
Automatic generation of power state machines
through dynamic mining of temporal assertions

Alessandro Danese
Department of Computer Science

University of Verona, Italy
Email: alessandro.danese@univr.it

Graziano Pravadelli
Department of Computer Science

University of Verona, Italy
Email: graziano.pravadelli@univr.it

Ivan Zandonà
Department of Computer Science

University of Verona, Italy
Email: ivan.zandona@studenti.univr.it

Abstract—Several papers propose approaches based on power
state machines (PSMs) for modelling and simulating the power
consumption of system-on-chips (SoCs). However, while they
focus on the use of PSMs as the underlying formalism for imple-
menting dynamic power management techniques, they generally
do not deal with the basic problem of generating PSMs. In
most of these papers, PSMs just exist, in some cases they are
manually defined, and only a few approaches give a hint of semi-
automatic generation, but no fully-automatic approach exists
in the literature. Indeed, without an automatic procedure, an
accurate power characterization of complex SoCs by using PSMs
is almost impossible. Thus, in this paper, first a methodology
for the automatic generation of PSMs is proposed, and then,
a statistical approach based on a Hidden Markov Model is
presented for their simulation. The core of the approach is
based on a mining procedure whose role consists of extracting
temporal assertions describing the functional behaviours of the
IP, which are then automatically mapped on states of the PSMs
and characterized from the energy consumption point of view.

I. INTRODUCTION

Power state machines (PSMs) are a well-known formalism
to model and simulate the time-based energy consumption
of IP cores for early virtual prototyping of system-on-chips
(SoCs) [1], [2], [3], [4], [5], [6]. In this context, the PSMs of
IPs included in the model of the target SoC are controlled by
a power manager to allow the exploration of different dynamic
power management solutions [7].

In a PSM, the energy behaviours of the IP are associated
to a set of states. In its simplest form, the power consumption
of each PSM state is modelled as a constant value derived
by a designer estimate or from the IP’s data sheet [1], [2].
When a higher level of accuracy is desired and more precise
information about the IP’s energy behaviours are available,
the power consumption of a PSM state is computed by a more
complex function. For example, in [3], [5], such a function
is derived by means of a calibration process based on linear
regression, which exploits, as golden reference, power traces
generated at gate level, where the IP’s power consumption
can be more precisely estimated. However, despite of the
wide adoption of PSMs, in the most of the works either the
presence of PSMs is assumed [1], [2], [7] or they are manually
defined starting from a more or less precise knowledge of the
functional blocks composing the target IP [4], [6]. Only in
a few cases, automatic approaches are proposed to create the
association between PSM states and their power consumptions,
but the identification of such states remains manual [3], [5].
Unfortunately, such a manual definition reveals to be inap-
propriate for the power characterization of complex designs
leading to the generation of a less-accurate simplified model.

To allow a more precise definition of PSMs, this paper
presents a fully-automatic methodology for their generation
and an efficient statistical approach for their simulation. The
proposed methodology does not require to instrument the

This work has been partially supported by the EU project CONTREX (FP7-
2013-ICT-10-611146).

�������	
����

����

����	
�����������

�
����	
������

�	���	
��
��

�����

�������
��������	
��

������

����	
��
������
�����������������	
���

�
����
�����	
��

�
�����������

 �����	
��
�������
�����!�
����"��
��#�$�
����

 �����	
��
���������!��������
����	
����
�����	
��

%��
����
�����	
���

�����

�����&
��$���$�������
��
�
�����!�

Fig. 1. Methodology overview.

functional model of the target component and it can be applied
even in case of black-box IPs. It only assumes the availability
of two kinds of training traces: a set of functional traces
exposing the IP’s behaviours, and a corresponding set of
power traces over time that characterize the dynamic part
of the IP’s energy consumption depending on its switching
activity. The way training traces are generated is independent
from the proposed methodology, however their quality highly
impacts on the accuracy of the final PSMs. In particular, if
the functional traces were unable to cover all the functional
behaviours of the IP, the PSMs would be incomplete, thus
leading to a wrong estimation of the power consumption, each
time the PSMs encounter an unknown behaviour during their
simulation. On the other side, the use of not-accurate power
traces for characterizing the energy consumption associated to
the states of the PSMs will negatively reflect on their precision.
To rely on a high-quality set of training traces, functional
traces are generally obtained by simulating the IPs with the
testbenches used for their system-level functional verification,
while accurate power traces can be generated by running a
gate-level power simulator, like Synopsys PrimeTime PX [8],
on the same functional traces.

Fig. 1 shows an overview of the methodology. It starts by
dynamically mining temporal assertions from the functional
traces. Such assertions are logic formulas that capture the
functional behaviours of the IP over time [9]. From them,
the states and the transitions of a corresponding set of PSMs
are generated, under the hypothesis that different functional
behaviours may expose different power consumptions. Then,
each state is associated to a power consumption by exploiting
the reference power traces. The obtained PSMs are then
merged and optimized to generate a compact set of more
accurate PSMs. These PSMs are finally implemented into a
SystemC module, in the form of a Hidden Markov Model
(HMM) [10], to allow their efficient and effective simulation
concurrently with the simulation of the IP functional model.

The rest of the paper is organized as follows. Section II
introduces preliminary definitions. Section III presents the
mining approach for the generation of the initial set of
PSMs. Section IV describes how PSMs can be combined
and optimized to obtain a more compact and accurate set of

606978-3-9815370-6-2/DATE16/ c©2016 EDAA

PSMs. Section V deals with the HMM-based simulation of the
combined PSMs. Finally, Section VI and Section VII conclude
the paper with experimental results and final remarks.

II. PRELIMINARIES

The following definitions are necessary to formalize the
methodology proposed in the rest of the paper.

Definition 1. An atomic proposition is a logic formula that
does not contain logic connectives. A proposition is a com-
position of atomic propositions through logic connectives. A
temporal assertion is a composition of propositions through
temporal operators.

The proposed methodology mines assertions based on the
temporal operators next and until belonging to the linear time
logic (LTL). According to the semantic of LTL, if p and q are
LTL assertions, then next p is true if p holds at the next instant,
and p until q is true if p remains true until q becomes true.

Definition 2. Given a finite sequence of simulation instants
〈t1, . . . , tn〉, the set of variables V representing primary inputs
(PIs) and primary outputs (POs) of a model M , and a
set of propositions Prop predicating over V , a functional
trace of M is a finite sequence Φ = 〈φ1, . . . , φn〉, where
φi = eval(V, ti) is the evaluation of variables in V at
simulation instant ti; a proposition trace is a finite sequence
Γ = 〈γ1, . . . , γn〉, where γi ∈ Prop is the proposition that
holds at simulation instant ti; and a power trace is a finite
sequence Δ = 〈δ1, . . . δn〉, where δi is the dynamic energy
consumption of M at simulation instant ti according to the
formula δi = 1

2V
2
ddfC · α(ti), being C the total switched

capacitance, Vdd the supply voltage, f the clock frequency,
and α(ti) the switching activities of M at time ti.

Definition 3. A power state machine is defined as a 7-tuple
PSM=〈I,O, S, S0, E, λ, ω〉, where I is the input alphabet, O
is the output alphabet, S is a set of states, S0 ⊆ S is the set of
initial states, E is a set of enabling functions e : I → {0, 1},
λ : S × E → S is the transition function, ω : S → O is the
output function that produces the power consumption.

Figure 2 shows an example of a PSM composed of three
power states that characterize the power consumption of the
IP when it is turned off, idle and operating with three different
constant values (0mW, 15mW and 100mW). Input symbols are
associated with the values that can be assumed by the primary
inputs of the IP, (i.e, on, ready and start). Enabling functions
are represented as guards associated to edges.

III. PSM GENERATION

A. Mining of the IP’s functional behaviours
Given a set of functional traces, the behaviours of the corre-

sponding IP is captured through a set of proposition traces that
are automatically generated by a mining procedure. Among
the several approaches existing in the literature, we adopt the
mining technique described in [9]. It works in two phases.
In the first phase, for each functional trace Φ, the procedure
extracts a set of atomic propositions, which hold frequently
on Φ, predicating over the PIs and POs of the IP. The atomic
propositions represent relations between PIs and POs of the
IP that hold in a set of subtraces of Φ. The output of this
phase is represented by a matrix m, where the generic element

Fig. 2. An example of a power state machine.

���� �����

�� ���

'� ���

�� ���

�� ���

�� ���

�� ���

�� ���

(� ���

�� �	
�

	
��������
�
������

���� ��	���

�� ������

'� ������

�� ������

�� '�����

�� '�����

�� '�����

�� ������

(� ������

�� �	
�

������������
�
�
������

��������
������������

���� ��� ��� ��� ���
�� ���� ��
��� �� '�

'� ���� ��
��� �� '�

�� ���� ��
��� �� '�

�� ��
��� ���� �� ��

�� ��
��� ���� �� ��

�� ��
��� ���� �� ��

�� ���� ���� �� ��

(� ���� ���� �� '�

�� �� �� �� ��

���������
���������������������
������������������
�����������

����������
�
������

�����������������������������
����������������������������

Fig. 3. A functional trace and its proposition and power traces.

in position [i, j] reports the truth value of the j-th atomic
proposition at the i-th time instant of the functional trace. In
the second phase, the atomic propositions are combined into a
set Prop of propositions, such that in each simulation instant
of Φ one and only one of propositions belonging to Prop
holds. In particular, a composition procedure generates one
proposition from each row of the matrix m by composing in an
AND formula all atomic propositions that are marked as true.
Finally, the proposition trace is obtained by identifying which
proposition is true in each simulation instant of the functional
trace. The extracted propositions are used to generate temporal
assertions that capture the functional behaviours of the IP
exposed by the functional trace. Such behaviours are then
mapped on states of the PSM as described in Section III-B.

An example of proposition trace generation is reported in
the left side of Fig. 3, Given, the functional trace Φ, atomic
propositions that frequently hold on it are, for instance, v1 =
true, v2 = false, v3 > v4, etc. After their extraction, the
mining procedure generates the proposition trace composed of
propositions pa, pb, pc and pd that hold, respectively, in the
intervals [0, 2], [3, 5], [5, 6] and [6, 7].

B. Generation of states and transitions
The assumption under the use of a PSM to model the

dynamic power of an IP is that there is a correspondence
between a specific functional behaviour (characterized by
a switching activity) and its energy consumption. Thus, to
generate a PSM, first we mine the IP functional behaviours
and then we associate a power consumption to each of them.

Before presenting technical details, let us describe the
intuitive idea underlying the proposed approach. By observ-
ing a time window between two simulation instants we can
observe that the functional behaviours of an IP follow two
temporal patterns, namely, next and until. These two patterns
generally alternate when the IP is operating, such that we can
observe several consecutive instants where the IP remains in a
(sequence of) stable condition(s) from the functional point of
view (until pattern), followed by an arbitrarily-long sequence
of jumps among different states (next pattern), before reaching
a new stable condition. Moving from one behavioural pattern
to another, the energy consumption varies as well. Thus, the
basic idea for the automatic generation of a PSM consists
of capturing the sequence of until and next patterns exposed
by the IP during its activity and associating to them the
corresponding energy consumption.

More formally, given si and sj characterizing two func-
tional states of an IP, the meaning of the next and until patterns
can be described as follows:
• the next pattern siXsj corresponds to the temporal assertion
(state = si) → next(state = sj) specifying that after si, at
the next instant, the IP moves to sj ;

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 607

• the until pattern siUsj corresponds to the temporal assertion
(state = si) until (state = sj) specifying that sj is preceded
by a sequence of time instants where the IP stays in si.

According to the mining procedure described in Sec-
tion III-A we can associate a functional trace with a proposition
trace that formalizes the functional behaviours of the IP as a
sequence of propositions holding on the different time instants.
Thus, to automatically extract the functional behaviours of the
IP it is sufficient to search for the until and next patterns
inside the proposition trace. For example, let us consider the
proposition trace Γ reported in Fig. 3. Starting with the time
instant 0, Γ exposes the following behaviours: paUpb, pbUpc,
and pcXpd, respectively, in the intervals [0, 2], [3, 5], and [6, 7].
Thus, we derive that there are three functional behaviours that
must be associated to three power states of the PSM.

Entering in the technical details, to automatically extract
the next and until-based behaviours, and thus defining the
corresponding PSM states, we defined the PSMGenerator
procedure described in Fig. 4, and the XU automaton shown
in left side of Fig. 5. The inputs of the procedure are a
proposition trace Γ, a dynamic power trace Δ, and a reference
to the PSM that will be created. The core of PSMGenerator
is represented by the XU automaton. At the beginning, the
XU automaton is initialized by the function XU_initialize (line
2) whose role consists of filling in a FIFO data structure f
with the two propositions corresponding to instants 0 and 1 of
Γ, and setting the current state of the automaton to X. Then,
the function XU_getAssertion (line 5) iteratively traverses the
XU automaton till an assertion corresponding to one of the
temporal patterns X,U is identified in Γ. During the traversal,
each time a transition is taken on the XU automaton the FIFO
scrolls forward by one position on Γ. As soon as a temporal
assertion is identified in Γ, the function XU_getAssertion
returns the triplet 〈p, start, stop〉. The start and stop indexes
capture the time interval where p holds in Γ.

For each mined temporal assertion, the following steps are
then performed (lines 7-13):
1) getPowerAttributes is called (line 7) to collect the triplet
〈μ, σ, n〉, where, n = stop− start+ 1 is the number of time
instants where the assertion holds, μ is the mean of the energy
consumption values reported in the dynamic power trace Δ in
the time interval [start, stop], and σ is their standard deviation.
In the following we will refer to the triplet 〈μ, σ, n〉 with the
term power attributes.
2) createPowerState is called (line 8) to create a new state
of the PSM characterized by the temporal assertion p and by
the power attributes 〈μ, σ, n〉. The output function of the state
is represented by the constant value μ. The new state is then
added to the PSM by the function addState (line 9).
3) for all the new states except the first, createTransition is
called (line 11) to create a transition t between the new state
new_s and the previously extracted state prev_s. The enabling
function e labelling t is represented by the proposition included
in element f [1] of the FIFO when XU_getAssertion stops and
recognizes a pattern for prev_s. Finally, addTransition adds
1: procedure PSMGENERATOR(Γ,Δ, PSM)
2: XU_initialize(Γ)
3: prev_s = nil
4: while true do
5: 〈p, start, stop〉 = XU_getAssertion(Γ)
6: if p == nil then break end if
7: 〈μ, σ, n〉 = getPowerAttributes(Δ, start, stop)
8: new_s = createPowerState(p, 〈μ, σ, n〉)
9: addState(new_s, PSM)

10: if prev_s �= nil then
11: 〈t, e〉 = createTransition(prev_s, new_s)
12: addTransition(〈t, e〉, PSM)
13: end if
14: prev_s = new_s
15: end while
16: end procedure
Fig. 4. PSM generation.

�������������

��	�� ����� �����

� ��� ���
�� ��� ���
�� ��� �	�
)� �	� �	�
*� �	� �	�
+� �	� �
�
,� �
� ���
-� ��� ���

.� ��� ��

������	��������������

�������� ������������� ��

��
��
�� ������	� �	�
��
��
�� �	����
� �
�
�� �
������
��
��

���)�)*-�
���
�

-�
���)��

�����/�-�
���
�
�)�
���)��

���)�)+
�
���
�
�����

����

�	�

�
�

��

��

���	�������	�

����������������
 ��������!��"�#�

���	�������	�

����������������
 ��������!��"�#�

���	������	�

����!��"��!�
�������������

���	������	�

����!��"��!�
������������� �����������	�

Fig. 5. The XU automaton and the exemplification of the procedure of Fig. 4.

the transition to the PSM (line 12).

To clarify how the PSMGenerator procedure works, the
right side of Fig. 5 exemplifies its application to the proposition
trace Γ and the power trace Δ reported in Fig. 3. The XU
automaton initially moves from X to U because at time 0 the
condition f [1] = f [0] is satisfied. This means we are going to
see at least two consecutive instances of the proposition pa in
Γ (at times 0 and 1), and thus we are going to recognize an
until pattern. Then, at time 1 the FIFO is scrolled forward,
and the automaton remains in U because f [1] = f [0] is
still true. Finally, at instant 2 the automaton exits U and
comes back to X because f [1] �= f [0], and consequently
XU_getAssertion recognizes the assertion paUpb and returns
the triplet 〈paUpb, 0, 2〉 which corresponds to the first state
of the PSM. The state is then populated with the mean and
the standard deviation corresponding to the values of the power
trace Δ in the interval [0,2]. At instant 3, the automaton moves
again to U starting the capture of a new until pattern. The exit
condition from U is reached at the instant 5 when f [1] �= f [0]
with the recognition of pbUpc in the interval [3, 5]. Thus a
new state is created and connected to the first state with a
transition whose enabling function is pb, namely the value of
f [1] at time 2 when the first state based on the until pattern
was created. In a similar way, the PSMGenerator procedure
mines the final state corresponding to pcXpd and it completes
when nil is encountered. At the end, the PSM reported on the
right of Fig. 5 is obtained.

C. Simulation of a single PSM
The PSM generated by the previous methodology is in the

form of a chain of states, where each state has a unique suc-
cessor and a unique predecessor. Its simulation is synchronized
with the simulation of the corresponding IP by connecting
primary inputs and outputs of the IP to the PSM. In this way,
at each simulation instant, the values assumed by PIs and POs
of the IP are passed as inputs to the PSM, which decides
how to move according to the temporal assertion characterizing
its current state. When the PSM is in a state s it checks its
associated temporal assertion p, whose satisfiability depends
on the functional behaviour captured through PIs and POs of
the IP. If p follows the until pattern paUpb, the PSM stays
in s till pa is true and it moves to the next state as soon as
pb becomes true. On the contrary, if p follows the next pattern
paXpb, the PSM moves to the next state at the next simulation
instant. The enabling function of the transition outgoing from
the current state s is satisfied by construction, because, in both
cases, it corresponds to the exit condition represented by the
activation of proposition pb.

It is worth noting that if the PSM extracted by the pro-
cedure of Fig. 4 is stimulated by adopting a functional trace
different from the one used for its generation, the power con-
sumption estimated by the PSM may be wrong when it reaches
a state characterized by an unexpected temporal assertion. This
is due to the fact that the PSM exactly resembles the temporal
assertions mined in the proposition trace extracted from the
reference functional trace. For example, let us consider a PSM
reaching a state s whose temporal assertion is paUpb. Then,

608 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

suppose that when the PSM enter s, pa is true for a while till
pa becomes finally false, but at that instant pb continues to
remain false as well. In this case, the PSM cannot traverse
the outgoing transition of s because pb is expected. Thus,
it remains in s losing the correct synchronization with the
functional trace and generating a wrong power estimation.
This limitation is overcome by generating and combining
together several PSMs extracted by a set of different func-
tional traces. More the functional traces are representative of
all combinations of IP behaviours, lower is the probability
of loosing the synchronization between the functional trace
and the power simulation. The combination and simulation
of different PSMs corresponding to the same IP and their
optimization is described in the next sections.

IV. COMBINATION AND OPTIMIZATION OF PSMS

Given a set of PSMs P , generated for the same IP ac-
cording to the procedure proposed in the previous section, we
propose an automatic methodology to create a reduced and
optimized set of PSMs Popt.

The first step of the methodology consists of calling the
simplify procedure for each PSM in P . The PSMs extracted by
the PSMGenerator of Section III-B are in the form of a chain
of states. The effect of simplify is to shorten such chains, if
possible. Thus, for each PSM in P , simplify iteratively merges
into a single state, a sequence of adjacent states which are
“mergeable” from the power point of view. Intuitively, two
adjacent states si and si+1 are mergeable when the means
μi and μi+1 of energy consumptions associated respectively
to si and si+1 are “similar”, and their standard deviations σi
and σi+1 are “low”. For now, the meaning of terms “similar”
and “low” is intuitively understandable to capture the notion
of mergeable states, while technical details are reported in
Section IV-A.

According to Section III-B, a state s of a PSM is char-
acterized by the two triplets 〈p, start, stop〉 and 〈μ, σ, n〉.
When a sequence of adjacent mergeable states 〈si, . . . , si+j〉
is found, they are substituted by a new state snew whose
triplets 〈pnew, startnew, stopnew〉 and 〈μnew, σnew, nnew〉 are
computed as follows:
• startnew = starti; stopnew = stopi+j ; and nnew =
ni + ni+1 + · · · + ni+j ;
• pnew = {pi; pi+1; . . . ; pi+j}, which represents that first pi

holds in the interval [startnew, stopi], then pi+1 immediately
follows in the interval [starti+1, stopi+1], and so on till pi+j

finally holds in the interval [starti+j , stopnew].
• μnew and σnew are, respectively, the mean and the standard
deviation of the energy consumption values reported in the
interval [startnew, stopnew] of the reference power trace.

Finally, snew is connected with the predecessor si−1 of
si and the successor si+j+1 of si+j through the transition
outgoing from si−1 and ingoing to si+j+1. The procedure
iteratively executes till no new mergeable state is found.
Figure 6(a) graphically exemplifies the effect of simplify on
a sequence composed of two states.

After the application of the simplify, the resulting PSMs are
merged into a reduced set P ′ by means of the join procedure.
It works similarly to simplify by collapsing mergeable states,
but in this case they are not required to be adjacent and they
can belong to different PSMs. As a consequence, the triplets
characterizing the new state are computed in a different way
with respect to simplify. In particular:
• startnew and stopnew become two arrays whose generic
element i contains, respectively, the start and stop value of the
merged state si, while nnew becomes the sum of values n of
the merged states;
• pnew = {pi||pj || . . . ||pk}, which represents that each time

�����������
���	
����
������

���

�����	��
����
������

������
����
���	
��	�
�����

��� ���

������� �

!�������"� !�������"�

���

���

!����������������"�

����

����������
����
���
������

�����������
���������
���
�	��

����������
���	����
�����������

����

!�������"� !�������"�

���

!��������##��������"�

���

����

�$���

Fig. 6. Exemplification of procedures simplify and join.

snew is entered one of the assertions characterizing the set of
merged states {si, sj , . . . , sk} is satisfied and then, when it
becomes false, snew is left.
• μnew and σnew are, respectively, the mean and the standard
deviation of the energy consumption values reported in the
interval [starti, stopi] of the reference power trace for each
merged state.

Finally, snew is connected with the predecessors and
the successors of all merged states through the transitions,
respectively outgoing from the predecessors and ingoing to
the successors. The procedure iteratively executes till no new
mergeable state is found. Figure 6(b) graphically exemplifies
the effect of join on two not-adjacent states.

At the end of the join, we obtain a new set P ′ of more
compact PSMs, whose cardinality can be lower than the
cardinality of the original set P , if the join merged at least
two states belonging to different PSMs of P . It is worth noting
that, in a particular case, the join generates a not-deterministic
PSM. This happens when the join merges states that are
characterized by the same temporal assertions and have the
same enabling functions in the respective ingoing transitions
and the same enabling functions in the respective outgoing
transitions. In this case, when we enter such a collapsed
state during simulation, we cannot deterministically decide the
transition to be traversed when the state is left. The simulation
of such a not-deterministic PSMs is guaranteed by exploiting
an Hidden Markov Model (HMM), as described in Section V.

The final step of the methodology transforms the set of
PSMs P ′ in a more accurate final set Popt by acting on power
states with a “too high” standard deviation σ. These states have
a high probability of being data-dependent from the energy
consumption point of view, i.e., when the IP is in one of such
states the energy consumption strictly depends on the sequence
of data provided to IP’s primary inputs. Thus, the use of a
constant, represented by the mean μ of energy consumption
values, to characterize the power of such data-dependent states
is inaccurate. To improve the precision of the power estimation
for such a kind of states, we substitute μ in a state s with
a function extracted by applying a linear regression between
the Hamming distances of consecutive input values exposed
in the functional trace and the corresponding values in the
power trace. This substitution is applied only for states with
an strong linear correlation between Hamming distances of
inputs and corresponding values in the power trace, which is a
necessary condition for achieving an accurate result from the
linear regression [11].

A. Quantifying the mergeability of power states

The mergeability of power states is evaluated by comparing
the power attributes of the target states according to three
different cases.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 609

Case 1: comparison between si and sj , where ni = nj = 1.
This happens when both the states are characterized by a
temporal assertion respecting the next pattern. In this case we
affirm that si and sj are mergeable when |μi −μj | < ε, where
ε is the tolerance fixed by the designer.
Case 2: comparison between two power states si and sj ,
where ni > 1 and nj > 1. In this case the states are both
characterized by the until pattern. To identify if it is worth
merging the two states, we perform the Welch’s t-test [12] on
the power attributes 〈μ, σ, n〉. Such a test is generally used to
determine if two sets of data are significantly different from
each other with an arbitrarily percentage of error. For lack
of space we omit its mathematical formulation, which can be
retrieved in [12].
Case 3: comparison between two power states si and sj , where
ni > 1 and nj = 1. This happens in the tentative of merging
an until-based state with a next-based state. Similarly to Case
2, we use a different formulation of the t-test to see if the
single sample represented by state sj can be merged with the
larger set of values represented by si.

V. SIMULATION OF MULTIPLE PSMS

While the basic simulation for one single PSM has been
already presented in Section III-C, the next paragraphs deal
with the concurrent simulation of the complete set of PSMs
associated to an IP. A method for resynchronizing the PSMs
when unknown behaviours are encountered is presented too.

With respect to the case presented in Section III-C, the
simulation of multiple PSMs, obtained after the application of
the simplify and join procedures, has two main differences:
(i) the power states can be characterized by more than one
assertion, and (ii) some PSMs may be non-deterministic.
Concerning the first aspect, when the PSM enters a state s
characterized by a sequence of assertions {pi; pi+1; . . . ; pi+j}
(as a result of simplify), it expects they are satisfied in a cascade
fashion one after the other. Thus, first the PSM checks if
pi is satisfied (for an unbounded period of time in case of
until pattern, or just for one time instant for a next pattern).
Then, when pi becomes false (in case of until) or simply
at the next instant (in case of next), the PSM repeats the
same analysis for pi+1, and so on till pi+j , when it leaves s
according to the enabling function of the outgoing transition.
On the contrary, if one of the assertions fails the analysis,
i.e., it is not satisfied when expected, it means the PSM has
reached an unknown functional behaviour. In this case, the
simulation continues but the PSM state is not changed till a
resynchronization procedure allows it jumping to a different
state from which a known behaviour can be recognized. During
the resynchronization period the power estimation provided by
the PSM is not reliable.

When a join merges a set of states, the resulting state
s is characterized by a set of concurrent assertions of the
form {pi||pj || . . . ||pk}. In this case, at least one of these
assertions must be satisfied when entering s, otherwise the
resynchronization procedure is called. When exactly one as-
sertion is satisfied the simulation proceeds as in the basic
case described in Section III-C and s is left by traversing the
outgoing transition corresponding to the satisfied assertion. For
example, in Fig. 6(b) the merged state is left by traversing
the transition labelled with pd (respectively pa) when pcUpd
(respectively pdUpa) is satisfied. In some cases, as reported in
Section IV, the join procedure can generate a state where the
set of characterizing assertions includes two or more instances
of the same assertion. When such identical assertions are
satisfied in a state s, a not-deterministic choice must be taken
to exit s. It is worth noting that a not-deterministic choice could
be necessary also at the very beginning of the simulation, when
we need to choose the starting state among all the initial states
that can be activated. Remember that an IP is associated to a

set of PSMs derived from different functional/power traces,
thus we have a set of initial states.

To efficiently manage the not-deterministic choices and the
resynchronization procedure, we adopted a statistical approach
based on a Hidden Markov Model. HMMs are frequently used
in temporal pattern recognition, thus they are well suited in
our context to predict the state with the highest probability
of being the correct choice in case of non-determinism or
when a resynchronization is necessary. A HMM is defined as a
quintuple 〈Q,E,A,B, π〉, where Q = {Q1, . . . , Qm} is set of
hidden states; E = {E1, . . . , En} is a set of observable events;
A = {aij} and B = {bjk} are two matrices such that their
elements aij = P [xt+1 = Qi|xt = Qj] (with 1 ≤ i, j ≤ m)
and bjk = P [Ek|Qj] (with 1 ≤ j ≤ m, 1 ≤ k ≤ n)
represent, respectively, the probability of reaching the state
Qi at time xt+1 starting from the state Qj at time xt, and
the probability of observing the event Ek at state Qj ; π={pi}
is a vector such that its element pi = P [x0 = Qi] (with
1 ≤ i ≤ m) represents the probability of being in state
Qi at time 0. By contextualizing the definition of a HMM
to the problem of predicting the next state of a PSM, we
implemented a model where Q contains the states of all the
generated PSMs and E contains their characterizing assertions.
Elements {aij} and {bij} of matrices A and B are then defined
according to, respectively, the number of transitions exiting
from state i to reach state j, and the number of times the
same assertion j has been included (by join operations) into
the set of assertions characterizing the state i. Finally, the value
of the i-th element of the vector π is computed by counting
the number of functional traces that have originated a PSM
with i as its initial state. Given this formalization, during the
simulation of the HMM the next state is chosen by applying the
filtering approach, i.e., a state-of-the-art procedure to predict
the distribution of the next (hidden) states according to a
sequence of observations, which in our case are the functional
behaviours captured by the temporal assertions mined on the
proposition traces. When a wrong state s is predicted (i.e., the
simulation cannot exits s because none of its characterizing
assertions is satisfied when expected), the HMM reverts to
the last valid state and it follows a different path by fixing to
0 the probability of reaching again the same wrong state in
the matrix A. In case all transitions exiting from the current
state bring to a wrong state, an unexpected behaviour is
encountered. This highlights that the functional traces used
for generating the PSMs where incomplete with respect the
the ones used for the simulation. In this case, the simulation
of the model proceeds by remaining in the last valid state till
a known behaviour is finally recognized in the future instants.

VI. EXPERIMENTAL RESULTS

The proposed methodology has been implemented in an
automatic tool that generates a SystemC model of the extracted
PSMs. Its effectiveness and efficiency have been evaluated
by generating the PSMs for the RTL Verilog descriptions of
the IPs reported in Table I: a multiplier-accumulator from the
Synopsys DesignWare Library, and the implementations of a
1KB RAM memory and the AES and Camellia encryption/de-
cryption algorithms from the Open Core Library. SystemC
models of the considered IPs have been obtained from the
original Verilog descriptions by using HIFSuite [13]. Table I
reports the number of code lines, the size in bits of PIs and
POs, the time required for the gate-level synthesis by using
Synopsys DesignCompiler, and finally the number of memory
elements in the gate-level netlist.

The results of a first experiment are reported in Table II.
Above the dashed line, the results are referred to the simulation
of the IPs by using the set of test sequences defined for their
functional verification, thus they are assumed to cover the most

610 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

of IP behaviours. We will refer to such a testset with the name
short-TS. Below the line, a longer set of test sequences has
been applied to stimulate the IP’s functionality several times
with different set of data. We will refer to such a testset with
the name long-TS. The precise number of test sequences, which
correspond to the total length of the functional traces used to
extract the IP’s behaviours, is shown in Column TS. Column
PX refers to the time required for generating a corresponding
set of reference power traces by using Synopsys PrimeTime
PX. The time required by our tool for the generation of the
PSMs is then shown in Column PSMs gen., while the number
of PSMs’ states and transitions are reported, respectively, in
Columns States and Trans. Finally, Column MRE reports, as
a measure of PSMs’ accuracy, the mean relative error (MRE)
obtained by comparing the power values estimated through
the simulation of the PSMs with respect to the reference
values provided by PrimeTime PX. Analysing the results for
each benchmark, we first observed that RAM presents a high
correlation between the Hamming distance of two consecutive
input data and its energy behaviour. Thus, the linear regression-
based approach adopted in our tool works satisfactory when it
relates the RAM’s internal switching activity with the power
consumption by observing the behaviours of PIs and POs. For
this reason, the MRE is very low, even if RAM behaves as
a data-dependent IP from the energy consumption point of
view (when it operates in the writing modality). MultSum is
a data-dependent IP too. Its MRE is a bit higher than RAM,
since to effectively capture its functionality by observing PIs
and POs it requires to correlate PIs and POs values on an
time window wider than the one currently considered by
the linear regression mechanism implemented in the tool.
On the contrary, AES and Camellia are not data-dependent.
However, differently from RAM and MultSim which have
no subcomponent, AES and Camellia are composed by a set
of subcomponents. In this case, it could be more difficult
extracting, in an automatic way, the correlation between the
IP’s behaviours and the switching activity by observing only
the changes in IP’s primary inputs and outputs, without a
visibility on internal signals connecting the subcomponents.
This is due to the fact that the switching activity is distributed
among subcomponents that could present power behaviours
poorly correlated to each other. This is exactly the case of
Camellia. On the other hand, the subcomponents of AES
present a stronger correlation, and thus its MRE is sensibly
lower than Camellia. As a final consideration on Table II, we
observe that, with the exception of Camellia, the MREs below
the dashed line are not sensibly improved with respect to their
counterparts above the line. This confirms the fact that high-
quality PSMs can be generated from functional traces obtained
by simulating the IP with the same testbenches adopted for
their functional verification.
In conclusion, Table III reports a performance evaluation and
a further accuracy analysis on the PSMs generated by using
the short-TS set. Columns 2 and 3 show the time required to
simulate with the long-TS set, for 500,000 instants, respec-
tively, the SystemC model of the IPs (IP sim.) and the same
IP model connected to the PSMs (IP+PSMs). Then, Column
4 shows the simulation overhead due to the presence of the
PSMs with respect to simulating the IPs without PSMs. As
shown, the overhead ranges between 3% and 26% and it is
inversely proportional to the complexity of the IP. An even
more significant fact is observed by comparing Column IP sim.
of Table III with the values reported in Column PX under
the dashed line of Table II. This shows that estimating the
power values by simulating the PSMs is up to two orders
of magnitude faster than using PrimeTime PX. This speed-
up is not paid in terms of accuracy, as shown by the last two
columns of Table III, which report the MRE and the percentage
of wrong-state predictions obtained by simulating the PSMs,
generated from the short-TS testset, with the long-TS testset.

IP Lines PIs POs Syn. time (s.) Memory elements

RAM 101 44 32 140.2 8192
MultSum 45 49 32 18.8 225
AES 1089 260 129 42.6 670
Camellia 777 262 131 75.2 397

TABLE I. CHARACTERISTICS OF BENCHMARKS.

IP TS PX (s.) PSMs gen. (s.) States Trans. MRE

RAM 34130 169.0 1.2 9 18 0.30 %
MultSum 12002 19.5 0.6 2 2 4.03 %
AES 16504 144.8 0.7 5 7 3.45 %
Camellia 78004 74.5 5.7 5 10 32.66 %

RAM 500000 5316.7 20.1 9 18 0.29 %
MultSum 500000 750.1 22.6 3 4 3.27 %
AES 500000 3626.0 115.6 13 29 3.09 %
Camellia 500000 2699.0 221.2 5 11 32.64 %

TABLE II. CHARACTERISTICS OF THE GENERATED PSMS.

IP IP sim. (s.) IP+PSMs (s.) Overhead MRE WSP

RAM 13.8 17.5 26.4% 0.29% 0%
MultSum 20.4 24.2 18.4% 3.97% 0%
AES 93.4 98.7 5.6% 3.11% 0%
Camellia 277.1 286.9 3.5% 32.64% 20%

TABLE III. SIMULATION TIMES AND ACCURACY EVALUATION.

VII. CONCLUDING REMARKS

The paper presented a methodology for the automatic gen-
eration of PSMs by adopting an approach based on (i) dynamic
mining of temporal assertions to extract the IP’s functional
behaviours from a set of functional traces, and (ii) a calibration
process to extract the associated power behaviours from a
corresponding set of references power traces. Finally, a Markov
model was defined to implement a SystemC simulatable model
of the PSMs. The power estimation obtained by a system-
level simulation of the automatically generated PSMs is up
to two orders of magnitude faster than running a state-of-the-
art gate-level power simulator like PrimeTime PX without a
significant loss of accuracy for all IPs, but Camellia, which is
composed by a set of subcomponents whose power behaviours
are low correlated to each other. To mitigate the limitation
highlighted by Camellia, we foresee, as future works, the
automatic generation of a power model based on hierarchical
PSMs that distinguishes among IP subcomponents.

REFERENCES

[1] L. Benini, R. Hodgson, and P. Siegel, “System-level power estimation
and optimization,” in Proc. of IEEE ISLPED, 1998, pp. 173–178.

[2] R. Bergamaschi and Y. Jiang, “State-based power analysis for systems-
on-chip,” in Proc. of ACM/IEEE DAC, 2003, pp. 638–641.

[3] S. Schurmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen,
and L. Wang, “Creation of esl power models for communication
architectures using automatic calibration,” in Proc. of ACM/IEEE DAC,
2013.

[4] D. Lorenz, P. A. Hartmann, K. Grüttner, and W. Nebel, “Non-invasive
power simulation at system-level with SystemC,” in Integrated Circuit
and System Design. Power and Timing Modeling, Optimization and
Simulation, ser. LNCS. Springer, 2013, vol. 7606, pp. 21–31.

[5] D. Lorenz, K. Gruettner, and W. Nebel, “Data-and state-dependent
power characterisation and simulation of black-box RTL IP components
at system level,” in Proc. of Euromicro DSD, 2014, pp. 129–136.

[6] H. Lebreton and P. Vivet, “Power modeling in SystemC at transaction
level, application to a DVFS architecture,” in Proc. of IEEE ISVLSI,
2008, pp. 463–466.

[7] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans.
on VLSI, vol. 8, no. 3, pp. 299–316, 2000.

[8] http://www.synopsys.com/Tools/Implementation/SignOff/Pages/
PrimeTime.aspx.

[9] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction
of assertions from execution traces of behavioural models,” in Proc. of
ACM/IEEE DATE, 2015, pp. 67–72.

[10] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The annals of mathematical
statistics, pp. 1554–1563, 1966.

[11] T. Swinscow and C. M.J., Statistics at square one. BMJ Publishing
Group, 2009.

[12] B. L. Welch, “The generalization of ‘student’s’ problem when several
different population variances are involved,” Biometrika, vol. 34, no.
1/2, pp. pp. 28–35, 1947.

[13] http://www.hifsuite.com.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 611

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

