Highly Efficient Reconfigurable Parallel Graph Cuts
for Embedded Vision

Antonis Nikitakis

Technical University of Crete
School of Electronic and Computer Engineering
Kounoupidiana, Chania, Crete, GR73100, Greece
anikita@mbhl.tuc.gr

Abstract— Graph cuts are very popular methods for
combinatorial optimization mainly utilized, while also being the
most computational intensive part, in several vision schemes such
as image segmentation and stereo correspondence; their advantage
is that they are very efficient as they provide guarantees about the
optimality of the reported solution. Moreover, when those vision
schemes are executed in mobile devices there is a strong need, not
only for real-time processing, but also for low power/energy
consumption. In this paper, we present a novel architecture for the
implementation, in reconfigurable hardware, of one of the most
widely used graph cuts algorithms, which is also the fastest
sequential one, called BK. Our novelty comes from the fact that we
use a 2-level hierarchical decomposition method to parallelize it in
a very modular way allowing it to be efficiently implemented in
FPGAs with different number of logic cells and/or memory
resources. We fast-prototyped the architecture, using a High level
synthesis workflow, in a state-of-the-art FPGA device; our
implementation outperforms an optimized reference software
solution by more than 6x, while consuming 35 times less energy;.
To the best of our knowledge this is the first parallel
implementation of this very widely used algorithm in reconfigurable
hardware.

Keywords—Graph Cuts; Markov Random Field; Dual
Decomposition; Low Power; FPGA; Embedded System.

1. INTRODUCTION

Minimum S-T cut (MinCut) is a classical combinatorial
problem [1] employed in several low-level computer vision
problems, such as image smoothing, denoising, image
segmentation, stereo correspondence, and image registration of
different modalities (i.e. fusion) [2]. The common
characteristic of all those applications is that they all use graphs
with regular structure, with vertices arranged into an N-D grid.
At the same time there are numerous applications in the
consumer industry sector requiring efficient graph solvers. For
example, there was the ground breaking, at their time, Lytro
startup company that introduced its first generation pocket-
sized camera, capable of refocusing images after being taken
[3]; Lytro uses a plenoptic camera that uses a micro lens array
to capture 4D light field information [4] and it involves a
graph cut scheme. Similar schemes are employed by large
phone vendors, such as HTC, LG and Nokia which are trying
to simulate Lytro’s light-field technology. Morever Google has
introduced a mobile application for android devices [5] which
features lens blur during the post processing of the photo, as
well as the Tango Project [6] which uses an Android phone

978-3-9815370-6-2/DATE16/ (©2016 EDAA

loannis Papaefstathiou

Synelixis Solutions Ltd,
Farmakidou 10,Chalkida, GR34100, Greece
ygp@ synelixis.com

with a highly customized hardware to track full 3-dimensional
motion; it features depth sensing cameras providing a huge
point cloud that is then fused with the modalities of normal
cameras. In both systems, a certain graph-cut scheme is
involved in order to produce the desired imaging effect.

This paper presents an architecture, tailored to
reconfigurable logic, for the implementation of probably the
most widely used graph-cut algorithm; the proposed system,
when prototyped in a state-of-the-art FPGA consumes 35 times
less energy than the existing optimized software approaches
while it is more than 6x faster.

II. RELATED WORK

Our work introduces a variant of the path augmentation
algorithm that was originally presented from Boykov and
Kolmogorov in [7]. The original scheme, since it is not
natively parallel, is hard to be partitioned while its large
memory footprint does not allow it to fit within the limited
memory of certain embedded devices including the FPGAs.

There are several proposals for the parallelization of the
Boykov and Kolmogorov’s algorithm in the literature. Liu and
Sun [8], partition the graph in parallel disjoint graphs; in a
second phase they merge the parallel disjoint graphs into larger
graphs in order to obtain the global solution. The limitation of
this method is that the whole graph should be placed in the
limited on-chip memory. In [9], Shekhovtsov and Hlavac
perform path augmentations inside the parallel disjoint graphs
and wupdate them by using the “push-relabel” approach
between different regions. The main problem with this
approach is that it is a control intensive design that cannot be
efficiently parallelized.

There is also an FPGA-based implementation of a max-
flow algorithm which is presented in [10]. This approach
utilizes a push-relabel method tailored to the FPGA
characteristics. The authors claim a 3-5x speedup when
compared to a slower (in comparison with today’s state of the
art) Intel CPU. However, they don’t give any references for the
compile and optimization levels of the software
implementation that they are compared neither for the I/O
latency and bandwidth demands of their solution. They also do
not address scalability issues as their design can support only
certain image resolutions

In our work, we start from the approach of Strandmark and
Kahl [11], where the max flow/min cut problem is parallelized

1405

by splitting the graph into disjoint parts. More importantly, we
introduce, for the first time, an extension of the above
framework in a 2-level hierarchical implementation with
different granularities at each level in order to allow it to take
full advantage of the reconfigurable logic features as well as
the external large memories of today’s reconfigurable
embedded systems.

The result is the first fast, while very power efficient,
FPGA-based system implementing a popular graph-cut
scheme. The contribution of this work though, goes beyond
this particular implementation as it proposes certain novel
approaches on how inherently serial graph-cut algorithms can
be efficiently parallelized while addressing the on-chip
memory limitations of reconfigurable devices.

III. GRAPH SPLITTING

Our hardware architecture is based on splitting the initial
graph into smaller disjoint sub-graphs in a similar way to the
one presented in [11]. This graph splitting serves a two-fold
purpose: firstly, it enables us to increase the level of
parallelization and take advantage of the parallelism of today’s
reconfigurable devices and secondly it permits us to scale to
larger problems that cannot fit in the current on-chip memory.

Fig. 1. Original Graph

N .f'\,/"\, NN
|) 3 > 2
_/ \'/H\. F N/ 'x/l

Fig. 2.

0202 T CL020

1-D graph split

%

=,

OR0SCHE 020

Figures 1 and 2 show in an illustrative example how a
single graph is split in to two disjoint sub-graphs. The graph
split consists of two steps. In the first step, the node data are
duplicated across the split region while weighted by a '
factor. Thus if we merge again the disjoint parts we get the
initial graph. In this respect, the disjoint sub-graphs partially
overlap while there is an overlap margin which defines how
many nodes in the two sub-graphs overlap. In our simplified
example the overlap is 2 but typically it is set equally to the
linear dimension of the » x m graph (i.e overlap is equal to m or
n) in the case of single dimensional splits. The second step
forces the sub-graphs to “agree” (i.e. introduce the same
values) for the overlap region. It introduces the dual variables
A; as s/t connections, a technique introduced by Everett [10]
and applied in different contexts. Our work is based on the
approach of [11]; through an iteration process, it performs

1406

simultaneous updates in A; in both sub-graphs and assures
convergence to the same solution.

IV. HARDWARE ARCHITECTURE

In this section we describe in detail the hardware
architecture of the proposed BK parallel system. In subsection
A we give the organization of the basic hardware module
where in sub-section B we demonstrate how this hardware
module can be replicated, in order to take advantage of the vast
reconfigurable resources of today’s systems, and form a larger
parallel system.

A. System’s Core Architecture

As a starting case study our basic hardware module, which
fully implements the scheme presented in [11], consists of 16
parallel cores each processing a disjoint part of the graph as
shown in Figure 3. The BK Parallel engine in this way
processes 16 sub-graphs consisting of 1K' nodes each, thus
simultaneously process 16K nodes. Larger graphs can be
processed on-chip, depending on the devices resources as
demonstrated in Section V. Moreover, in sub-section C we
discuss how the proposed system can scale to larger graphs that
cannot fit on-chip.

Fig. 3. BK parallel engine organization overview

Each of the cores can communicate through the common
bus in order to load new data. The data loading is performed in
batches of 16K nodes as described in detail in subsection B..
By performing certain in-order iterations the algorithm
converges for the 16K nodes batch while it makes only local
updates in the residual graph. This operation is carried out
through a message exchange scheme we developed and is
coordinated by the control unit. During the write back process
the BK Parallel Engine returns only the 1-bit labels of the
graph (in a predefined order), so as to minimize the output
time.

B. Parallelism during Data Loading

In most hardware accelerators a certain amount of data is
initially loaded on-chip and then those data are processed in
parallel. Graph processing is not any different, but it further
demands time-consuming operations during the initial graph

" The 1K nodes per core was derived from the desired level of parallelism and
the capacity of the target FPGA

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

building task. In this respect, our novel scheme exploits the
parallelization, not only in the graph solving process, but also
in the graph building task, which in terms requires a load-
balanced loading process. Thus we sort and organize the data
before loading them in order to fully exploit, during the graph
building task, all the available HW parallel cores of the FPGA.

The classical approach of most SW threaded or distributed
implementations is to sequentially load the node data (without
reordering them) to the different computation units. In our
approach we use a common shared-bus communication in a
round-robin fashion to evenly distribute, during loading, the
graph-data to all the available cores. By sending small parts of
the graph to each core we minimize the initial latency while we
evenly distribute the graph building task among the parallel
cores. In this respect our novel architecture hides the bus
transfer overhead in the graph building time. As the graphs are
equally sized the graph solving task is also load balanced; as a
result we achieve a fully pipelined operation through all the
stages of our scheme. The aforementioned configuration is
depicted in Figure 4.

Fig. 4. Our Load-balanced loading scheme completely hiding bus latency
while also exploiting parallelism during graph building.

7 Lowd Dincnd Tosks.

On the other hand as our system achieves significant
acceleration of the graph solving task, the bus may become the
bottleneck of the system; our accelerator triggers a very high
throughput in terms of nodes/sec (see Section VI), so even a
high-bandwidth bus can get into its limits. As a result we
introduce a scheme which increases the effective bus
bandwidth; we apply a low latency payload compression
scheme so as to reduce the size of the data transmitted over our
bus. When a graph is built the neighboring nodes, which are
added-in sequentially, usually share the same weights or just
slightly different ones. For this reason we employ a delta
encoding compression scheme [12] so as to only transmit the
differences of the weights between the added nodes and not the
weights themselves; our delta values are 1-byte long Thus, as
shown in Table I, we can save up to 4 bytes in each edge
transmission and up to 3 bytes in each node transmission. In
the cases that we cannot fit the weight-difference within the 1-
byte delta value we transmit all the information in an
Uncompressed manner.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

TABLE L. BUS OPTIMIZATION USING DELTA COMPRESSION

delta
IZ‘;};’ l/”iad Unc(oBmIt) er;‘“e‘i Compressed Hit Rate re dlflglion
8- 4 (Bytes)
nodes 6 3 60%
arcs 8 4 98%
avg. BW 680 MB/sec 520 MB/sec -23%

Based on our simulation results, as also shown in Table I,
we demonstrate that during the nodes data transmission we
reduce the data sent in 60% of the cases, where we can
compress the arc data in 98% of the cases. This saves us about
23% of the total bandwidth needed. The bandwidth figures
refer to average values in a batch of 16K nodes while they are
all based on real-world graphs.

C. Hierarchical Graph partitioning and Scalability

As previously mentioned in Section III, graph split allows
us to scale to larger problems exceeding the on-chip memory
resources. We follow the same principle and split our bigger
problem (LO) in sub-graphs, each one of size 16K nodes, for
our case study. We call those graphs for the rest of this text L1
sub-graphs. In L1 sub-graphs an overlap area is also introduced
to ensure the smooth transition of the result while, and more
importantly, the global convergence.

Fig. 5. A Hierarchical design Architecture. 16K Nodes Graphs sequentially
loaded in the HW parallel Engine and parallelized in L2 Sub-graphs.

1K 0dee |

. EX Parallsl Engne
« IS mdss
116 cores)

LI Suh-Ciraphs L2 sub-tiraphs

In this respect we propose a two-step hierarchical sub-
graph splitting approach. The first step (L1) refers to a graph
size equal to the on-chip capacity of their HW parallel engine
(e.g 16K nodes) while the second step (L2) refers to the
capacity of each individual HW core (e.g. 1K nodes). In this
regard each of the L1 sub-graphs is loaded to the FPGA and as
demonstrated in the previous subsection, they are all processed
in parallel on-chip. Finally there is an iteration procedure so as
to converge to a global solution; Figure 5 depicts this
approach.

V. IMPLEMENTATION AND HARDWARE COST

The architecture presented in the previous section is
implemented using a high-level synthesis (HLS) design flow.

1407

The basic building block (i.e core) implements the scheme of
[7] which is based on Breadth First Search (BFS) [13]. The
code has been hand-crafted so as to allow for a fully parallel
implementation; the tool itself could not automatically
optimize/parallelize such a scheme as it is inherently serial. It
was crucial that in the HLS design process all the pointer
operations involved in the graph traversal were abstracted > and
this pushed the design effort at a higher architectural level. In
this respect, our novel system scales to many cores while
efficiently supporting the control intensive task of the graph
split and the message exchange between the cores. Each of the
cores handled equally sized disjoints parts of the graph; thus all
the distributed tasks were optimally pipelined across them. The
control unit depicted in Figure 3 is mainly implementing the
scheme of [11] and handles the communication between cores
that guarantees the global convergence of all the sub-graphs.

We also made sure that the new hardware interface is 100%
compatible with the software interface of the reference code,
since our scheme can be part of a Hardware Library which can
be utilized by the embedded applications that use the BK
algorithm. For the code synthesis we used Xilinx’s Vivado
HLS while in order to parallelize our basic block we manually
instantiated 16 cores; this was due to the fact that the HLS tool
could not handle automatically this parallelization task even
after we have utilized all the requested design directives.

The whole design is fully parameterizable in terms of
number of cores as well as of graph sizes since all the scalable
components of the design have been described in a parametric
way using synthesizable-C++. This enables our scheme to be
implemented in any available reconfigurable device, no matter
what its silicon capacity is .

TABLE II. TYPICAL HARDWARE COST ON XILINX VIRTEX 7 DEVICE
(XC7VX330TFFG1761-3)-16 CORES. WE UTILIZE 16K NODES AND 64K EDGES
ON-CHIP.

Logic Utilization Used Available Utilization
Number of Flip Flops 26813 408000 6%
Number of Slice LUTs 33208 204000 16%
Number of DSP48E 16 1120 ~1%
Number of Block RAM_ 18K 1320 1500 88%

For our reference design we targeted both an average
Xilinx Virtex 7 and a small Zynqg. In Table II we show the
hardware utilization of the Virtex 7 device; moreover for
validation and proof of concept® our system was also
implemented in a very low end Zedboad evaluation platform
[14] powered by a small Xilinx Zynq device and
interconnected with a standard PC.

Table II shows that the critical resource is the on-chip
memory (Block RAM), as the graph data dominate the
utilization of the device. The ratio between the supported on-
chip nodes and edges could be easily changed according to the
target application. As described in Section IV.C our
architecture can handle arbitrary size graphs by splitting them

% This is done manually by “bookkeeping” indexes in predefined arrays.
By supporting the same parallel cores while handling smaller graphs.

1408

in smaller ones that can fit in the available on-chip resources
and then re-merged in a host computer.

VI. EVALUATION AND PERFORMANCE

A. Performance and Power Efficiency

In this sub-section we evaluate the performance of the
proposed scheme when handling graph sizes that can fit in the
on-chip device memory. In the next section we demonstrate the
scalability of our system so as to handle larger graphs.

The clock speed we achieved on the Virtex 7 device (speed
grade -3) is 260MHz. The table below shows the speedup
triggered when our system is compared with a mobile Intel i5
CPU, clocked at 3GHz (2.5 GHz with Turbo Boost). We have
selected this CPU as a reference since it is power efficient
while it delivers high performance, in single threaded
applications such as the BK one. The software compiler
platform used was Microsoft Visual Studio 2012 and our
reference software code [1] was optimized for maximum speed
(maximum optimization level, i.e. -O2. It should be stressed
that we use the code of [7] and not the code of [11] as the
reference for our evaluation, as the former is considered a
baseline implementation and an important benchmark for
numerous similar systems such as the ones in [11], [10], [15].
In all the software experiments we excluded the disk I/O time
and we measured the latency times after the data were loaded
to the DRAM of the CPU. This is in favor of the CPU as the
cache (3MB L3) is hot in most of the measured cases. In any
case our measurements show that our hardware is at least six
times faster than a state-of-the-art Intel CPU. Table IIT shows
an 8-core and a 16-core configuration of the proposed system.
This speedup is not affected by the input figures in any manner

TABLE IIL BK ENGINE PERFORMANCE FIGURES FOR GRAPH SIZES UP TO
16K AT 260MHZ (XC7VX330TFFG1761-3)-16 CORES
Config. Total HW Sw /0 HW
Nodes latency Latency Bandwidth speedup
ms ms MB/sec
8cores 16K 1.79 6.1 229 3.3x
16 cores | 16K 0.95 6.1 521 6.2x

As analytically described in Section IV the I/O latency of
our system is minimal as it needs to cache only a very few
nodes in order to start the computations. Thus the initial
latency is almost zero for each graph processed. The write-
back time is also very small as we send only the graph labels
(i.e. single bit encoded label output). As a result the bandwidth
figures are quite low and fully tolerable by current FPGAs.

In terms of power consumption according to Xilinx Power
estimator [16] our system consumes less than 3.6 watts for the
whole processing cycle. On the other hand Intel i5’s power
consumption as measured by Intel’s Power Gadget (which
monitors precisely and estimates real-time power information
in watts using the energy counters of the processor [17]) was
22.3 Watts in average throughout the software execution. Thus
our system is 6x more power efficient. Given the 6x speedup
and the 6x reduction of the power consumption we conclude

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

that our FPGA-based device consumes more than 35 times less
energy than a low-power state-of-the-art CPU.

Moving to a comparison with the high end GPUs, in [18]
the authors report a 10 to 12 times speedup of this same
reference algorithm on a Nvidia GTX-280 GPU; the GPU
executes only the image segmentation tasks. In the work of
[15] the authors report a 5.2x speedup in a GTX-580 for the
stereo matching tasks. In both works though, no details are
given for the reference CPU against which they compare their
performance nor about the optimization level of the reference
software. Even if GPUs achieve similar or slightly better
speedup figures, they consume hundreds of Watts (200W-
300W). As a result they trigger a much lower performance per
watt ratio that our FPGA-based system; even if we assume the
maximum 12x speedup at 200Watts, our FPGA-based system
is 27 times more power efficient than the best GPU-based one.

B. Scaling vs. Accuracy

In this sub-section we describe how our system scales to
larger problems which cannot fit on-chip. Apart from the
overlapping nodes that slightly decrease system’s performance,
a second issue can arise: the converging procedure that ensures
a global solution for all L1 sub-graphs’ may force them to be
re-processed on-chip for a second iteration. In such cases the
I/O would increase the total execution time as, during the write
back, we should read the whole graph (and not only the labels)
in order to be able to reprocess all of them. In order to alleviate
this issue we extend the idea of [8] in a 2-level hierarchical
configuration in order to efficiently exploit the geometrical
characteristics of the graph.

We extend the already described 1-dimentional splits into
2-dimentional splits forming a 4x4 grid of 16 on-chip parallel
engines dealing with the 16 disjoint L2 sub-graphs. In this
respect the larger L1 sub-graphs are forming a square grid (e.g
4x4 L1 sub-graphs) as shown in Figure 6. This approach drops
the error introduced by our scaling scheme more than 4 times
and as a result the communication, for the vast majority of the
cases, between the larger graphs is not necessary; by using just
the overlapping area between them, the system converges to a
minimum error global solution in a single iteration.

Fig. 6. A larger problem is in a 2-dimentional
grid

— Sx5grid
12 Subtiraph

axé il

* The convergence to minimum error in L2 sub-graphs is always assured
through on-chip communication between them.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Furthermore after experimenting with various images up to
High Definition (HD) resolutions, we concluded that the final
error, when each sub-graph is processed only once, is
minimized to less than 0.5% while the global convergence is
not affected. The only cases where we may have a slightly
larger error, compared with the sequential version of the BK
algorithm, is when we handle a very large regularization
parameter’ X for a given large image resolution.

We should note that the need for convergence in larger
graphs increases as the regularization parameter A increases as
well. This is the case as the smoothing role that A plays in the
graph building task increases the need for communication
between the different L1 sub-graphs. In general, all the
distributed versions of the global optimization algorithms
suffer from the same problem no matter if they are
implemented in software, hardware or even in distributed
clusters: the larger the smoothing the more I/O intensive the
processing. We claim that if a meaningful segmentation
depends on a large A, maybe it is better and more efficient, in
performance demanding applications, to down-sample the
image and then apply to that the large regularization parameter.
For example the authors in [19] suggest that applying a large A
to a whole image segmentation is not a good strategy. This is
due to the fact that while large A improves the segmentation in
the noisy parts of the image, it also worsens it in the content-
rich parts.

Fig. 7. On the left the serial BK algorithm. On the right our scheme handles
sensitivity to noise by scaling down and regularizing with smaller A.

In Figure 7, we show a case where a noisy image is
processed with a large A parameter. Though the error between
the sequential algorithm seems to be relatively high (about 1%)
it produces equally interpretable (or better) results when we
scale down the image before we apply the same regularization
level.

Obviously, we don’t claim that we are able to scale
infinitely our scheme without being sensitive to local spatial
characteristics. We can, though, handle high resolutions (i.e.
High Definition or HD) at a very high speed and with low
energy consumption, while also controlling the sensitivity to
local noise. Based on this analysis we claim that our system
can handle up to HD image resolutions without performing any
processing iterations through the larger L1 graphs while still
having very good performance as well as accuracy .

> the regularization parameter A (lambda) it is a smoothing term in the graph

1409

C. Comparison with Related Work

Moving to the comparison of our scheme with the work of
[20] we see that though they claim to achieve a similar
speedup, our scheme is compared with a 50% faster CPU
while, in our case, we run a fully optimized software code (the
difference in the CPU performance when no compiler
optimizations were utilized was more than 40%). Furthermore
in our work the performance is always guaranteed as the
parallel stages of our scheme (i.e parallel cores processing
disjoints parts of the graph) are always fully utilized. In the
work of [10] as the pipeline is more fine-grained it is not
guaranteed that it is always full and thus the performance is not
constant when compared with the reference BK serial code of
[7]. Finally, in our work we give a detailed description of the
communication demands between the host and the accelerator
where in the case of [10] such description is not available and
more importantly we demonstrate how our system can be
scaled so as to handle larger graph sizes, whereas their system
is limited to small graphs that can fit on-chip.

VII. CONCLUSIONS

In this paper we propose a novel 2-level hierarchical graph
split scheme tailored to reconfigurable devices. Moreover, we
present a novel modular architecture, which among others,
incorporates a simple, yet efficient data compression scheme so
as to minimize the I/O overhead. Our design is fully scalable to
very large graphs while also offering certain performance and
accuracy guarantees.

Our results show that our approach outperforms a state of
the art CPU by at least 6 times in the very challenging graph
cut problem. In terms of energy consumption the gain is even
better as our prototype scheme achieves 35 times lower
consumption for this same task and at the same accuracy than a
power efficient CPU while it is at least 27 times more power
efficient than the best GPU-based implementation.

ACKNOWLEDGMENT

The work presented in this paper has been supported by the
Greek General Secretariat for Research and Technology
(GSRT) through the funding of research project “AFORMI —
Reconfigurable Systems for scientific research” with proposal
code 2427 within the context of action “APIZTEIA” of the
Lifelong Learning Program.

The authors would like to thank Peter Strandmark for his
constructive comments that greatly contributed to improving
the final version of the paper.

REFERENCES

[1] E. Lawler, “4.5. Combinatorial Implications of Max-Flow Min-Cut
Theorem, 4.6. Linear Programming Interpretation of Max-Flow Min-
Cut Theorem,” Comb. Optim. Netw. Matroids, pp. 117-120, 2001.

[2] M. B. A. Haghighat, A. Aghagolzadeh, and H. Seyedarabi, “Multi-
focus image fusion for visual sensor networks in DCT domain,”
Comput. Electr. Eng., vol. 37, no. 5, pp. 789-797, Sep. 2011.

[3] “http://www.digitaltrends.com/photography/lytro-the-camera-that-
could-change-photography-forever/.” .

1410

(4]

(3]

(7]

(8]

(9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P.
Hanrahan, “Light Field Photography with a Hand-Held Plenoptic
Camera,” Stanford University Computer Science Tech Report CSTR
2005-02, Apr. 2005.

“Research Blog: Lens Blur in the new Google Camera app.” [Online].
Auvailable: http://googleresearch.blogspot.gr/2014/04/lens-blur-in-
new-google-camera-app.html. [Accessed: 07-Sep-2015].

“Project Tango - Google.” [Online]. Available:
https://www.google.com/atap/project-tango/. [Accessed: 07-Sep-
2015].

Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max- flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124—
1137, Sep. 2004.

J. Liu and J. Sun, “Parallel graph-cuts by adaptive bottom-up
merging,” in 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 2181-2188.

A. Shekhovtsov and V. Hlava¢, “A Distributed Mincut/Maxflow
Algorithm Combining Path Augmentation and Push-Relabel,” Int. J.
Comput. Vis., vol. 104, no. 3, pp. 315-342, Sep. 2012.

D. Kobori and T. Maruyama, “An acceleration of a graph cut
segmentation with FPGA,” in 2012 22nd International Conference on
Field Programmable Logic and Applications (FPL), 2012, pp. 407—
413.

P. Strandmark and F. Kahl, “Parallel and distributed graph cuts by
dual decomposition,” in 2010 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010, pp. 2085-2092.

C. Xiao and B. Bing, “Delta compression with fixed-length substring
coding for fast content download,” /EEE Commun. Lett., vol. 9, no. 3,
pp. 243-245, Mar. 2005.

S. S. Skiena, The Algorithm Design Manual. London: Springer
London, 2008.

“Zedboard Evaluation
http://zedboard.org/.

Y. Choi and L. K. Park, “Efficient GPU-Based Graph Cuts for Stereo
Matching,” in 2013 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2013, pp. 642—648.
“Xilinx ~ Power Estimator (XPE).” [Online]. Available:
http://www.xilinx.com/products/technology/power/xpe.html.
[Accessed: 07-Sep-2015].

“Intel® Power Gadget | Intel® Developer Zone.” [Online]. Available:
https://software.intel.com/en-us/articles/intel-power-gadget-20.
[Accessed: 07-Sep-2015].

V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts on the
GPU,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2008. CVPRW 08, 2008, pp. 1—
8.

J. Rao, R. Abugharbieh, and G. Hamarneh, “Adaptive Regularization
for Image Segmentation Using Local Image Curvature Cues,” in
Computer Vision — ECCV 2010, K. Daniilidis, P. Maragos, and N.
Paragios, Eds. Springer Berlin Heidelberg, 2010, pp. 651-665.

A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck,
“Maximum Flows by Incremental Breadth-First Search,” in
Algorithms — ESA 2011, C. Demetrescu and M. M. Halldorsson, Eds.
Springer Berlin Heidelberg, 2011, pp. 457-468.

Board.” [Online]. Available:

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

