
Schedulability Bound for
Integrated Modular Avionics Partitions

Jung-Eun Kim, Tarek Abdelzaher and Lui Sha
University of Illinois at Urbana-Champaign, Urbana, IL 61802

Email:{jekim314, zaher, lrs}@illinois.edu

Abstract—In the avionics industry, as a hierarchical scheduling
architecture Integrated Modular Avionics System has been widely
adopted for its isolating capability. In practice, in an early
development phase, a system developer does not know much
about task execution times, but only task periods and IMA
partition information. In such a case the schedulability bound
for a task in a given partition tells a developer how much of
the execution time the task can have to be schedulable. Once the
developer knows the bound, then the developer can deal with any
combination of execution times under the bound, which is safe
in terms of schedulability. We formulate the problem as linear
programming that is commonly used in the avionics industry
for schedulability analysis, and compare the bound with other
existing ones which are obtained with no period information.

I. INTRODUCTION

The avionics industry has widely adopted the Integrated
Modular Avionics (IMA) architecture [1, 23], which enables
real-time functions to run within partitions that are temporally
and spatially isolated from one another. Real-time tasks run
within an IMA partition which is an execution environment of
software applications according to the ARINC 653 standard
[2]. Since IMA supports the partitions’ temporal and spatial
isolation from one another, the various real-time avionics
functions can be developed independently. In addition to
that, the mechanism has helped ease the certification process
for mixed-criticality avionics systems. If done correctly, this
modular approach can avoid substantial re-certification costs.

In practice, in an early development phase of IMA systems,
IMA partition parameters and task periods are predetermined
while the worst-case execution times of the tasks are partially
or even completely unavailable. Such a situation is common.
For example, when receiving data from a sensor, a task may
know the sensing frequency in advance but not the worst-
case execution time since determining the worst-case execution
time is not a simple job. In such a case, if we could know the
schedulability bound with no information on task execution
time, that would be helpful to determine whether certain tasks
are able to be integrated into a system or not. Besides, in the
course of system development, if a system designer would
add/modify a task to/on an existing system, the designer
needs to check the schedulability of the system including
the new/modified task. If it is schedulable the new/modified
task can be included into the system. In such cases the
schedulability test provides a quick, abstracted assessment of
the system under development.

Hence, in this paper, we present an analysis determining the
schedulability bound for a set of tasks in an IMA partition,
when IMA partition information and task periods are known
while task execution times are unavailable. With the bound,
we can determine how much of execution times the tasks can
have to be schedulable in the given periods in a hierarchical
IMA system. Since we can determine the bound when there

is no information about task execution times at all, we can
also trivially do it when only a subset of information for task
execution times is available.

To derive the bound, we formulate the problem as a linear
programming (LP) problem that can be solved by a linear
programming solver which is commonly used in the avionics
industry for schedulability analysis. If the final bound is above
or equal to the total utilization of all tasks in the partition,
the tasks are determined to be schedulable. Throughout this
paper, we assume task execution on an IMA system is based
on Rate-Monotonic (RM) scheduling [20] which is the optimal
scheduling policy on fixed priority scheduling and supported
by open standards in avionics systems. RM assigns higher
priority on the task with a shorter period.

In order to see the impact of more known information, we
conduct comparisons in Sec. IV. There are two works which
look for a utilization bound in a hierarchical environment
with resource information in the upper level but without task
information. In [25], a scheduling bound is presented when
only Real-Time Virtual Machine (RTVM) sizes are given while
task information is not. RTVM can be seen as a similar
hierarchical concept with IMA system in this paper. The bound
shows the maximally possible utilization of tasks in an RTVM.
In [27], considering a periodic resource, a utilization bound for
RM is presented when only resource information but no task
information (workload) is given (only the number of tasks, the
shortest task period and the ratio between periods are known).
The resource is similar to IMA partition in the perspective of
a task in our context. Since the utilization bound can show the
maximum load of tasks under a certain resource requirement, it
can be used for determining whether to accept a (new) task into
a system or not (admission test). Since our presented bound is
a result based on ‘more’ information (task periods) than that
of [25] or [27], our bound is supposed to be higher than theirs.

On the stream of the research of temporally partitioned
hierarchical scheduling there have been two main issues -
one is how much of task utilization can be supported by
the allocated resource requirement. That is, as what this
paper is about, to find the maximal utilization of tasks which
run under a given partition (e.g., server, resource, RTVM)
requirement. Besides to ours, [25] and [27] reside in this
category. The another issue on the stream is, the other way
around, how much of the computational resource needs to
be allocated to each partition in order for the system to be
optimized for a certain metric. For instance, it is desirable in
the system design process to minimize the system utilization
while guaranteeing the timing requirements of both partitions
(servers) and their applications. That is obtaining the partition
or server parameters to sustain the given task. Relevant work
can be found in [3, 5–8, 18, 19, 24, 27, 29, 30].

Our LP formulation is based on the one in [16] which used

37978-3-9815370-4-8/DATE15/ c©2015 EDAA

the formulation for QoS management in admission control,
thus the formulation is partly found in [16]. However, the for-
mulation works on only a non-hierarchical environment, while
in this paper we formulate the LP to deal with hierarchical
IMA structure. The authors [21] presented an LP formulation
which is not polynomial for an analogous problem with one
in [16]. In non-hierarchical system for this problem which
regards no period information, the authors of [13, 14] showed
the utilization bound depending on the number of harmonic
groups of tasks. On the other hand the authors in [15] presented
another bound regarding the ratio between the longest and
shortest period. An exponential complexity algorithm in the
integer domain for that problem was presented in [4]. More
other relevant work can be found in [9, 12, 17].

II. SYSTEM MODEL

A. Integrated Modular Avionics System

In IMA system, a partition is a hierarchical running environ-
ment for tasks. Application tasks belong to an IMA partition
and run only when their partition is active, which achieves
temporal isolation between partitions. Once their assigned
partition finishes, any running task should be suspended. Since
partitions are based on cyclic executive, a partition is assigned
by certain time slots to run, and the assigned schedule repeats
every major cycle. For example in Fig. 1 (a), slot 3 is assigned
to partition 2 and slots 5–7 are assigned for partition 3 while
slot 2 and 4 are not assigned to any partition, and this partition
schedule repeats every 10.

Tasks in different partitions do not share the same address
space or any global variables, and an IMA system does not
allow dynamic resource allocation such as dynamic memory
allocation. These have partitions be spatially isolated, and
prevent any failure propagation from a partition to another,
which is the aim of designing IMA system [23]. Also, device
I/O transaction atomically begins and finishes within a single
slot.1 In addition to that, each IMA partition can have its own
scheduling policy, which eases partition-level development,
migration or certification. Throughout this paper, we assume
that tasks run on RM scheduling policy.

B. System Description

At the higher level in a hierarchical IMA system, a partition
contains a set of periodic application tasks Γ = {τi|i =
1, . . . , n}. Each τi is represented by τi := (ei, pi) where ei
is the worst-case execution time and pi is the period which is
equal to the relative deadline. Without loss of generality, tasks
are sorted according to their priorities in decreasing order, i.e.,
τ1 is the highest priority and τn is the lowest, that is, p1 is
the shortest and pn is the longest according to RM policy. We
assume no task release jitter. Context switching overheads of
application tasks and partitions are assumed to be zero.

The total utilization of all the application tasks in a single
partition is denoted by Utotal and defined as follows:

Definition 1. Utotal =
∑n

i=1
ei
pi

.

Also, IMA partition capacity is defined as follows:

1Actually, an I/O transaction is done in a special-purpose partition called
zero partition or device management partition to perform I/O transactions
in a consolidated fashion and thus has simplified both implementation and
management of I/O operations. However, it is out of scope of this paper.
Interested readers can refer to [10, 11, 22, 23] for the full details.

10 9 8 7 6 5 4 3 2 1 0

10 9 8 7 6 5 4 3 2 1 0

10 9 8 7 6 5 4 3 2 1 0

major cycle

(a) Partition schedule in a major cycle.

major cycle
(b) An example rearrangement of partitions in (a).

major cycle

(c) Overall system schedule in the perspective of a task in P1 when all tasks and 0
release at time t=0, i.e., in the worst-case. Note that 0 has the highest priority.

All tasks in P1 and 0 release.

0

Fig. 1: Partition schedule.

Definition 2. Partition capacity =
of assigned slots

major cycle
.

For instance, in Fig. 1 (a) and (b), partition 1’s capacity is
3
10 = 0.3 and partition 2’s is 1

10 = 0.1. In our model, the major
cycle is not longer than any task’s period. However, this never
implies that if the major cycle is longer than a task’s period
the task misses its deadline. For example, if we are given task
τi = (ei, pi) = (1, 5), (deadline= 5) and a partition with major
cycle of 10, the task always meets its deadline wherever the
partition slots are allocated as long as the partition takes 6 or
more slots (i.e., partition’s capacity ≥ 0.6).

This issue is also connected with the worst-case partition
slot arrangement. A task in a partition experiences the worst-
case response time when it releases at (i.e., just right after)
the finishing instant of its partition and all the partition slots
aggregate together (see [6, 25]). This is visually described in
Fig. 1 (c). Partition 1’s slots are consecutively allocated from
t = 7 to 10, and a task in partition 1 releases at t = 0 (= 10,∵
the major cycle is 10), which is the worst-case situation for

the task regardless of other partitions’ arrangement, since the
task’s slot allowed to run was just past, thus it should wait to
run until the next cycle.

In order to model the worst-case situation, we apply the
concept of VM Periodic Task in [25] to a single task, τ0. τ0
is relatively defined for the tasks in each partition.

Definition 3. τ0: in the perspective of a task in a partition,

• τ0 is the highest priority task in the entire system, and
• τ0’s execution time is the sum of the slots not assigned

to its own partition, and
• τ0’s period is the major cycle.

For example, whatever the original schedule was one such as
Fig. 1 (a) or (b), in the perspective a task in partition 1, τ0’s
execution time e0 = 7 and period p0 = 10 = major cycle,
which can be represented as Fig. 1 (c). Since τ0 holds the
highest priority, the task experiences the worst-case response
time when it simultaneously releases with τ0 at t = 0 by the
critical instant theorem of Liu & Layland [20]. In a hierarchical
partition scheduling, a task cannot run on the unassigned slots
(other partition’s assigned slots and the empty slots) but can
run only on its own partition’s assigned slots. By keeping
the highest priority and having execution time as much as
the sum of unassigned slots for the partition, τ0 realizes the
effect. Since τ0 inherently models the worst-case effect in the
schedulability of a task, now an arrangement of partitions does
not affect the schedulability and thus can be flexible. That is,
the partition schedule in Fig. 1 (a) can be converted into the

38 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

one in Fig. 1 (b) or anything as long as all the partitions’
capacities are still the same, which means that we only need
partition capacities but not an actual arrangement.

C. Problem Description

The problem is stated as follows: for a partition, we derive
the maximal sufficient bound, Ubound(τi) for task τi, that
minimizes the total tasks’ utilization when

• major cycle and partition capacity (i.e., τ0=(e0, p0)), and
• application tasks’ periods, i.e., {pk|k = 1, . . . , i}

are given. Then the maximal sufficient bound for all the tasks
is denoted by Ubound and represented by

Ubound = min
1≤i≤n

(
Ubound(τi)

)
.

III. MAXIMAL SUFFICIENT UTILIZATION BOUND

We start our analysis by deriving the schedulability bound of
each task in a partition, Ubound(τi). Then the minimum among
each resulted bound is the bound, Ubound. If Ubound ≥ Utotal,
the set of tasks in the partition is schedulable, otherwise it
is not. Hence, we start deriving the schedulability bound for
each task τi (1 ≤ i ≤ n) in a partition.

A. Bound for Each Task in a Partition, Ubound(τi)

A trivial sufficient bound to guarantee schedulability is an
arbitrarily small value which is not useful in practice. Thus, we
need to obtain the maximal sufficient bound for task τi. To find
the maximal sufficient condition for task τi, we search for a
task set with the minimal utilization in a partition characterized
by the following three conditions identified by Liu and Layland
in [20]. We shall refer them as L&L conditions.

• Condition 1: The preemption to task τi is maximized by
having all the tasks simultaneously begin at time t = 0.

• Condition 2: Task τi completes before its first deadline.
• Condition 3: The processor is fully utilized in [0, pi].

Since task periods are given, with those constant periods
the maximal sufficient bound can be obtained by a linear
programming as being subject to L&L conditions.

Condition 1 is easily addressed by indexing all the tasks’
execution start times at t = 0. Condition 2 is also easy to
be represented, which can be checked by summing up all
the preemptions on task τi and τi’s execution time, and then
ensuring if the sum is larger than τi’s deadline (= pi) or not.

However, Condition 3 cannot be easily addressed since it
would need a potentially large number of constraints. Since
Condition 3 ensures that the bound is the maximal sufficient
bound not just a sufficient one, it requires the time duration
[0, pi] to be fully utilized. To satisfy the condition, no idle time
is supposed to be in [0, pi]. If there is an idle time in [0, pi]
the bound would not be maximally sufficient, since that means
there is still room to be utilized as much as the idle time. Thus,
execution times can increase until the duration [0, pi] gets filled
– we call this process as a maximalization process which leads
a sufficient bound to the maximally sufficient one.

1) Linear Programming Formulation: For the first step to
represent Condition 3, let us account for the preemption in
a form of linear constraints. In Fig. 2, we are interested in
the schedulability of τ3. From the perspective of task τ3,
the preemption from each higher priority task can be divided
into two portions - overflow part and non-overflow part. Since

0 = (4, 10)

1 = (4, 12)

0 10 20 30 0 10 20 30

12 24 240

2 = (3, 27)

3 = (1, 33)

0 27

0

18

19 19 33

overflow part

overflow part

30

rt

3 ’s deadline
33

ne

Fig. 2: Preemption on τ3, by non-overflow and overflow part.

the deadline of τ3 is 33, the execution of the higher priority
tasks of τ3 which occurs after 33 is classified as overflow
part, while the remaining execution which happens before
33 is non-overflow part. This classification applies to any
instance. For example, since one slot of τ0’s forth instance
runs after τ3’s deadline 33, in every τ0’s instance overflow
part for τ3 denoted by eover0→3 is 1 (diagonally striped in
Fig. 2), while the non-overflow part denoted by enon0→3 is 3.
Likewise, τ1’s overflow part, eover1→3 = 0 and τ2’s eover2→3 = 1.
For a bound of task τi, generally, for its higher task τh,

eoverh→i=max
((⌊

pi
ph

⌋
·ph+eh

)
−pi, 0

)
, and enonh→i = eh−eoverh→i .

In the example, the non-overflow part of τ0 preempts τ3 four
times, while its overflow part preempts τ3 only three times.
Generally, the total preemption from a high priority task τh to

τi is
⌈
pi
ph

⌉
enonh→i +

⌊
pi
ph

⌋
eoverh→i . Hence, the total preemption to

task τi from all the higher priority tasks can be represented

as
∑i−1

h=0

(⌈
pi
ph

⌉
enonh→i +

⌊
pi
ph

⌋
eoverh→i

)
. Now, suppose that there

exists a set of linear constraints R∗ (will be shown later), in
which enonh→i(0≤h≤ i−1) still stay as non-overflow parts during
a maximalization process and the processor is fully utilized in
the interval [0, pi]. Now let us define Ubound(τi).

Definition 4. Ubound(τi): denotes the maximal sufficient
bound for task τi in the set of tasks {τk|1 ≤ k ≤ i}.

Lemma 1. The maximal sufficient bound Ubound(τi) for
scheduling τi is obtained by the linear programming problem,

Ubound(τi) = min
(i∑

k=1

ek
pk

)

subject to R∗

and

i−1∑
h=0

(⌈ pi

ph

⌉
enon
h→i +

⌊ pi

ph

⌋
eoverh→i

)
+ ei = pi. (1)

where enon
0→i, e

over
0→i , and pk(0 ≤ k ≤ i) are constant;

ek(1 ≤ k ≤ i) are decision variables.

Proof. It directly follows L&L conditions - (1) represents
Condition 1 and 2, and R∗ does Condition 3.

Before identifying R∗, we will eliminate all overflow vari-
ables in (1) by setting the values to zero, except that of τ0.
Since for every task pi is constant, the overflow part of e0 does
not change. Thus, after maximalization process, we would not
need to explicitly list the overflow variables (except τ0’s).

Lemma 2. When the solution of the linear programming
problem in Lemma 1 is attained, eoverh→i = 0 (1 ≤ h ≤ i− 1).

Proof. (Although similar proving can be found in Lemma 1
in [16], we prove it differently here for our context.) Assume
that the minimal utilization task set has at least one overflow
variable which is greater than 0, i.e., eoverh→i > 0, for some h.

Then the processor utilization contributed by eoverh→i is
eover
h→i

ph

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 39

0 = (2, 6)
0 2 6 12

1 = (3, 10)
0 2 5 10

2 = (2, 14)
0 6 14 9

2‘s deadline

Idle time

Fig. 3: Interval [0, 14] is not fully utilized (there is idle time) in spite
of satisfying the equality constraint (2).

and the preemption provided by eoverh→i is
⌊
pi
ph

⌋
eoverh→i . We keep

the processor busy during [0, pi] by setting eoverh→i = 0 and in-

creasing ei by
⌊
pi
ph

⌋
eoverh→i . Then the reduced utilization is

eover
h→i

ph

and the increased utilization is (
⌊
pi
ph

⌋
eoverh→i)/pi. Accordingly,

the net processor utilization is reduced since

pi

ph
eoverh→i ≥

⌊ pi

ph

⌋
eoverh→i ,

eoverh→i

ph
≥
⌊

pi
ph

⌋
eoverh→i

pi
,

reduced utilization ≥ increased utilization.

Hence, the net is reduced while [0, pi] is fully utilized. This
contradicts the assumption that the minimal utilization task set
has a non-zero overflow variable except for τ0.

According to Lemma 2, now we have eoverh→i = 0 (1 ≤
h ≤ i − 1), and thus in Lemma 1 we can eliminate overflow
variables, eoverh→i(1 ≤ h ≤ i − 1). Applying Lemma 2, the
rewritten form of Lemma 1 is in Lemma 3 as follows:

Lemma 3. The maximal sufficient bound Ubound(τi) for
scheduling τi is obtained by the linear programming problem,

Ubound(τi) = min
(i∑

k=1

ek
pk

)

subject to R∗

and
(⌈ pi

p0

⌉
enon
0→i +

⌊ pi

p0

⌋
eover0→i

)
+

i−1∑
h=1

(⌈ pi

ph

⌉
eh
)

+ ei = pi (2)

where

enon
0→i, e

over
0→i , and pk(0 ≤ k ≤ i) are constant; e0 = enon

0→i + eover0→i ;

zk(1 ≤ k ≤
i−1∑
h=0

⌈ pi

ph

⌉
): series of all arrival instants in (0, pi);

ek(1 ≤ k ≤ i) are decision variables.

Proof. It directly follows Lemma 1 and Lemma 2.
The variables for arrival instants, zk, are needed for R∗,

of which idea is also found in the formulation of Theorem
2 in [16]. Let us first identify R∗ which ensures that the
processor is busy in [0, pi] and the non-overflow variables are
indeed non-overflow parts during the maximalization process.
To do so, we first remove the R∗ constraint from Lemma 3
and observe the implication. In Fig. 3. Consider the case of
three tasks, τ0(2, 6), τ1(3, 10) and τ2(2, 14). These three tasks
satisfy the equality constraint (2) in Lemma 3 as follows:(⌈p2

p0

⌉
enon
0→2 +

⌊p2
p0

⌋
eover0→2

)
+
(⌈p2

p1

⌉
e1
)

+ e2 = p2,

(⌈14

6

⌉
2 +

⌊14

6

⌋
0
)

+
(⌈14

10

⌉
3
)

+ 2 = 6 + 6 + 2 = 14.

However, as we can see there is an idle time in [9,10] since the
2nd invocation of τ1 overflows. This cannot be checked only
by the constraint (2) since it just ensures that the aggregate

sum of all executions is pi=14. Hence, we need Lemma 4 for
non-overflow variables not to represent overflow executions.

Lemma 4. By equality constraint (2) in Lemma 3, overflow in
a high priority task’s execution time implies that there exists
an idle time in the interval [0, pi].

Proof. Since the total processor time requested by all the
tasks is equal to pi, if any part of a high priority task executes
after pi, there must be an idle interval in [0, pi].

Corollary 1. By equality constraint (2) in Lemma 3, having no
idle time in interval [0, pi] implies that all decision variables
in Lemma 3 have no overflow parts, i.e., eoverh→i = 0 (1 ≤ h ≤
i − 1).

Proof. This is the contrapositive of Lemma 4. Since
Lemma 4 is true, this proposition is true, as well.

Therefore, constraint R∗ can be represented by a set of
linear constraints which forces all possible gaps, i.e., idle time
intervals, to be filled with executions. In Fig. 3, the task arrival
instants (except t = 0) are z1 = 6, z2 = 10 and z3 = 12. Note
that once an idle interval starts (if any), it must terminate at the
right next task arrival instant anyway. Because at that point,
the next new task arrives. In the example, the idle interval
beginning at t = 9 terminates at t = 10. Hence, the constraint
ensuring that the total processor demand at an arrival instant is
greater than or equal to (the instant−0), should be checked at
every arrival instant. That is represented at (4) in Theorem 1.

Theorem 1. The maximal sufficient bound Ubound(τi) for
scheduling τi is obtained by the linear programming problem,

Ubound(τi) = min
(i∑

k=1

ek
pk

)

subject to

(⌈ pi

p0

⌉
enon
0→i +

⌊ pi

p0

⌋
eover0→i

)
+

i−1∑
h=1

(⌈ pi

ph

⌉
eh
)

+ ei = pi (3)

and

i−1∑
h=0

(⌈ zk
ph

⌉
eh
)

+ ei ≥ zk (1 ≤ k ≤
i−1∑
h=0

⌊ pi

ph

⌋
) (4)

where

enon
0→i, e

over
0→i , and pk(0 ≤ k ≤ i) are constant; e0 = enon

0→i + eover0→i ;

zk(1 ≤ k ≤
i−1∑
h=0

⌈ pi

ph

⌉
): series of all arrival instants in (0, pi);

ek(1 ≤ k ≤ i) are decision variables.

Proof. The proving follows a part of proof of Theorem
2 in [16]. If there is an idle interval in [0, pi], it will be
terminated by either an arrival of a higher priority task before
t = pi or at t = pi. However, either case does not happen
since it contradicts the linear programming constraints that
there cannot be an idle time before each task arrives. By
Corollary 1, disappearing of idle time makes an overflow
impossible. Finally, the equality constraint (3) ensures that
task τi is schedulable in [0, pi]. In summary, Theorem 1’s
linear constraints satisfy all the L&L conditions. Furthermore,
there cannot be any overflow (except for τ0), and thus we do
not need overflow variables. It follows that Ubound(τi) is the
maximal sufficient bound.

B. Bound for All Tasks in a Partition, Ubound

Now we derive the maximal sufficient bound, Ubound, for all
the tasks {τi|i = 1, . . . , n} in a partition, by using the bound

40 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

TABLE I: Utilization bounds according to partition capacity for
Example 1. No information on task is given for SHA’s and Shin’s
while we are given task periods. The more known information leads
to a higher bounds. (Ubound = min(Ubound(τ1), Ubound(τ2)))

partition capacity Ubound(τ1) Ubound(τ2) Ubound SHA’s Shin’s

0.1 0.08 0.08 0.08 0.05 minus

0.3 0.25 0.25 0.25 0.16 0.001

0.5 0.41 0.43 0.41 0.28 0.12

0.7 0.58 0.62 0.58 0.43 0.33

0.9 0.83 0.82 0.82 0.59 0.64

for each task, Ubound(τi), that we obtain in Section III-A.

Theorem 2. A set of tasks {τi|i = 1, . . . , n} is schedulable if
its total utilization Utotal is less than or equal to Ubound, i.e.,
Utotal ≤ Ubound, where Ubound = min1≤i≤n(Ubound(τi)).

Proof. According to that Utotal ≤ Ubound and Ubound =
min1≤i≤n(Ubound(τi)),

Utotal ≤ Ubound = min
1≤i≤n

(Ubound(τi)). (5)

For 1 ≤ i ≤ n,
i∑

k=1

ek
pk

≤
n∑

k=1

ek
pk

= Utotal, and (6)

min
1≤i≤n

(
Ubound(τi)

)
≤ Ubound(τi). (7)

According to (5), (6) and (7) for 1 ≤ i ≤ n,
i∑

k=1

ek
pk

≤
n∑

k=1

ek
pk

= Utotal≤Ubound= min
1≤i≤n

Ubound(τi)≤Ubound(τi).

Finally, we can obtain

i∑
k=1

ek
pk

≤ Ubound(τi) (1 ≤ i ≤ n),

which shows that each task’s scheduling bound is met. Thus,
Theorem 2 holds.

According to Theorem 2, ultimately the maximal sufficient
utilization bound for a schedulable set of tasks in a parti-
tion, Ubound, is obtained by picking the minimum among
Ubound(τ1), Ubound(τ2), . . . , Ubound(τn). Let us see how the
presented method works with a numerical example.

Example 1. Suppose a partition and the major cycle is 10.
In the partition there are two tasks, τ1 and τ2: τ1’s period p1
is 12 and τ2’s period p2 is 41.

The resulted bounds according to partition capacity are
shown in Table I. According to Theorem 1 and 2, Ubound
is derived by picking the minimum among τ1’s and τ2’s
bound, Ubound = min(Ubound(τ1), Ubound(τ2)). For instance,
for capacity 0.9, i.e., τ0 = (e0, p0) = (1, 10), Ubound =
min(Ubound(τ1), Ubound(τ2)) = min(0.83, 0.82) = 0.82.
Table I also shows the bound from [25] (referred to as SHA’s)
and [27] (referred to as Shin’s).2 More discussion continues
in the next section.

IV. EVALUATION

In Fig. 4 we compared the resulted bound from our LP
with SHA’s and Shin’s for 1,000 samples: each sample task
set contains 3–100 tasks with periods randomly generated from
uniform distribution over 50–99 and major cycle over 30–60.
As we can see the ratio between any two periods is less than
2 since Shin’s bound (formulation (33) in [28]) can be applied

2For Shin’s, the bound and theorem presented in [27] (full proof presented
in [28]) contain errors thus the authors corrected them on [28] for their
extended journal version [29]. Ultimately, bounds presented in Table I are
obtained from (32) and (33) presented in the updated version of [28].

Partition capacity
0 0.2 0.4 0.6 0.8 1

U
til

iz
at

io
n

bo
un

d

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

our LP
SHA's
Shin's

Fig. 4: (Shown in color) Comparison of utilization bounds only for
task sets in which the ratio between any two periods is less than 2.
Thus, the task sets are favorable for SHA’s and Shin’s.

only for such cases.3 For that reason, our resulted bound is not
that much higher than SHA’s. Because in SHA’s such task sets
are assumed and then the bound is derived, which is favorable
for SHA’s bound. Hence, for a fair comparison, we ran another
experiment with general periods for our LP and SHA’s.

Fig. 5 shows the difference in utilization bound between our
LP and SHA’s according to a partition capacity. Differently
from Fig. 4, in Fig. 5 ratio of a task’s period to another can
reach 30. Each task set also contains 3–100 tasks with periods
randomly generated from uniform distribution over 10–300
and major cycle over 10–100. We ran 1,000 sample sets. The
result shows that our LP enhances SHA’s utilization bound
since SHA’s needs to suppose the worst-case periods and thus
tries to reserve enough room for those tasks. Accordingly, the
bound gets lower, i.e., more conservative. On the other hand,
since we are given the information for the task periods, we
do not need to make the worst-case assumption on the task
periods, which enables to spare more utilization for the tasks

3In [28], formulation (32) can be applied to a general case of periods,
however, it can accommodate only 2 tasks.

Partition capacity
0 0.2 0.4 0.6 0.8 1

D
if

fe
re

nc
e

be
tw

ee
n

L
P

an
d

SH
A

's
 in

 u
til

iz
at

io
n

bo
un

d

0

0.05

0.1

0.15

0.2

0.25

Fig. 5: The difference in utilization bound between LP solution and
SHA’s, for general cases of task sets in which the ratio between any
two periods is not restricted by 2. This shows how much ‘known
information (= known periods)’ enhances the bound.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 41

and thus raise the bound.
One of the issues we empirically found in using the bound

is that large remainders between a task’s period and its higher
priority tasks’ lower the bound. The smaller the difference, the
likelier the task is to have a higher bound. For an example, just
change the period of τ2 from 41 to 60 in Example 1 to make
the remainders zero, that is, {p0 = 10, p1 = 12, p2 = 60}. In
the case of the partition capacity for 0.9, i.e., τ0 = (1, 10),
τ1’s bound is 0.83 while τ2’s bound is 0.9 which is the full
utilization of the partition capacity. That is because, τ2’s period
is divisible by τ0 and τ1. Such a case also corresponds to
the known fact that in RM harmonic tasks achieve 100% of
utilization. For the reason, if we were given a task set with
large remainders, for an enhanced utilization bound we could
consider the use of the period transformation method such
as the one described in [26], which transforms a period into
a smaller period which is harmonic in the task set, if it is
possible to apply to the application.

V. CONCLUSIONS

In this paper we formulated LP for a maximal sufficient
bound for tasks in a given IMA partition without any infor-
mation on task execution times. The bound will be a quick
and convenient index for a system developer in an early
development phase for a schedulability test of the tasks in the
given partition. Because, once a developer knows the bound,
the developer can deal with any other combination of the tasks
with lower utilization than the obtained bound. To achieve
the goal, our formulation seeks the maximal sufficient bound
for each task with only periods and major cycle information.
Then, ultimately provides the maximal sufficient bound for the
entire task set. We believe that this is a useful work which can
be employed in the field instantly. In addition to that, to see
the impact of more known information on schedulability, we
showed our bound with other existing ones which obtain a
bound without task period values in a hierarchical system.

VI. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments on the paper. This work is sup-
ported in part by Navy N00014-12-1-0046 and by NSF CNS
13-02563, 13-20209 and 14-23334. Any opinions, findings,
and conclusions or recommendations expressed here are those
of the authors and do not necessarily reflect the views of
sponsors.

REFERENCES

[1] ARINC Specification 651: Design Guidance for Integrated Modular
Avionics. ARINC report. Airlines Electronic Engineering Committee
and Aeronautical Radio Inc, Nov. 1991.

[2] Avionics application software standard interface: Arinc specification
653p1-3. Aeronautical Radio, Inc., 2010.

[3] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. In Proceedings of the 4th
ACM intl’ conference on Embedded software, pages 95–103, 2004.

[4] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound revisited. IEEE
Trans. Comput., 52(3), Mar. 2003.

[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive
scheduling. In Proceedings of the 24th IEEE Real-Time Systems
Symposium, pages 389–398, 2005.

[6] R. I. Davis and A. Burns. An investigation into server parameter
selection for hierarchical fixed priority pre-emptive systems. In Proc. of
Real-Time and Network Systems, 2008.

[7] F. Dewan and N. Fisher. Approximate bandwidth allocation for fixed-
priority-scheduled periodic resources. In Proceedings of the 2010 16th

IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, RTAS ’10, pages 247–256, 2010.

[8] A. Easwaran. Compositional schedulability analysis supporting associa-
tivity, optimality, dependency and concurrency. PhD thesis, Computer
and Information Science, University of Pennsylvania, 2007.

[9] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability
test for real-time fixed-priority scheduling algorithm. In Proceedings of
the IEEE Real-Time Systems Symposium, pages 36–45. IEEE Computer
Society, 1997.

[10] J.-E. Kim, M.-K. Yoon, S. Im, R. Bradford, and L. Sha. Optimized
scheduling of multi-ima partitions with exclusive region for synchro-
nized real-time multi-core systems. In Proc. of the Conference on
Design, Automation and Test in Europe, DATE ’13, pages 970–975,
2013.

[11] J. Krodel. Commercial off-the-shelf real-time operating system and
architectural considerations. Federal Aviation Administration, Feb. 2004.

[12] T.-W. Kuo, L.-P. Chang, Y.-H. Liu, and K.-J. Lin. Efficient online
schedulability tests for real-time systems. IEEE Trans. Software Eng.,
29(8):734–751, 2003.

[13] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time
systems. In Proceedings of the IEEE Real-Time Systems Symposium,
pages 160–170. IEEE Computer Society, 1991.

[14] T.-W. Kuo and A. K. Mok. Incremental reconfiguration and load adjust-
ment in adaptive real-time systems. IEEE Trans. Comput., 46(12):1313–
1324, Dec. 1997.

[15] S. Lauzac, R. G. Melhem, and D. Moss. An efficient rms admission
control and its application to multiprocessor scheduling. In IPPS/SPDP,
pages 511–518, July 2003.

[16] C.-G. Lee, L. Sha, and A. Peddi. Enhanced utilization bounds for qos
management. IEEE Trans. Comput., 53(2):187–200, Feb. 2004.

[17] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New strategies
for assigning real-time tasks to multiprocessor systems. IEEE Trans.
Comput., 44(12):1429–1442, Dec. 1995.

[18] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. In Proceedings of the 15th Euromicro Conference on Real-Time
Systems, pages 151–158, 2003.

[19] G. Lipari and E. Bini. A methodology for designing hierarchical
scheduling systems. J. Embedded Comput., 1(2):257–269, Apr. 2005.

[20] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(1):46–61,
January 1973.

[21] D.-W. Park, S. Natarajan, A. Kanevsky, and M. J. Kim. A generalized
utilization bound test for fixed-priority real-time scheduling. In Pro-
ceedings of the 2nd International Workshop on Real-Time Computing
Systems and Applications, 1995.

[22] P. Parkinson and L. Kinnan. Safety-critical software development for
integrated modular avionics. White Paper, Wind River Systems, 2007.

[23] J. Rushby. Partitioning in avionics architectures: Requirements, mecha-
nisms, and assurance. NASA Langley Technical Report, Mar. 1999.

[24] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarchical fixed-priority scheduling. In Proceedings of the 14th
Euromicro Conference on Real-Time Systems, pages 152–160, 2002.

[25] L. Sha. Real-time virtual machines for avionics software porting and
development. In Real-Time and Embedded Computing Systems and
Applications, the 9th International Conference, RTCSA, Feb. 2003.

[26] L. Sha and J. B. Goodenough. Real-time scheduling theory and ada.
IEEE Computer, 23(4):53–62, April 1990.

[27] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. of the 24th IEEE International Real-Time Systems
Symposium, pages 2–13, 2003.

[28] I. Shin and I. Lee. Periodic resource model for compositional real-
time guarantees. Tech. rep., Dep. of Computer & Information Science,
University of Pennsylvania, 2003 (rev. 2010).

[29] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Transactions on Embedded Computing Systems,
7(3):30:1–30:39, May 2008.

[30] M.-K. Yoon, J.-E. Kim, R. Bradford, and L. Sha. Holistic design
parameter optimization of multiple periodic resources in hierarchical
scheduling. In Proc. of the 16th ACM/IEEE Design, Automation, and
Test in Europe, pages 1313 – 1318, 2013.

42 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

