled, DFS + CDL was timed out

resulting in a speedup of more than 1000× with both strate-

gies. This shows that the amount of savings could increase

exponentially with an increasing size of the program.

Score consists of multiple cascaded IF-ELSE statements

without any nested conditions. Sequential and dynamic strate-

gies have the same number of solver calls because any un-

reachable IF condition will result in skipping the same number

of subsequent unnecessary solver calls. However, DFS + CDL

was not able to produce the same result as this strategy does

not always get the best UNSAT core for an infeasible path.

In addition, there is no nested conditions in bubblesort and

shellsort making sequential and dynamic strategies to produce

similar results. The speedup was similar even after duplicating

the structures since the previous work was still able to reduce

many solver calls and avoid many unsat core problems.

VI. CONCLUSION

In this paper, we presented a dynamic partitioning strategy

for improving symbolic execution by reducing the number of

unnecessary solver calls while still covering all paths. We have

shown that our strategy is able to achieve significant speedups

especially in large programs. Our approach performs better

among all strategies due to its ability to perform in non-

sequential ordering of program sections based on data depen-

dency metrics. The number of solver calls were significantly

reduced, resulting in more than three orders of magnitude

speedup in some cases.

REFERENCES

[1] G. J. Myers, Art of Software Testing. New York, NY, USA: John Wiley
& Sons, Inc., 1979.

[2] S. Krishnamoorthy, M. Hsiao, and L. Lingappan, “Tackling the Path
Explosion Problem in Symbolic Execution-driven Test Generation for
Programs” Asian Test Symposium, pp. 59-64, 2010.

[3] L. de Moura and N. Bjorner, “Z3: An Efficient SMT Solver,” Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), vol.
4963, pp. 337-340, 2008.

[4] J. C. King. Symbolic Execution and Program Testing. Communications
of the ACM, vol. 19, pp. 385394, 1976.

[5] L. de Moura and N. Bjorner. Satisfiability modulo theories: introduction
and applications. Comm. of the ACM. Vol. 54, pp. 69-77, 2011.

[6] K. L. McMillan, “Lazy Annotation for Program Testing and Verifica-
tion,” in Proc. Computer Aided Verification, pp. 104-118, 2010.

[7] J. Jaffar, V. Murali and J. A. Navas, “Boosting concolic testing via inter-
polation,” in Proc. Joint Meeting of the European Software Engineering
Conference and the Foundations of Software Engineering, pp. 48-58,
2013.

[8] “.NET Compiler Platform (“Roslyn”)”. https://roslyn.codeplex.com.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 779

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

