
Race to Idle or Not: Balancing the Memory Sleep
Time with DVS for Energy Minimization

Chenchen Fu, Minming Li, Chun Jason Xue
Department of Computer Science, City University of Hong Kong, Hong Kong

Abstract—Reducing energy consumption is a critical problem
in most of the computing systems today. In recent years, dynamic
voltage scaling (DVS) has been often applied in the multi-core
processor systems. The leakage power of the main memory shared
by the multiple DVS cores is becoming a larger problem with tech-
nology scaling. This paper focuses on minimizing the system-wide
energy consumption by applying DVS on each core and turning
the memory to sleep when all the cores have common idle time.
This work presents systematic analysis for the target problem
based on different system models and task models. For tasks
with common release time , optimal schemes are presented for
the systems both with and without considering the static power of
the cores. For the general task model, a heuristic online algorithm
is proposed. Furthermore, the scheme is extended to handle the
problem when the transition overhead between the active and
sleep modes is not negligible. The experimental results show that
the heuristic algorithm can reduce the energy consumption of the
overall system by 8.73% in average (up to 28.44%) compared to
a state-of-the-art multi-core DVS scheduling scheme.

I. INTRODUCTION

Energy efficiency is a critical issue in most of the comput-
ing environments nowadays. Among all components, processor
and main memory typically dominate the energy consump-
tion of computing devices. It is reported that main memory
contributes to about 30-40% of total energy consumption on
modern systems [5], while the processor consumes as much as
50% energy consumption of the overall system [2]. Nowadays,
the main memory is usually shared by multiple cores in
servers, personal computers, and even embedded systems.
A conventional and effective method to reduce the energy
consumption of the processor is Dynamic Voltage Scaling
(DVS). There are a series of work focusing on improving
the energy saving of the multi-core processors by applying
DVS [2, 4, 8, 10]. However, the energy saving problem of
the shared memory in the multi-core architecture still remains.
In this work, by considering the interactions of the cores and
the memory, we propose techniques to optimize the overall
system-wide energy consumption.

Among the overall memory energy consumption, leakage
power occupies a significant portion, as the memory chips are
becoming denser with smaller technology scales. For example,
in Dynamic Random Access Memory (DRAM), which is
widely used for main memory, leakage power is as much as 10
times of the dynamic read/write power for the memory chip
using a process technology with the size smaller than 50nm
[9]. Effectively reducing the leakage power can significantly
improve the memory energy efficiency. To reduce the leakage
power, the memory can be transformed from the active state
to a power-saving state (such as the sleep state) when it is
not accessed [7, 12]. The main challenges of the system-wide

energy minimization problem of considering both the leakage
power of the memory and the multi-core processor power, lie in
two aspects. On one hand, from the benefit of cores, executing
tasks in lower speed leads to less power consumption, while for
the memory, the processor speed slowdown may result in an
increase of the static power, which might be very significant.
Hence, balance between the energy consumption of the cores
and the memory needs to be achieved for the overall energy
minimization. On the other hand, each core may have specific
memory access pattern and the shared memory cannot sleep
as long as any memory access exists. Consequently, it is the
common idle time of all the cores that determines the sleep
time of the shared memory, which is a different problem from
the existing multi-core DVS scheduling schemes. To handle
these two challenges, this work proposes optimal solutions to
minimize the overall system-wide energy consumption when
the interactions of the multi-core processors and the memory
are taken into account. To the best of our knowledge, this work
is the first attempt to obtain the optimal solution in minimizing
the system-wide energy consumption considering both of the
multiple DVS cores and the memory.

In this paper, we conduct a systematic study of the system-
wide energy minimization problem based on various system
and task models. The goal is to schedule tasks among multiple
independent DVS cores to maximize the time when all cores
are idle, so as to minimize the overall energy consumption.
Both theoretical and practical techniques are proposed in this
work. Experimental results show that the proposed online
algorithm can reduce the overall energy consumption by 8.73%
in average compared to a state-of-the-art multi-core DVS
scheduling scheme. The main contributions of this paper are:

• NP-hardness of the problem is proved when the num-
ber of cores is bounded by the number of tasks;

• When the number of cores is unbounded, for tasks
with common release time , two optimal schemes are
proposed for two cases where cores have negligible
and non-negligible static power, respectively;

• An online heuristic algorithm is proposed considering
the general task model;

• The mode transition overhead of the memory and the
cores are further considered.

The rest of this paper is organized as follows. The related
work is presented in Section II. Section III presents the defini-
tions of the system model and the target problem. In Section
IV, the optimal schemes and an online heuristic algorithm are
proposed. Section V analyzes the problem considering mode
transition overhead. The experimental results are shown in
Section VI. Finally we conclude the paper in Section VII.

13978-3-9815370-4-8/DATE15/ c©2015 EDAA

II. RELATED WORK

In this section, we introduce two groups of the most
related work. First we introduce DVS scheduling on multi-core
processors. Second, the research work on the speed scaling
with sleep state problem is presented.

Dynamic voltage scaling is a widely used energy manage-
ment technique. Since the power consumption of a processor
increases with the voltage of the processor increasing, energy
can be saved by scaling the voltage of the processor. For
multi-core processors where each core has independent voltage
supply, Yang et al. [10] propose an optimal and polynomial
schedule for a given task assignment with common release
time and deadline. Albers et al. [2] prove the NP-hardness of
the problem when tasks cannot migrate and propose several
approximation algorithms. Greenstreet et al. [3] study the
problem when tasks can migrate between cores and show the
optimal schedule can be obtained by Linear Programming.

More recently, several scheduling algorithms focusing on
DVS while considering turning the processor to sleep state
were proposed [1, 4, 6]. This problem is called speed scaling
with sleep state, which was first formally defined and discussed
in [6]. The main idea to handle the problem is to schedule tasks
at an appropriate speed so as to create an idle period in which
the processor can be switched into sleep state. In this way,
both static and dynamic energy consumptions of the processor
can be reduced. The speed scaling with sleep state problem
on a single-core processor is proved to be NP-hard even for
tree-structured tasks by Albers et al. [1]. The authors also
propose the best possible lower bound for the approximation
factor in this problem. For multi-core processors, Chen et al.
[4] propose polynomial approximation algorithms for periodic
tasks. In this work, by applying DVS on multi-core processors,
maximizing the memory sleep time is a new problem. It
is more complicated than the speed scaling with sleep state
problem on multi-processors, because the common idle time
of all cores is the objective that needs to be optimized.
Furthermore, in our work, putting the cores into sleep state
is also taken into account.

III. PROBLEM STATEMENT AND PRELIMINARY ANALYSIS

In this section, we present the system and task models,
problem formulation, together with the complexity analysis of
the most general case of the target problem.

System model: This paper explores energy-efficient schedul-
ing schemes for the multiple homogeneous DVS cores with
shared main memory. Assume that the number of cores is
C, and each core has individual dynamic voltage supply. The
power function of each core remains the same. The core power
can be represented as a convex function of the core speed s:
P (s) = α+βsλ, where α denotes the static power of the core
[4] and λ > 1 [11]. In this work, we ignore the overhead of
the speed adjustment, and assume that the core speeds change
in a continuous manner and no upper bound is given (the
assumption is the same as that in [10–12]).

The static power for the shared main memory is αm due to
the leakage current. The memory can be turned to sleep when
it is not accessed by any core to save the leakage energy. We
assume the sleep and active mode transition of the memory

can be done instantly, but requires extra energy overhead [4].
Conventionally, the transition energy overhead is represented
as break-even time, which is the idle length where the memory
working in active mode consumes the same energy as the
transition overhead. Let ξm represent the break-even time of
the memory. Likewise, denote the transition overhead of the
core as ξ, if α �= 0.

Task model: Tasks discussed in this work are independent
during executions. Preemption is allowed but tasks cannot
migrate between cores once assigned [8, 10]. Given a set of
n tasks, T1, T2, ..., Tn, each task Ti is associated with release
time ri, deadline di, and non-negative workload wi. Without
loss of generality, we assume workload wi is unique for each
task. All tasks must be completed before their deadlines. The
time period [ri, di] of Ti, is called the feasible region, denoted
as Ii. To clearly state the features of the proposed technique,
we define a notation filled speed sfi for each task Ti. sfi
represents the speed when Ti is executed to occupy the entire
feasible region [ri, di], i.e. sfi =

wi

di−ri
. Note that when α = 0,

the core scheduling task in the filled speed consumes the least
energy while satisfying the deadline constraint.

Problem definition: The goal of the explored problem in this
paper is to schedule tasks by applying DVS on each core
while turning the core to sleep (when α �= 0) when no task is
executing, and turning the memory to sleep when all cores are
idle to minimize the system-wide energy consumption. In this
work, we define common idle time as the time period when all
cores are idle. It is equal to the sleep time of memory, denoted
as Δ. Based on the above defined models, we define the
target problem as Sleep and DVS-aware system-wide Energy
Minimization (SDEM) problem. For this problem, a schedule
is feasible meaning that no task misses its deadline; a schedule
is optimal denoting that it leads to the least system-wide energy
consumption among all feasible schedules.

Theorem 1. SDEM is NP-hard when the number of cores
2 � C < n, even for tasks with common release time and
deadline with α = 0 and ξm = 0.

This Theorem can be proved by transforming from the NP-
hard problem PARTITION.

The energy minimization problem of scheduling tasks on
multiple DVS processors is proved to be NP-hard in [2]. But it
does not directly imply the above proof because the problem
in [2] only targets the DVS scheduling, without considering
the common idle time. Furthermore, in [2], optimal schedule is
obtained for common arrival time and common deadline tasks,
while SDEM has stronger NP-hardness even with common
time constraints. Even though Theorem 1 proves the NP-
hardness of the problem, we find that SDEM is solvable when
assuming the number of cores is sufficient for loading each task
on a single core, i.e. C � n. Considering the complexity of
NP-hard problem, this paper focuses on the sufficient number
of cores. The following analysis explores the optimal results
for tasks with common release time and proposes a heuristic
online algorithm for general tasks.

IV. PROBLEM ANALYSIS

This section explores solutions for SDEM problem. In the
following, we first consider a set of tasks with common release
time and propose optimal schemes when only the memory

14 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

can be turned to sleep, and then extend the optimal solution
to the system model when the cores can also be turned to
sleep when idle. At last, for the general task model, a heuristic
online algorithm is developed. In this section, we assume the
transition overhead of the memory and the cores, ξm and ξ, are
both 0. The further analysis including the transition overhead
is presented in the next section.

A. α = 0: Only the memory can be turned to sleep

In this subsection, we assume the dynamic power dom-
inates the core power consumption [8, 10, 12]. Given n
tasks with common release time , without loss of generality,
we assume all tasks arrive at time 0 and each task has an
individual deadline. Index them in the increasing order of their
deadlines. Let Ii = [0, di] represent the feasible region of each
task Ti, and I = In = [0, dn] be the maximal interval. We
use δi = dn − di, ∀i ∈ [1, n− 1] to represent the time period
right after each task’s feasible region. Assume the optimal
solution is obtained when the memory sleeps for Δ length
in the right hand side of I , and δi � Δ < δi−1, ∀i ∈ [1, n]
(let δn = 0, δ0 = ∞). Without violating the time constraints,
tasks from T1 to Ti−1 should be scheduled in their own filled
speed, while tasks from Ti to Tn are scheduled to finish
at time |I| −Δ. The corresponding task model is given in
Fig. 1(a). It can be noted that, the memory sleep time Δ
is the only determining factor to the optimal solution. The
following optimal scheme aims to obtain the best memory
sleep time leading to the optimal solution. The system energy
consumption can be represented as

Ei = αm(|I| −Δ) + β

i−1∑
j=1

(
wj

|Ij |)
λ|Ij |+ β

n∑
k=i

(
wk

|I| −Δ
)λ(|I| −Δ)

Under the assumption of δi � Δ < δi−1, the optimal memory
sleep time Δ that minimizes Ei can be obtained by derivation.

Δmi = |I| − (
β(λ− 1)

∑n
j=i w

λ
j

αm
)

1
λ (1)

Without loss of generality, we denote each case under the
assumption of δi � Δ < δi−1 as Case i with the local minimal
energy consumption Emin i. The overall energy minimization
analysis is presented in the following lemma and theorem.

Lemma 1. The local minimal energy consumption Emin i for
Case i is obtained as

Emin i =

⎧⎨
⎩

Ei(Δmi) if δi � Δmi < δi−1

Ei(δi) if Δmi < δi
Ei(δi−1) if Δmi � δi−1

(2)

when 2 � i � n− 1. Specifically, when Δ � δ1,

Emin 1 =

{
E1(Δm1) if Δm1 � δ1
E1(δ1) if Δm1 < δ1

(3)

and when Δ < δn−1,

Emin n =

{
En(Δmn) if Δmn < δn−1

En(δn−1) if Δmn � δn−1
(4)

Proof is omitted due to the space limitation. In Theorem 2,
we present a scheme which goes over these n cases to find the
global minimal energy Em = min{Emin i}, ∀i ∈ [1, n] for a
given task set. To clearly describe the theorem, we call Δmi

valid when Emin i chooses Δmi as its solution, for example,
Δm1 is valid when Δm1 � δ1, and call Δmi just-fit when
Emin i chooses δi. When δi−1 is chosen as the solution to
Emin i, Δmi is called invalid.

Theorem 2. The optimal solution can be obtained by going
through all n cases as defined in Lemma 1 from Case n to
Case 1. For each Case i, the global optimal result is obtained

(a) α = 0. (b) α �= 0.

Fig. 1: Common release time task models

when Δmi is valid or just-fit as the corresponding result given
in (2). When Δmi is invalid, the scheme goes to the next Case
i− 1, which needs to be checked in the same way.

Proof: First of all, it can be noted from (1), that for the
same task set,

Δmi > Δm(i−1) for all i ∈ [2, n] (5)

In the following analysis, we prove this theorem by induction.
Set a counter k to represent the case that is discussed, and ini-
tialize it to n. For the base case when k = n, if Δmn < δn−1,
according to (5), it means that from Δm1 to Δm(n−1), they
are all smaller than δn−1, which implies that Δmi in each
case is just-fit. According to the corresponding conditions
showed in (2) (3) (4), it can be noted that under this case,
for ∀i ∈ [2, k − 1] (now k = n)

Emin i = Ei(δi) < Ei(δi−1) = Ei−1(δi−1) = Emin (i−1) (6)
and

En(Δmn) < En(δn−1) = Emin (n−1)

Therefore, the local optimal values in all the other cases cannot
be less than En(Δmn). Then the global minimal energy is
obtained as Em = En(Δmn). Otherwise, when Δmn � δn−1,
the other cases cannot be guaranteed to be smaller or larger
than the local optimal of Case n without further analysis. So
we let k = k − 1 and go to the next case.

In the induction steps, we assume Case k = i+ 1 satisfies
Theorem 2 and the scheme goes to Case k = i, which implies
that Δm(i+1) is invalid. For Case k = i, if Δmi is valid or
just-fit, then all the Δmk, where k ∈ [1, i− 1], are just-fit and
can never lead to less energy value than Ei(Δmi) (it can be
analyzed in the similar way by applying (6).). So the global
optimal solution can be obtained accordingly. Likewise the
following process. If at last the scheme goes to Case 1, then
it stops and obtains the global optimal result according to (3).

Next, to prove that it is feasible to stop checking the next
case when the current solution is valid or just-fit, we prove that
there is only one Δ that leads to the global minimal energy
consumption. Assume there are two solutions, Δmin and Δ′min
that both lead to the optimal results. Without loss of gen-
erality, we assume δi � Δmin < δi−1, δi′ � Δ′min < δi′−1,
δi−1 � δi′ and Ei(Δmin) = Ei′(Δ

′
min). It can be noted that

Δmin (Δ′min) equals to either Δmi (Δmi′) or δi (δi′) (Equation
(2)). If Δmin = Δmi, Δ′min = Δmi′ , according to (5), we
have Δmin > Δ′min (note that i− 1 � i′ from the assumption
δi−1 � δi′), which violates the assumption Δmin < Δ′min. If
Δmin = δi, Δ′min = δi′ , Ei(δi) cannot be equal to Ei′(δi′)
unless δi = δi′ , which violates the assumption δi−1 < δi′ . We
also can deduce that if Δmin = δi and Δ′min = Δmi′ , Ei(δi)
cannot be equal to Ei′(Δmi′), and vice versa. Hence the
optimal solution is unique and the optimality is proved.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 15

B. α �= 0: Both the memory and cores can be turned to sleep

In this section, we discuss a more complicated problem, by
considering the static power of the core α �= 0, which implies
that each core can be independently turned into sleep state
according to the completion time of the task loading on it. The
memory can be turned into sleep state during the common idle
time for all cores. In the following analysis, a notation critical
speed is presented to guide the following scheme.

Critical speed: Considering a system only consisting of
a single core, for executing an arbitrary task Ti, the
energy consumption of the core can be represented as
Ecore = βsλ wi

s + αwi

s . The minimal energy value is obtained

when the executing speed is λ

√
α

β(λ−1) , denoted as sm, which

is independent from Ti [6]. As each task cannot violate its time
constraint, we define the critical speed s0 = max{sm, sfi}.

Given a set of tasks with common release time and execut-
ing in the critical speed, index the tasks in the increasing order
of their completion time, denoted as ci, where ci =

wi

s0
. Note

that different from Section IV.A, we set δ
(α)
i = |I| − ci, where

the interval length |I| = |cn|. Denote the sleep length of mem-
ory as Δ(α). The task model is given in Fig. 1(b). Intuitively,
in the optimal solution, tasks that satisfy |I| − ci > Δ(α)

maintain the critical speed on their cores, while the other tasks
whose |I| − ci � Δ(α) need to increase their executing speed
to align the sleep time of their cores to that of the memory to
minimize the energy. The system energy excluding the cores
loading tasks whose |I| − ci > Δ(α) is represented in (7). It
can be used to obtain the optimal solution to the overall system
(including all cores), because the tasks with |I| − ci > Δ(α)

do not affect the optimal solution of the memory length Δ(α).

E
(α)
i = [(n− i+1)α+αm](|I|−Δ(α))+

n∑
j=i

βwλ
i (|I| −Δ(α))1−λ

(7)

When δ
(α)
i � Δ(α) < δ

(α)
i−1, the Δ

(α)
mi that leads to the minimal

system energy is

Δ
(α)
mi = |I| − (

β(λ− 1)
∑n

j=i w
λ
j

(n− i+ 1)α+ αm
)

1
λ (8)

, which means that all tasks from Tn to Ti execute to finish at
|I| −Δ

(α)
mi , and other tasks maintain the critical speed. Denote

each case under the assumption of δ
(α)
i � Δ(α) < δ

(α)
i−1 with

the minimal energy value E
(α)
min i as Case i(α).

Theorem 3. The optimal solution can be obtained by going
through all n cases from Case n(α) to Case 1(α). The lo-

cal optimal result is recorded when δ
(α)
i � Δ

(α)
mi < δ

(α)
i−1 or

Δ
(α)
mi < δ

(α)
i . When Δ

(α)
mi � δ

(α)
i−1, the scheme goes to the next

case. The global optimal solution is obtained referring to the
minimum value of all the n(α) local optimal results.

Note that different from Theorem 2, Δ
(α)
mi > Δ

(α)
m(i−1) is not

satisfied for all cases. The relationship between two successive
cases are not fixed as in Theorem 2. Hence all the local optimal
results must be recorded and compared to obtain the global
optimal solution.

For the special case when all tasks have the common
release time and common deadline, the global optimal solution
can be directly obtained by applying (7) and (8), while setting
i = 1, as all tasks share the same feasible region.

C. Online algorithm for general tasks

In this section, focusing on the general task model, an
online heuristic algorithm is proposed. The main idea of the
algorithm is presented as follows. When a new task Ti arrives,
active the algorithm, and set all unfinished tasks’ release time
the same as that of Ti. By applying the analysis in Section IV.A
(Section IV.B), the local optimal solution can be obtained for
the current tasks. Keep the memory in sleep state until a new
task arrives or some task has to be executed to guarantee the
local optimality. The online algorithm is applied for both cases
of with and without considering the static power of cores. Note
that all the proposed schemes in Section IV can be applied for
heterogeneous cores with different power functions.

Online algorithm (executes when a new task Ti arrives)
1: Record the time ti = ri;
2: Delete all the completed tasks before ti, update the workload of all the

existing tasks and reset their release time as ti;
3: Obtain the optimal solution for all tasks and memory using the analysis

in Section IV.A (IV.B), and record each task’s corresponding execution
time pj ;

4: Mark the latest executing point for each task Tj as dj − pj ;
5: Keep the memory (and cores) in sleep state (from ti), and wake up the

memory when the first task meets its latest executing point;
6: All tasks begin to execute as long as the memory is waked up (wake up

the core as long as the loaded task begins to execute);

A detailed algorithm description by an example is given
as follows. Without loss of generality, assume the first task
T1 arrives at time 0. We calculate the optimal memory sleep
time Δon

1 as shown in Section IV.A (IV.B) but with the single
task. Based on the optimal solution, the executing time of T1

is developed as p1 = d1 −Δon
1 . Considering that more tasks

might come later, postponing the execution of T1 is more
likely to have a chance of obtaining longer execution overlap
with other tasks. Hence we keep the memory (and cores) in
sleep state until T1 meets its latest executing point d1 − p1.
If the second task arrives before d1 − p1, the optimal solution
should be re-calculated to deal with two tasks. The analysis in
Section IV.A (IV.B) can be used to obtain the optimal solution
Δon

2 , and similar processes are followed to calculate the latest
executing time of two tasks. Once one task meets its latest
executing point, both tasks begin to execute and the memory
(and cores) will be waked up. In this way, anytime a new task
arrives, we re-calculate the optimal solution for the existing
tasks and keep the memory (and cores) sleep before the first-
met latest executing time.

V. TRANSITION OVERHEAD ANALYSIS

In this section, we analyze the solutions for problem SDEM
when ξm �= 0 and ξ �= 0. Both optimal solutions for tasks
with common release time and the online heuristic algorithm
developed in the former section are extended.

Constrained critical speed: When ξ �= 0, sm = λ

√
α

β(λ−1) is

optimal only when |Ii| − wi

sm
� ξ. Otherwise, it is easy to note

that the core consumes the least energy by executing Ti in
sfi. In the following, we use sc to represent the constrained
critical speed of a task Ti. Set sc = sm when |Ii| − wi

sm
� ξ,

and sc = sfi otherwise.

Given a set of tasks with common release time and each
executing at the speed of sc, index the tasks in the increasing

16 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

order of their completion time wi

sc
. An original task executing

model, together with n cases, can be constructed similar to
Section IV.B. For each case, the system energy consumption
function can be represented the same as in (7), because the
transition overhead is independent from the memory sleep
time, which means that it does not affect the optimal solution.
Thus the preliminary local optimal memory sleep time that

leads to the minimal E
(α)
i is the same as in (8). Denote Δ

(ξ)
mi

as the final local optimal memory sleep time for each case.

Let Δ
(α)
mi = δ

(α)
i , when Δ

(α)
mi < δ

(α)
i .

Theorem 4. The optimal scheme goes over n cases in the

decreasing order. For each case, if Δ
(α)
mi < δ

(α)
i−1, the optimal

memory sleep time can be obtained by referring to Table

I, which presents the relationships among Δ
(α)
mi and ξ, ξm.

Otherwise the scheme does nothing and enters to the next case.

TABLE I: Optimal results of Δ
(ξ)
mi based on different cases.

Cases Optimal results of Δ
(ξ)
mi

Δ
(α)
mi � ξ, ξm Δ

(ξ)
mi = Δ

(α)
mi

ξ � Δ
(α)
mi < ξm Δ

(ξ)
mi = 0, all cores executing tasks in sc

ξm � Δ
(α)
mi < ξ

Δ
(ξ)
mi = one of {Δmi, ξ, 0} that minimizes E

(α)
i

(when Δ
(ξ)
mi = 0, all cores executing tasks in sc

Δ
(α)
mi < ξ, ξm Δ

(ξ)
mi = 0, all cores executing tasks in sc

Due to the space limitation, we only focus on the proof
of the third case, as it is the most complicated. When

ξm � Δ
(α)
mi < ξ, three subcases need to be fully analyzed. 1)

Turning the memory to sleep and keeping all cores active
(idle but not sleep) all the time. Then the memory sleep
time that minimizes the energy consumption is Δmi, which
is defined in (1). If Δmi � ξm, then Δmi leads to the local
optimal solution for this case. Otherwise the memory should be
kept active during the whole interval to minimize the energy
consumption. 2) Turning both the cores and the memory to
sleep state. For this subcase, it brings no benefit to keep the
cores sleeping for less than ξ time, which wastes extra energy
overhead. Besides, the energy consumption increases with the
memory sleep time being larger than ξ, as the optimal memory
sleep time appears smaller than ξ. Hence, the local optimal

solution Δ
(ξ)
mi should be set as ξ. 3) Keeping the memory

active all the time and executing tasks at the speed of sc,
which means that the memory sleep time is 0. There are no
fixed relationships among the above three subcases, hence the
minimal energy consumption should be set as the minimum

value of {E(α)
i (Δmi), E

(α)
i (ξ), E

(α)
i (0)}.

For the online heuristic solution with transition overhead
considered, the main revision is briefly illustrated as follows.
In each iteration, the local optimal solution is obtained by
applying the scheme proposed in this section (Line 4). Before
turning the memory into sleep state (Line 6), we should make
sure that the time period between the new arriving time ti and
the minimum of all tasks’ latest executing points is larger than
ξ. Otherwise all tasks start to execute at ti.

VI. EVALUATION

In this section, we evaluate the effectiveness of the pro-
posed online heuristic algorithm compared with another online
multi-core DVS scheduling algorithm proposed in [2]. The
algorithm in [2], denoted as MBKP, achieves satisfying results
among multiple DVS-cores in terms of energy saving, but does

not consider the leakage energy consumption of the memory. In
the following experiment, we compare the proposed algorithm,
denoted as SDEM-ON with the original MBKP, which does not
turn memory to sleep and a modified MBKP approach, denoted
as MBKPS, by applying a simple sleep transition scheme.

We evaluate the algorithm over various core utilizations
[12, 13], different memory static power settings [13] and dif-
ferent memory transition overhead by generating random tasks.
Note that randomly generated tasks is a common validation
method in previous work [4, 10, 12, 13].

Recall that the proposed online heuristic assumes the num-
ber of cores is sufficient for scheduling tasks. This assumption,
which is important for pursuing theoretical analysis, actually
does not imply over-optimistic results in practice. The actual
number of executing tasks at a time is reasonable. In the
experiment, 100 tasks is randomly generated as follows. The
feasible region length of each task is randomly ranged from
0.4s to 3s. The inter-arrival time between two successive tasks
is randomly ranged between [0, x]. Set the number of cores
to be 6. For a high utilization system, the inter-arrival time
between the first task and the seventh task, which is as much
as 6x, should be comparable with the processing length of a
task. Considering that the processing time, which is determined
by the executing speed, is the variable we try to optimize
and cannot be estimated beforehand, we use 0.8× the task’s
feasible region length instead. Hence, we set x = 0.4s for a
high utilization system, which implies that all 6 cores are most
likely to be used at any time, and range x from 0.4s to 2.4s
with a step size of 0.4 to evaluate results based on various
utilization systems, where x = 2.4s implies that a single core
might be sufficient to schedule all tasks. The weight of a task
is set to the range between [3, 15].

For the core power and memory static power setting, firstly
we set them to be comparable, and then fix the core power
parameter β = 1 and scale the memory static power to observe
the effect on the energy saving [4, 13]. We fix the core
transition overhead ξ = 1 and scale the memory transition
overhead, considering the leakage power is more significant
in memory than in the multi-core processor. The detailed
parameter setting is given in Table II, where ∗ represents
the default value of each parameter when evaluating other
parameters. To generate convincing results, for each data point,
we randomly generate ten different cases, and use the average
value as the final evaluation result for each data point. Note that
all the energy values shown in the experiments are normalized
to the corresponding MBKP results.

The experimental results of memory energy consumption
over three algorithms are given in Fig. 2. Fig. 2(a) shows the
results of memory energy consumption based on various core
utilizations. The average energy saving improvement compared
to MBKPS is 35.40%. Fig. 2(b) shows the evaluation results
of different static power settings. The average energy saving
improvement compared to MBKPS is 43.14%. The improve-

TABLE II: Parameter setting over various core utilizations,
memory power settings and memory transition overheads.

Point 1 2 3 4 5 6

1/utilization (x) 0.4 0.8 1.2* 1.6 2.0 2.4
Power setting (αm/β) 1 2* 4 6 8 10
Transition overhead (ξ) 1 2* 3 4 5 6

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 17

(a) The inverse of core utilizations. (b) Memory static power setting. (c) Memory transition overhead.

Fig. 2: The memory energy consumption comparison over different parameters.

Fig. 3: The system-wide energy saving improvement over
different memory static power setting and core utilizations.

Fig. 4: The system-wide energy saving improvement over
different memory transition overhead and core utilizations.

ment over different memory transition overhead is 33.59% in
average, shown in Fig. 2(c). These three figures show that
SDEM-ON can turn the memory into sleep state for a longer
period than MBKPS, by which, the leakage power of memory
is reduced. Besides, it can be noted that the energy saving
improvement increases with the core utilization decreasing and
the memory static power being larger, and decreases a little bit
with the transition overhead increasing. This indicates that the
proposed algorithm can obtain more significant benefit when
the system has larger flexibility.

The proposed schemes in this paper do not aim to reduce
the dynamic energy of the memory. Therefore, in the overall
energy consumption analysis, we assume the dynamic energy
remains the same for three algorithms. We set the dynamic
power of memory αd = 1

4αm [9]. The overall system energy
consumption is shown in Fig. 3 and Fig. 4. The varying trend
of the energy saving is similar to that of the memory energy
saving. Note that SDEM-ON performs worse than MBKP
in the bottom-left corner of Fig. 4. This is because when
the system has very high utilization and transition overhead,
the time that SDEM-ON turns the memory to sleep is more
likely to be unfortunately interrupted by a new arriving task,
paying a very high transition mode energy costs. However, for
most situations, SDEM-ON leads to a much better trade-off
between the processor and the memory than MBKPS. SDEM-

ON reduces the system-wide energy by 4.10% (up to 12.68%)
and 8.73% (up to 28.44%) in average compared to MBKPS
varying over different parameters as shown in Fig. 3 and Fig.
4, respectively.

VII. CONCLUSION

In order to reduce the overall system energy consumption
in a multi-core architecture, this paper proposes scheduling
schemes to apply DVS on each core and maximize the memory
sleep time, which is equal to the common idle time of all cores.
When the number of cores is bounded, we prove the problem
to be NP-hard even for tasks with common release time and
deadline. Assuming the number of cores is unbounded, optimal
schemes are proposed for tasks with common release time.
Furthermore, an online heuristic algorithm is developed for
general tasks. This paper is the first attempt in minimizing the
system-wide energy consumption based on a multiple DVS
cores system. Both theoretical and practical solutions for the
target problem based on different system models are presented.
Evaluations show that the proposed heuristic algorithm can
reduce the overall system energy consumption by 8.73% in
average (up to 28.44%).

ACKNOWLEDGEMENT

This work was partially supported by grants from City
University of Hong Kong [Project No. CityU 117913] and
[Project No. CityU 9231168].

REFERENCES

[1] S. Albers and A. Antoniadis. Race to idle: New algorithms for speed scaling with
a sleep state. SODA, pages 1266–1285, 2012.

[2] S. Albers, F. Mller, and S. Schmelzer. Speed scaling on parallel processors. In IN:
PROC. SPAA, pages 404–425, 2007.

[3] B. Bingham and M. Greenstreet. Energy optimal scheduling on multiprocessors
with migration. In ISPA, pages 153–161, 2008.

[4] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient scheduling
of real-time tasks in multiprocessor systems. RTAS, pages 408–417, 2006.

[5] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: A hybrid pram and dram main
memory system. DAC, pages 664–469, 2009.

[6] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM Trans.
Algorithms, 3(4), Nov. 2007.

[7] C.-G. Lyuh and T. Kim. Memory access scheduling and binding considering energy
minimization in multi-bank memory systems. DAC, 2004.

[8] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem. Energy aware scheduling
for distributed real-time systems. In IPDPS, page 21, 2003.

[9] S. J. E. Wilton and N. Jouppi. Cacti: an enhanced cache access and cycle time
model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

[10] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for energy-
efficient scheduling on a chip multiprocessor. DATE, pages 468–473, 2005.

[11] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In FOCS, pages 374–382, 1995.

[12] X. Zhong and C.-Z. Xu. System-wide energy minimization for real-time tasks:
Lower bound and approximation. ACM Trans. Embed. Comput. Syst., 7(3):28:1–
28:24, May 2008.

[13] J. Zhuo and C. Chakrabarti. System-level energy-efficient dynamic task scheduling.
In DAC, pages 628–631, 2005.

18 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

