
Distributed Reinforcement Learning for Power
Limited Many-core System Performance

Optimization

Zhuo Chen
Electrical and Computer Engineering

Carnegie Mellon University

Email: zhuoc1@andrew.cmu.edu

Diana Marculescu
Electrical and Computer Engineering

Carnegie Mellon University

Email: dianam@cmu.edu

Abstract—As power density emerges as the main constraint
for many-core systems, controlling power consumption under the
Thermal Design Power (TDP) while maximizing the performance
becomes increasingly critical. To dynamically save power, Dy-
namic Voltage Frequency Scaling (DVFS) techniques have proved
to be effective and are widely available commercially. In this
paper, we present an On-line Distributed Reinforcement Learning
(OD-RL) based DVFS control algorithm for many-core system
performance improvement under power constraints. At the finer
grain, a per-core Reinforcement Learning (RL) method is used
to learn the optimal control policy of the Voltage/Frequency
(VF) levels in a system model-free manner. At the coarser
grain, an efficient global power budget reallocation algorithm
is used to maximize the overall performance. The experiments
show that compared to the state-of-the-art algorithms: 1) OD-RL
produces up to 98% less budget overshoot, 2) up to 44.3x better
throughput per over-the-budget energy and up to 23% higher
energy efficiency, and 3) two orders of magnitude speedup over
state-of-the-art techniques for systems with hundreds of cores.

I. INTRODUCTION

While historically the major goal of processor designers was
to gain better performance by continuously shrinking device size,
adding more pipeline stages, and speeding up the clock cycle, the
power wall was eventually reached and energy has become the main
design constraint.

The ever growing power consumption increases the burden of heat
dissipation, lowers the chip reliability, and decreases battery life of
mobile devices. As Dennard scaling breaks down, multi-core systems
have become the solution to mitigate the high power problem. For
highly parallel applications, multiple small cores with lower voltage
and frequency can offer similar throughput as one large core at a much
higher voltage and frequency. Indeed, the multi-core system consumes
less power according to the V 2f Scale Law [1]. While multi-core
systems are now mainstream market products, the desire for higher
performance is again pushing the envelope toward higher power
consumption. In order to ensure the safety and reliability of multi-
core systems, a Thermal Design Power (TDP) constraint is imposed
which the system power consumption should not exceed. As a result,
improving performance under the TDP constraint becomes one of
the main directions in power/performance optimization. In addition
to the static way of increasing the number of cores, Dynamic Voltage
Frequency Scaling (DVFS) is developed to save the power at runtime.
By being smart in tuning the Voltage and Frequency (VF) levels of
the cores, on-chip computation can be performed in a more energy
efficient manner. However, finding the optimal VF level assignment

This research was supported in part by NSF CCF Grant No. 1314876 and
NSF CNS Grant No. 1128624.

can be formulated as an integer linear programming problem which is
NP hard [2]. Therefore, the exact solution cannot be implemented as
an on-line algorithm, especially when the number of cores scales up.
Many algorithms have been proposed to find near-optimal solutions
in polynomial time, however, they did not take the budget overshoot
problem into consideration and may only be efficient for small-scale
multi-core systems rather than systems with hundreds of cores. By
exploiting both spatial and temporal hierarchy, we propose On-line
Distributed Reinforcement Learning (OD-RL) that is able to improve
the performance with much less TDP overshoot and smaller runtime
overhead.

II. RELATED WORK AND PAPER CONTRIBUTIONS

Multi-core system DVFS control for power management has been
widely studied [1], [3], [4], [5], [6], [7], [8], [9]. Reinforcement
Learning (RL) [10], [11], [12], [13] and supervised learning methods
[14], [15], [16], [17] have recently been applied for single core
systems or systems with a modest numbers of cores and are proved
to be effective, but no scalability study exists. Isci et al. propose
MaxBIPS which exhaustively searches for the best combination of
VF levels that maximizes the performance under power constraint.
However, MaxBIPS is not a scalable approach, although it does
deliver good quality solutions. Winter et al. analyze the complexity
of LinOpt [18] to be O(N4) where N is the number of cores,
but the approach is unsuitable for many-core systems [6]. They
further propose the Steepest Drop method which has a complexity of
O(α ·N ·log(N)) where α is the number of VF levels. Although they
are solving the power limited performance improvement problem,
none of them takes the budget overshoot into consideration. Authors
of [16] coordinate multiple resources, including power constraints.
Yet, the approach requires off-line profiling and training for an
Artificial Neural Network. Although a RL-based approach has the
strength of learning the model of the system and workload, none
of the aforementioned contributions addresses the scalability of RL
in many-core systems. In order to mitigate the scalability problem,
Juan et al. [12] propose to group the cores into multiple clusters
each managed by supervisors which suppress the actions back to
nominal VF level whenever the budget is exceeded. Nevertheless, the
recovery mechanism, the under-investigated granularity of the clusters
and the equal-distribution of the power budget renders this method
not optimal. There are also works on thermal constrained performance
optimization [19], [20], [7]. However, they need separate procedures
for model learning and action decision while RL learns the optimal
actions in a model-free manner. Besides, the thermal constraint is
usually local (per-core) which is very different from the global power
constraint in our case. Since the problem scope is different, we cannot
provide a direct comparison with these approaches. To the best of our
knowledge, our work makes the following contributions:

1521978-3-9815370-4-8/DATE15/ c©2015 EDAA

Fig. 1. Agent-system interaction in RL. The systems is characterized
by state s. The action a is taken by an agent to change the state, with
resulting outcomes r or p and new state s′

1. The RL method is known to be not scalable, since the number
of states increases exponentially with the number of cores. In this
work, we exploit the spatial and temporal hierarchical structure,
and propose the OD-RL method that combines RL and an efficient
power budget reallocation algorithm. The number of states of OD-
RL therefore no longer depends on the number of cores, and the
algorithm complexity is reduced dramatically to O(N ·log(N)) which
is also independent of the number of VF levels. The proposed method
overcomes the scalability problem of RL while maintaining its
powerful aspect of learning the optimal action without building a full
model of the system.

2. Power constrained performance improvement is usually solved
by pushing the average power close to the TDP constraint, regardless
of the resulting budget overshoot. Many methods do exceed the budget
quite often and may also suffer from the inaccuracy of V 2f Scale
Law. However, our approach is able to adapt to the workload, mitigate
the inaccuracy problem and hence suppress the budget overshoot
effectively.

3. We evaluate our proposed method, MaxBIPS and Steepest
Drop with a wide spectrum of parallel, multi-threaded applications
in systems with as many as 64 cores. The experimental results show
up to 98% less budget overshoot, 44.3x better Throughput per Over-
the-budget Energy (TOE), 23% energy efficiency improvement and
100x speedup in a 512-core system when compared with Steepest
Drop [6] approach.

The remainder of this paper is organized as follows. Section 3
describes our proposed OD-RL method. Section 4 gives the experi-
mental results and compares them with the state-of-the-art methods.
Section 5 concludes our work.

III. METHODOLOGY

RL algorithms are developed to find the optimal solution to
sequential decision problem, and have been proved effective in a
variety of problems from different areas [21]. However, they often
suffer from state space explosion and thus are too expensive to use in
large scale problems. In this paper, we propose OD-RL method which
assigns VF levels to each core to improve the global performance
under a given power budget in a scalable manner. To solve the
scalability problem of the RL algorithms, our method consists of a
distributed RL algorithm working at finer grain and an efficient power
reallocation algorithm working at coarser grain.

RL [21] is inspired by the trial-and-error method humans used
for making decisions for millions of years. In RL, the agent interacts
with the system (Fig. 1), e.g., committing actions based on the state
of the system and also observing the new state of the system. The
goal of RL is to find the best actions under different states such
that by following those best actions, the agent can optimize the
long-term reward. The probability of selecting an action a under
a state s is called a policy π(s, a). RL determines how the agent
changes its policy by experiencing the states. As the problem is
sequential, the long-term reward starting from time t is defined
as Rt = rt + γrt+1 + γ2rt+2 + ... =

∑∞
k=0 γ

krt+k, where ri
is the immediate reward at time i. Discount factor γ determines
how important the future reward is. If γ = 1, future reward is

as important as the immediate reward rt. If γ = 0, the agent
does not care about future rewards. Qπ(s, a) is the expected Rt of
starting from state s, taking action a and then following the policy
π: Qπ(s, a) = E{Rt|st = s, at = a}. The optimal Q value is
defined as Q∗(s, a) = max

π
Qπ(s, a) which means the optimal Q

value is obtained when we choose the policy that can maximize the
long-term reward of Qπ(s, a). Formally speaking,

Q∗(s, a) = E{r + γ ·max
a′ Q∗(s′, a′)|st = s, at = a}

=
∑

s′
P a
ss′ [R

a
ss′ + γ ·max

a′ Q∗(s′, a′)]
(1)

where P a
ss′ is the transition probablity (probability of becoming state

s′ by taking action a at state s), and Ra
ss′ is the expected reward of

reaching state s′ by taking action a at state s. This equation is known
as Bellman optimality equation for Q∗ [21]. It is always looking for
the action a′ that can maximize the Q∗ value of the next state, and
averaging over all the possible next states. However, we usually do
not know the value of P a

ss′ and Ra
ss′ .

Q-learning [22] is one of the most important breakthroughs in
RL [21], because (1) it converges to the Bellman optimal solution in
an on-line and incremental manner; (2) it does not require the model
of system, e.g., prior knowledge of P a

ss′ and Ra
ss′ . The following

equation gives the updating rule of Q-learning:

Q(s, a) = Q(s, a)

+ θ · {r + γ ·max
a′ [Q(s′, a′)]−Q(s, a)} (2)

The agent starts from state s and chooses action a. By observing the
reward r and the next state s′, r+γ·max

a′ [Q(s′, a′)] gives the expected

long-term reward of the state-action pair (s, a). Then Q-learning
updates the Q value incrementally, which is suitable when the agent
experiences the state-action pairs sequentially, by using the difference
{r + γ · max

a′ [Q(s′, a′)] − Q(s, a)}. Repeating this procedure, Q-

learning is guaranteed to converge to the Bellman optimal solution
[22], i.e., solution to equation (1).

Nevertheless, when we define the machine states and actions
globally, the state space explodes exponentially. Therefore, if a
centralized RL is used, the overall number of states and actions
grows exponentially in the number of cores. To prove this exponential
growth, we assume that the system has N cores in total, K features
per core, e.g., IPC, and D different values per feature, e.g., high/low.
The kth feature of core i is denoted as fik and the global state is
defined as Sglobal = {f11, f12, ..f1K ...fN1, ...fNK}. The number
of global states of a N-core system would be |Sglobal| ∝ DKN .
The action of all N cores will be a vector Aglobal = (a1, a2, ...aN)
where ai is the action of the ith core. Without loss of generality, we
assume the same number of possible actions α for each core, then the
number of possible values of global action vector |Aglobal| ∝ αN .
Accordingly, in the centralized RL method, the total number of state-
action pairs would be |Sglobal| · |Aglobal| ∝ DKN ·αN which indeed
grows exponentially in the number of cores N. One way to mitigate
the exponential growth of the number of actions is to decompose the
actions of different cores, in which case each core makes its own
independent decision under the global state. The number of states is
still the same as before while the number of action is reduced to αN
from αN in total, i.e., α for each core. Therefore, for each core, the
number of state-action pairs would be |Sglobal| · |ai| ∝ DKN · α,
which is much smaller than the previous case but still exponential in
the number of cores. The training time and memory overhead will
render both approaches impractical in real application.

Nonetheless, by following the same path of decomposing the
states, we are able to further reduce complexity. A globally defined
state space contains more information than necessary, i.e., in such
a high dimensional state space, many of them are never reached.
Therefore, one way to reduce the complexity is to eliminate the
features of the other cores and retain only the features of the current

1522 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 2. Structure of the algorithm. Spatial hierarchy: budget reallo-
cation does global coordination while RL is distributed to each core.
Temporal hierarchy: budget reallocation works at coarser gain while
RL executes at finer grain.

core. By doing so, the state of each core i is Si = {fi1, fi2, ..fiK}.
The number of state-action pairs of each core is further reduced to
|Si|·|ai| ∝ DK ·α, which is no longer a function of N . Consequently,
a distributed RL algorithm allows every core to run independently
and learn the optimal DVFS control policy on its own. Since the
distributed RL method is highly parallel, all the cores can work
simultaneously and hence the time complexity of this method is O(1).
However, we actually achieve this high scalability at the cost of
missing information on the other cores. To solve this problem, we
propose to reallocate the power budget at a coarser grain in which
all the cores communicate by means of receiving new power budget
constraint.

Therefore, the problem of RL-based power constrained perfor-
mance improvement is decomposed into two sub-problems.

1. At finer grain, given a fraction of total budget, each core learns
the best policy that maximizes the performance under that budget,
locally.

2. At coarser grain, reallocate the power budget to ensure a better
utilization of the total budget, globally.

Fig. 2 depicts the overall structure of our algorithm. Spatially,
distributed RL works on each core locally and independently, while
the budget reallocator reallocates the budget among all the cores.
Temporally, distributed RL operates at every control epoch, while the
budget reallocator executes every M epochs. By doing experiments,
we find M = 15 is the best value for most benchmarks.

A. Finer Grain: Reinforcement learning algorithm

At finer grain, each core will use Q-learning to learn the best
policy. We define the state of machine as S={Instruction Per Cycle
(IPC), Million L2-cache-misses Per Kilo-Instructions (MPKI), current
power value (Power), current VF level (VF level)}. Traditionally, the
features are discretized equally. Instead, we discretize feature IPC
by its statistical distribution to minimize inter-interval oscillation
due to poor discretization threshold. We define the reward r as
the core throughput, which stands for the preference of the action
that leads to higher performance. The budget-overshoot penalty is
−PF · |power value − power budget| where PF is the penalty
factor. The penalty is proportional to the value of budget overshoot,
which follows the intuition that it is more desirable to eliminate a
higher overshoot. We will decide PF value in section IV.B.

To accelerate the convergence of Q-learning, we propose a batch-
update method. For any state s0 and s1, we define s1 > s0, when
all the features of s1 are larger than those of s0. By analyzing the
program trace, we observe that, if the core exceeds the budget at state-
action pair (s, a), it will also exceed at (S, a), ∀S > s. Therefore, we
penalize all the state-action pairs (S, a), ∀S > s, when the budget is

exceeded at (s, a). In such a way, unnecessary budget overshoots are
eliminated by taking advantage of the correlation between the states.

RL algorithm is able to suppress the budget overshoot by learning
the transition probability of the workload. However, these actions
can sometimes be conservative due to the abnormality in the data
experienced. We observe in the experiments that high frequency
selection is sometimes penalized due to abnormal spikes in power.
We note that it would be possible to overshoot the budget for a short
period, therefore we develop a memory mechanism to accommodate
these spikes in a similar way as how branch predictor works. We
maintain an m-bit memory queue for all the state-action pairs. If
a state-action results in under the budget, the memory receives a
1. Whenever the same state-action pairs receives a 0, which means
a budget overshoot, it will check the m-bit memory: (1) it will
not penalize the pair when all the bits in memory are 1s. (2) it
will penalize the pair when one of the bits is 0. We determine the
best value of m = 3 by experiments. This memory mechanism
can accommodate the abnormality and mitigate the performance
degradation due to the workload idiosyncrasies while still being able
to learn the periodic power spikes.

B. Coaser Grain: Power budget reallocation

As distributed RL maximizes the performance under the given
budget at a finer grain, power budget reallocation algorithm will serve
as a global coordinator to further maximize the performance as well as
the power utilization at a coarser grain. Following the same intuition
as MaxBIPS which favors the CPU-intensive threads, we propose
the Maximize-the-Max (MM) method which always maximizes the
VF level of the busiest cores. Algorithm 1 gives the pseudocode
of MM method. Let’s associate a tuple (core number, IPC) = (i,
IPCi) to each core i. Then we have a “core number-IPC” profile:
CORE− IPC = {(0, IPC0), (1, IPC1), . . . , (n − 1, IPCn−1)}.
Power of core i at VF level V Fi is Pow(i, V Fi). At every power
reallocation epoch, MM first estimates the power consumption of all
the cores at their lowest VF level, and subtracts this value from the
total budget. Then MM builds a max-heap out of CORE− IPC based
on the IPC value, and pops out the core with the highest utilization.
The required budget to boost it to the highest VF level is calculated
and then given to the core. If there is still residual budget after the first
allocation, MM will pick the core with the second highest utilization
value and will again allocate the budget to allow the highest VF level
selection. MM repeats this process until no budget value is left. To
implement this algorithm, we used the max-heap to sort the cores in
the order of their utilization, with a time complexity of N · log(N).
To estimate the power consumption of core i at a different VF level
V Fi = q, we use the V 2f Scale Law [1] which states that dynamic
power is proportional to V 2f where V is voltage and f is frequency.
Assuming core i is originally at V Fi = p, we estimate

Pow(i, q) = Pow(i, p) · V olt2(q) · freq(q)
V olt2(p) · freq(p) · β(i) (3)

where β(i) is the discount factor of core i accounting for the
transition cost of VF level [1], and V olt(p) and freq(p) are the
voltage and frequency of VF level p, respectively. We determine
β(i) = 0.9 for ∀i by experiments. Since subthreshold leakage power
usually remains stable for a specific voltage, to further increase the
power estimation accuracy, we subtract it from the total power first,
then do the V 2f scale on dynamic power, and finally add the leakage
power of the new voltage back to the total power. The subthreshold
leakage power of different voltages are measured during machine idle
period.

IV. EXPERIMENTAL RESULTS

A. Experiment Set-up

We verify the effectiveness of the proposed method by using
Sniper simulator [23] with Parsec and Splash-2 multi-threaded bench-

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1523

Algorithm 1 Pseudocode of MM method

1: Input: CORE− IPC, Global Budget, N
2: Output: Budgeti for a core i, 1 ≤ i ≤ N
3: Variable: Residual Budget.
4: for i = 1; i ≤ N ; i++ do
5: Budgeti ← Pow(i, V Fi = lowest)
6: end for
7: Residual Budget ← Global Budget−∑N

i=1 Pow(i, V Fi =
lowest)

8: Built a max-heap of CORE− IPC based on the IPC value
9: while Residual Budget > 0 do

10: Pop the max-heap and get the tuple (i, IPCi)
11: Δ ← Pow(i, V Fi = highest) − Pow(i, V Fi =

lowest)
12: if Δ ≤ Residual Budget then
13: Budgeti ← Budgeti +Δ
14: Residual Budget← Residual Budget−Δ
15: else
16: Budgeti ← Budgeti +Residual Budget
17: break
18: end if
19: end while

Fig. 3. Simulation infrastructure: Sniper for timing simulation and
McPAT for power estimation. Distributed RL and budget reallocator
are implemented as Python scripts to make the VF level decisions
and interact with Sniper.

mark suites. The simulation infrastructure is shown in Fig. 3. Sniper is
able to perform timing simulations for multi-threaded, shared-memory
applications with tens to 100+ cores, and has been validated against
Intel Core2 and Nehalem systems. Sniper uses McPAT [24] for system
power estimation. The system configuration is shown in Table I. In
Sniper simulator, our algorithm is implemented as a Python script. In
every control epoch, this script will be invoked by Sniper and executed
to select the VF level of all the cores. The epoch size varies from
500μs to 10ms across different benchmarks, because 1) we explore
the effectiveness of our approach across different epoch lengths; 2)
we are using the large input sets for the benchmarks and therefore,
we need hundreds of epochs to demonstrate the effectiveness of the
algorithm in a statistically significant manner.

TABLE I. ARCHITECTURAL PARAMETERS

Number of cores 8, 16, 32, 64
Architecture Intel Gainestown
L1-I/D cache 32KB, 4-way, LRU

L2 cache 512KB, 8-way, LRU
L3 cache 8MB, 16-way, LRU

VF levels (GHz/V) 2.7/0.9, 3.0/1.0, 3.3/1.1, 3.6/1.2
Nominal VF level 3.0GHz/1.0V

Control epoch 500μs to 10ms
Reallocation period every 15 epochs
Technology node 45 nm

Fig. 4. Budget overshoot quickly satures when Penalty Factor (PF)
is larger than 5.

B. Results and Analysis

The penalty in RL plays an important role in determining
the algorithm behavior [21]. Higher penalty offers better overshoot
suppression, but can also negatively impact the performance. Lower
penalty is able to give better performance at the cost of more budget
overshoot. In order to find the best Penalty Factor (PF) value,
we studied the penalty impact on budget overshoot under different
benchmarks and numbers of cores. The results in Fig. 4 show that
the budget overshoot quickly saturates when PF ≥ 5, therefore we
select PF = 5 as it offers the best trade-off between penalty and
performance.

We evaluate our algorithm together with two state-of-the-art
algorithms: MaxBIPS [1] and Steepest Drop [6] in terms of their
budget overshoot control, relative performance improvement, and
runtime overhead. Budget overshoot is defined as the total energy
consumption over the TDP. This extra energy increases the risk of
thermal emergencies and subsequent throttling, negatively impacts
the chip reliability, and puts heavier burden on the cooling system.
Fig. 5 shows the budget overshoot control of three algorithms. Our
algorithm is able to better suppress the budget overshoot in all but
one case, by a margin of several orders of magnitude. In swaptions,
we see that our approach does not perform as well as Steepest
Drop and is close to MaxBIPS. The reason for this behavior is that
swaptions is a very balanced multi-threaded application in which
all cores have the same utilization across cores and in time. The
exception is core 0 which does nothing with IPC0 = 0. In this
case, the inevitable on-line learning overhead of OD-RL increases
the relative budget overshoot. In Radiosity, OD-RL saves 98% budget
overshoot due to its capability of adapting to the workload change
and hence reducing the over-the-budget energy to a much lower value
0.06J compared to the other approaches. OD-RL outperforms the
state-of-the-art approaches because it is able to learn the workload
transition probability and therefore suppress the budget overshoot.
We point out that less budget overshoot may lead to lower power
consumption and lower performance. To make a fair comparison,
rather than simply comparing the performance without taking budget
overshoot into account, we have to use metrics that can show the
relative values of performance, power and budget overshoot. To
evaluate the relative performance under different budget overshoot, we
propose the metric Throughput per Over-the-budget Energy (TOE).
TOE measures how much performance we could gain by taking
the risk of exceeding the budget by one unit of energy. Higher
performance and lower over-the-budget energy will both lead to
higher TOE value. As MaxBIPS and Steepest Drop are actually
pushing the average power close to the budget line to achieve high
performance regardless of the budget overshoot, we will also calculate
Throughput2

Average Power
(∝ 1

Energy−Delay Product
) to evaluate the energy

efficiency of all three methods. Fig. 6 and Fig. 7 compare the TOE
value and energy efficiency of all three approaches under different
benchmarks, respectively. An 8-core system is used here because

1524 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 5. Comparison among three algorithms on budget overshoot con-
trol (Lower is better). Results normalized with respect to MaxBIPS.

Fig. 6. Comparison among three algorithms on Throughput per Over-
the-budget Energy (TOE) (Higher is better). Results normalized with
respect to MaxBIPS

MaxBIPS (which uses exhaustive search) is not scalable and thus
requires too much time in a system with more cores. Radiosity shows
a high TOE improvement around 45x because OD-RL almost never
exceeds the budget (0.06J over-the-budget energy). OD-RL adapts to
the workload change and gives moderate performance improvement
with much less over-the-budget energy. Therefore, it gives better TOE
and energy efficiency values across all the benchmarks. Fig. 7 gives
the comparison of energy efficiency. OD-RL also provides up to
23% higher energy efficiency, and is slightly better than the other
approaches on average because MaxBIPS is already near optimal on
average [1]. To show how OD-RL performs when the number of
cores scales up, we compare Steepest Drop and OD-RL for a system

Fig. 7. Comparison among three algorithms on energy efficiency
(Higher is better). Results normalized with respect to MaxBIPS.

Fig. 8. Comparison of TOE (left), budget overshoot (middle) and
energy efficiency (right) in a system of 16 cores.

Fig. 9. Comparison of TOE (left), budget overshoot (middle) and
energy efficiency (right) in a system of 32 cores.

of 16, 32 and 64 cores. We only compare Steepest Drop and OD-
RL here because MaxBIPS is unable to run for more than 8 cores.
Waternsq, bodytrack, ferret and fluidanimate are used here because
they are the most representative for our work. Figure 8, 9 and 10
show that OD-RL is constantly better when the number of cores
scales up. OD-RL, on average, achieves 5-10x better TOE value,
around 70% less budget overshoot and 3% better energy efficiency.
The average improvement of three metrics over different number
of cores is relatively stable, respectively, except TOE in a 16-core
system. That’s because Steepest Drop exceeds the budget more than
40% of the time with relatively less performance improvement. The
consistent improvement across different number of cores demonstrates
that OD-RL method is highly scalable and largely independent on
the number of cores. Based on the analysis of the algorithm trace,
we have the following observations: 1) MaxBIPS and Steepest Drop
heavily rely on the accuracy of the V 2f Scale Law. Inaccurate
power estimation will make them choose actions that result in budget
overshoot. Although OD-RL also suffers from that inaccuracy only
at the budget reallocation epoch, the RL will automatically adapt to
the new budget and suppress the budget overshoot. 2) Even with a
perfect power estimation, MaxBIPS and Steepest Drop still suffer
from making decisions based on the current machine state regardless
of the next machine state. For example, let’s assume a machine state
s0 at time t0 and s1 at time t1 with s1 > s0. Here larger s means a
higher machine utilization. At time t0, MaxBIPS and Steepest Drop
will calculate the best actions based on s0 which should not exceeds
the budget. Unfortunately, s0 quickly changes to s1 under which the
chosen actions cause a higher power consumption which actually
exceeds the budget. The reason that RL performs better is that it has
the capability of learning the transition probability of the machine
state, and therefore, is able to predict the next machine state and
choose the best action based on both current and future state.

We further analyze and test the overhead of three approaches.
MaxBIPS uses exhaustive search and its complexity is O(N · αN)
where α is the number of VF levels. Steepest Drop is much more

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1525

Fig. 10. Comparison of TOE (left), budget overshoot (middle) and
energy efficiency (right) in a system of 64 cores.

Fig. 11. Log-log plot of approaches overhead in a system up to 1024
cores. Execution time is averaged over 100 runs.

scalable with a complexity of O(α · N · log(N)). In OD-RL, the
distributed RL method is highly parallel and the only phase requiring
global coordination is the power budget reallocation. MM actually
does a heapsort with respect to the IPC value, and in worst case
its complexity is O(N · log(N)) [25]. Therefore, MM has a better
scalability in terms of more VF levels. Besides, since OD-RL invokes
the power reallocation algorithm in a coarser grain, it further reduces
the runtime overhead by a constant factor asymptotically though
not changing the complexity. Fig. 11 shows the execution time (log
scale) of the Steepest Drop method and OD-RL with number of
cores up to 1024. They indeed follow the O(N · log(N)) trend. The
execution time is averaged over 100 runs. The results show that OD-
RL can achieve 100x speedup in a 512-core system when compared
to Steepest Drop.

V. CONCLUSION

In this work, we propose an On-line Distributed Reinforcement
Learning-based approach which decomposes the original power con-
strained, performance optimization problem into two sub-problems at
different spatial and temporal granularities. The RL at finer grain is
able to improve the performance while suppressing the budget over-
shoot by learning and adapting to the workload change. Maximize-
the-max (MM) method at the coarser grain is more scalable in terms
of the number of VF levels compared to Steepest Drop, and can be
asymptotically faster as a result of infrequent execution. It is 100x
faster in a 512-core system. Our approach achieves up to 98% saving
on budget overshoot, 44.3x TOE and 23% higher energy efficiency,
and is consistently better when the number of cores scales up.

REFERENCES

[1] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in MICRO. IEEE
Computer Society, 2006, pp. 347–358.

[2] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for
high-performance, power-efficient heterogeneous many-core systems,”
in ICCD. IEEE, 2013, pp. 54–61.

[3] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in HPCA. IEEE, 2006,
pp. 77–87.

[4] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive dvfs and thread packing under power caps,” in MICRO. ACM,
2011, pp. 175–185.

[5] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in ISLPED. IEEE, 2007, pp. 38–43.

[6] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in PACT. ACM, 2010, pp. 29–40.

[7] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power con-
trol for chip multiprocessors with online model estimation,” in ACM
SIGARCH computer architecture news, vol. 37, no. 3. ACM, 2009,
pp. 314–324.

[8] J. Sartori and R. Kumar, “Distributed peak power management for
many-core architectures,” in DATE. IEEE, 2009, pp. 1556–1559.

[9] J. M. Cebrián, J. L. Aragon, and S. Kaxiras, “Power token balancing:
Adapting cmps to power constraints for parallel multithreaded work-
loads,” in IPDPS. IEEE, 2011, pp. 431–442.

[10] W. Liu, Y. Tan, and Q. Qiu, “Enhanced q-learning algorithm for
dynamic power management with performance constraint,” in DATE.
European Design and Automation Association, 2010, pp. 602–605.

[11] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using
reinforcement learning,” in ICCAD. ACM, 2009, pp. 461–467.

[12] D.-C. Juan and D. Marculescu, “Power-aware performance increase
via core/uncore reinforcement control for chip-multiprocessors,” in
ISLPED. ACM, 2012, pp. 97–102.

[13] G.-Y. Pan, J.-Y. Jou, and B.-C. Lai, “Scalable power management using
multilevel reinforcement learning for multiprocessors,” ACM TODAES,
vol. 19, no. 4, p. 33, 2014.

[14] G. Dhiman and T. S. Rosing, “Dynamic power management using
machine learning,” in ICCAD. ACM, 2006, pp. 747–754.

[15] H. Jung and P. M., “Improving the efficiency of power management
techniques by using bayesian classification,” in ISQED. IEEE, 2008,
pp. 178 – 183.

[16] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in MICRO. IEEE Computer Society, 2008, pp.
318–329.

[17] D.-C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning the
optimal operating point for many-core systems with extended range
voltage/frequency scaling,” in CODES+ ISSS. IEEE, 2013, pp. 1–10.

[18] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in ACM SIGARCH
Computer Architecture News, vol. 36, no. 3. IEEE Computer Society,
2008, pp. 363–374.

[19] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries, “A virtual
platform environment for exploring power, thermal and reliability
management control strategies in high-performance multicores,” in
Proceedings of the 20th symposium on Great lakes symposium on VLSI.
ACM, 2010, pp. 311–316.

[20] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “A distributed
and self-calibrating model-predictive controller for energy and thermal
management of high-performance multicores,” in DATE. IEEE, 2011,
pp. 1–6.

[21] A. G. Barto, Reinforcement learning: An introduction. MIT press,
1998.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[23] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lations,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO-42nd.
IEEE, 2009, pp. 469–480.

[25] J. W. J. Williams, “Algorithm-232-heapsort,” pp. 347–348, 1964.

1526 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

