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Abstract 
Big data processing, e.g., graph computation and MapReduce, is 
characterized by massive parallelism in computation and a large 
amount of fine-grained random memory accesses often with 
structural localities due to graph-like data dependency. Recently, 
GPU is gaining more and more attention for servers due to its 
capability of parallel computation. However, the current GPU 
architecture is not well suited to big data workloads due to the 
limited capability of handling a large number of memory requests. 
In this paper, we present a special function unit, called memory 
fast-forward (MFF) unit, to address this problem. Our proposed 
MFF unit provides two key functions. First, it supports pointer 
chasing which enables computation threads to issue as many 
memory requests as possible to increase the potential of 
coalescing memory requests. Second, it coalesces memory 
requests bound for the same cache block, often due to structural 
locality, thereby reducing memory traffics. Both pointer chasing 
and memory request coalescing contribute to reducing memory 
stall time as well as improving the real utilization of memory 
bandwidth, by removing duplicate memory traffics, thereby 
improving performance and energy efficiency. Our experiments 
with graph computation algorithms and real graphs show that the 
proposed MFF unit can improve the energy efficiency of GPU in 
graph computation by average 54.6% at a negligible area cost. 

1. Introduction 
Big data processing is one of grand challenges in energy-efficient 
server design. Currently, a large number of power hungry out-of-
order cores often waste significant amount of energy by waiting for 
data from memory or remote nodes. Big data processing, e.g., graph 
computation [1][2][3], MapReduce [4], etc., is often characterized 
by massive thread-level parallelism with a low ratio of computation 
to data, i.e., each thread has a small amount of computation. In 
addition, it often issues a large amount of fine-grained random 
memory accesses. For instance, MapReduce requires a significant 
amount of random traffics in its shuffle phase [4]. 

We focus on graph computation as a key area of big data 
processing. Graph computation is to perform database queries on 
the graph database. It is expected to become more and more popular 
in many applications including machine learning, data mining, big 
data analytics, etc. [3][5]. In graph databases [6][7], the relationship 
between data entities, e.g., websites, personalities, objects, etc., is 
represented in a graph structure. Thus, their structural connectivity, 
i.e., neighbor relationship, gives locality in memory accesses which 
we call structural locality. In graph computation, the characteristics 
of memory access is more complicated due to structural localities 
as well as massive fine-grained random accesses 

Recently, GPU is gaining more and more attention for servers due 
to its capability of parallel computation [8]. However, as we will 
show in our study, the current GPU architecture is not well suited 
to emerging big data workloads. Even though GPU is originally 
designed to exploit memory bandwidth to overlap parallel 

computation with memory accesses, it is not prepared for new 
memory access behavior, massive fine-grained random accesses 
with structural locality, in big data processing. To be specific, the 
current GPU architecture is good at coalescing memory requests by 
utilizing ‘instantaneous’ memory access locality between threads in 
a thread group called warp. However, it lacks in exploiting memory 
access locality over the entire period of warp execution. 

In our work, we present a low cost special function unit called 
memory fast-forward (MFF) unit which aims at maximizing 
memory request coalescing over the entire period of warp execution. 
In this paper, we show how the MFF unit can exploit structural 
locality in graph computation to significantly reduce the amount of 
memory requests thereby improving energy efficiency and 
performance. In order to expose and exploit structural locality 
which covers the entire period of warp execution, it is required to 
make threads to move fast forward in their memory accesses. To do 
that, our proposed MFF unit allows threads to specify pointer 
chasing functions. Then, on behalf of threads, the MFF unit 
performs pointer chasing to issue as many memory requests as 
possible which exposes structural locality by increasing the number 
of outstanding memory requests. The MFF unit, then, coalesces 
those requests to avoid duplicate accesses to the main memory. 

This paper is organized as follows. Section 2 gives related work. 
Sections 3 and 4 explain preliminaries and our problem. Section 5 
describes our proposed memory fast-forward unit. Section 6 reports 
experimental results. Section 7 concludes the paper. 

2. Related Work 
Several distributed frameworks have been presented for graph 
computation [1][2][3][5]. GBase is based on Hadoop Map-Reduce. 
It takes advantage of existing database on Hadoop by modifying 
graph data representations properly [1]. Oracle NoSQL database 
also supports graph representations in a similar way [7]. Pregel is 
based on a message passing-based vertex-centric model [2]. It 
iterates over multiple super-steps. In each super-step, each vertex is 
processed once and its vertex attributes are updated. Since the next 
super-step can be started only after all the vertices are processed in 
the current super-step, it is called bulk synchronous parallel (BSP) 
model. PowerGraph adopts asynchronous computation where the 
result of vertex processing can be immediately available for 
processing other (neighbor) vertices [3]. It also presents a vertex 
partitioning in order to handle the characteristics of real graphs, i.e., 
power law distribution of vertex degrees. 

Recently, single machine-based graph computation is gaining 
attention due to its cost effectiveness, i.e. moderate performance at 
a low cost. TurboGraph is a synchronous graph computation engine 
running on a PC [9]. It keeps vertex data in the main memory and 
performs vertex-centric processing by sequentially fetching edge 
data from the disk. X-stream adopts an edge-centric processing [10]. 
Thus, instead of grouping edges for each vertex on the disk as in [9], 
edge data can be stored in a random order in partitions. On each 
partition, all the edges are processed to produce updates on vertex 
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attributes which are stored as a log in the solid state disk (SSD) 
thereby exploiting good sequential write performance in SSD. 

In [11], Harish and Narayanan present a vertex-centric graph 
processing on GPU. Each vertex is assigned a thread and a large 
number of vertices are processed in parallel exploiting the thread-
level parallel architecture in GPU. In [12], Hong et al. propose a 
fast breadth-first-search (BFS) scanning method and a bit vector-
based vertex scheduling targeted for GPU. In this paper, we use, as 
the baseline, an integrated solution of both works in [11] and [12], 
i.e., vertex-centric processing with the bit vector-based scheduling. 

There have been several studies on improving memory-related 
performance in GPU. In [13], Power et al. report a problem of high 
TLB miss penalty when virtual memory is supported in GPU. They 
present, as a solution, per-GPU core TLBs, a shared multi-threaded 
page table walker, and a shared page walk cache. In [14], Power et 
al. propose applying region coherence to reduce coherent traffics 
from GPU cores in the heterogeneous CPU-GPU architecture. 
Recently, NVIDIA announced Pascal as a future GPU architecture 
where 3D stacked DRAM provides high memory bandwidth [15]. 
We expect our proposed MFF unit can still provide a cost-effective 
solution to improving effective memory bandwidth in the Pascal 
architecture supporting virtual memory (with TLB). 

Recently, Kocberber et al. present Widx, an on-chip accelerator 
for database hash index lookups [16]. Compared with Widx, our 
proposed MFF unit allows memory request coalescing to reduce 
memory traffics in order to better utilize memory bandwidth, which 
is critical in big data processing. 

3. Preliminaries 
In order to understand the current problem of graph computation on 
GPU and explain our basic idea, we first introduce a graph database 
representation and an example of graph algorithm called PageRank 
[17]. 

 
Figure 1 Graph example (a) and CSR representation (b). 

Figure 1 (a) illustrates a part of a graph. A circle represents a 
vertex and an arrow an edge. Each vertex has an attribute (e.g., rank) 
in parentheses, e.g., vertex 2 has its attribute of c. Figure 1 (b) shows 
the compressed sparse row (CSR) representation of the graph in 
Figure 1 (a). CSR is one of widely used graph representations to 
reduce the graph size since vertices are typically sparsely connected 
with each other in the graph [18]. In Figure 1 (b), we assume an in-
edge-based CSR representation.1 As shown in the figure, the CSR 
representation uses three arrays: row-offset array (R), column-index 
array (C), and vertex attribute array (V). An entry of row-offset 
array, R[i] corresponds to a destination vertex i in the graph. R[i] 
represents a start index of the adjacency list (a list of indices of 
neighbor vertices) on the column-index array. For instance, in 
Figure 1 (b), R[0] has a value of zero which points to the first entry 
of the column-index array. Each entry of the column-index array 
has an index of a source vertex. Thus, in Figure 1 (b), C[R[0]]=0 
represents that vertex 0 has an in-edge from itself as shown in 
Figure 1 (a). As another example, C[R[0]+1]=3 represents that 
                                                                 
1 In reality, we use two C (R) arrays, one for in-edges and the other 

for out-edges. Each vertex attribute has a separate array V. 

vertex 0 (a destination vertex) has another in-edge originating from 
vertex 3 (a source vertex). Thus, while vertex 0 is being processed, 
if we need to access the vertex attribute of neighbor vertex 3, then 
we access an entry of the vertex attribute array in this way, 
V[C[R[0]+1]]=V[3]=d, which incurs a pointer chasing from R, C to 
V arrays. As shown in Figure 1 (a), vertex 0 has multiple in-edges. 
The number of in-edges of vertex 0, i.e., the size of the adjacency 
list for vertex 0 on array C, is calculated to be R[1]-R[0] (=8 in-
edges) in Figure 1 (b) since R[1] represents the start index of the 
adjacency list on C for destination vertex 1. 

 
Figure 2 PageRank algorithm. 

The graph algorithm, PageRank [17], calculates the popularity of 
an object, e.g., web page, personality, news, etc. An object 
corresponds to a vertex and their connectivity an edge. Figure 2 
shows a pseudo code of PageRank on bulk synchronous parallel 
(BSP) model. Given an input graph having a vertex set V and an 
edge set E (line 1), the rank value, a vertex attribute, of each vertex 
is initialized (line 2). Lines 3-7 corresponds to a super-step of 
PageRank calculation. For a vertex v, we iterate over its in-edge list. 
For an in-edge w, we add, to a temporary variable T, the rank of the 
neighbor vertex (obtained in the previous super-step l-1) multiplied 
by a weight factor, 1/Nout(w) where Nout(w) is the number of out-
edges of the neighbor vertex (line 6). For simplicity, we assume 
Nout(w) to be a constant in this example. After covering all the in-
edges, we calculate an updated rank of vertex v at super-step l (line 
7). We perform the super-step (lines 3-7) multiple times until all the 
ranks converge. 

4. Motivation 
PageRank in Figure 2 can be executed in parallel on the GPU. 
Typically, a vertex processing (lines 3-7 in Figure 2) can constitute 
a GPU thread [11][12]. As mentioned above, GPU execution is 
performed at the granularity of warp (e.g., 32 threads). Figure 3 
illustrates memory accesses originated from the execution of a warp 
to process vertices in Figure 1. 

In Figure 3, each thread first reads its corresponding entry of row-
offset array, e.g., R[j] (Step 1 in Figures 2 and 3). Note that, thread 
j processes vertex j in Figure 3. Each thread, e.g., thread j, calculates 
the number of in-edges, i.e., R[j+1]-R[j] (Step 2). Each thread 
iterates over its in-edges (Steps 3 and 4, i.e., lines 5-6 in Figure 2). 
For the first in-edge, it accesses the corresponding entry of the 
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column-index array, e.g., C[R[j]] for vertex j (Step 3-a), in order to 
obtain the index of the source vertex. Then, the thread accesses the 
vertex attribute of the source vertex, e.g., V[C[R[j]]] as shown in 
Figure 3 (Step 4-a). After obtaining the vertex attribute, its weighted 
value is added to the temporary value T (line 6 in Figure 2). As 
mentioned earlier in this paragraph, each vertex, i.e., each thread 
iterates Steps 3 and 4 over all of its in-edges. 

 
Figure 3 Memory access pattern in a warp run.  

As Figure 3 shows, vertex processing generates frequent memory 
accesses, e.g., R[j], C[R[j]], and V[C[R[j]]]. Due to the structural 
locality, those memory accesses are often duplicated. For instance, 
in Figure 3, V[3] is accessed three times from threads 0, 1 and 2 
since vertex 3 is connected to vertices 0, 1 and 2 as shown in Figure 
1 (a). In such a case of duplicate requests due to structural locality, 
we should be able to coalesce duplicate memory requests to avoid 
redundant memory traffics. However, the current GPU architecture 
lacks in the capability of coalescing requests in such a case. In 
Figure 3, for instance, two requests to V[3] at Step 4-b are coalesced 
by the GPU core (e.g., symmetric multiprocessor in NVIDIA GPUs) 
while the other request to V[3] at Step 4-a is not coalesced with the 
other two by the GPU core. Thus, two requests to the same data are 
issued incurring redundant consumption of memory bandwidth. 

 
Figure 4 An illustrative example of duplicate requests. 

Figure 4 illustrates the problem. Y-axis represents threads which 
process vertices. The symbols,  and represents 
memory read requests generated by the threads. The number in a 
symbol represents an address. Memory requests having the same 
symbol belong to the same cache block. 

The conventional GPU architecture is good at instantaneous 
coalescing which coalesces memory requests in the same warp at 
the same clock cycle. In Figure 4, the four requests at time t1 are 
coalesced by the GPU core into one coalesced request (CR) 1, since 
they all belong to the same cache block. Thus, after fetching the 
cache block only once from the memory, the four requests are 
served. Three requests generated at time t2 are also coalesced into a 
CR 2. However, the GPU core is not able to coalesce CRs 1 and 2 
as they are issued at different cycles. Thus, when a GPU core runs 
in the scenario of Figure 4, it will issue 11 requests to 4 cache blocks. 
In order to reduce memory traffics, such duplicate requests need to 
be coalesced by MSHR (miss state holding register) or served by 
L1 or L2 cache in the GPU. 

In our investigation with representative graph algorithms and 
large real graphs, the existing MSHR and L1/L2 caches in the GPU 
are not effective in coalescing memory requests generated by graph 
computation thereby losing opportunities of further coalescing. 
There are two reasons with the failure of further coalescing. First, 
MSHR and caches on the GPU are small compared with high 

memory demand of graph computation. Above all, the large 
footprint of graphs makes caches less effective. In addition, due to 
a large number of warps (e.g., 120~240 warps in our experiments), 
the number of (coalesced) requests from GPU cores can be larger 
than what MSHR and caches can support (32 MSHR entry and 16 
KB L1 cache per core cluster and 768KB L2 cache in GTX480 case). 

Second, the memory stall-based warp execution model makes the 
problem even worse. If a memory operation is encountered during 
a warp execution, the execution stalls until the memory operation is 
finished. During the stall time, the GPU core executes other warps. 
However, from the viewpoint of the stalled warp, its memory 
requests come to spread over a long execution window. For instance, 
in Figure 3, a request to V[3] at Step 4-a and the other two requests 
to V[3] at Step 4-b come to be separated far apart on the time line 
since the warp can be stalled for a long period between Steps 4-a 
and 4-b. In such a case, requests can hardly find opportunities of 
further coalescing since their duplicate requests (and data) can be 
evicted from the MSHR (and caches) due to conflicts at the MSHR 
(caches) before their arrivals at the MSHR (caches). 

Note that requests can be coalesced in two dimensions: the 
conventional spatial (instantaneous) coalescing across threads in a 
warp (e.g., four requests are coalesced into one at time t1 in Figure 
4) and a new temporal coalescing which covers the entire period of 
warp execution, e.g., from time t1 to t8 or later in Figure 4.   

 
Figure 5 Potential of temporal coalescing of  

(a) step 3 and (b) step 4. 
Figure 5 shows the potential of temporal coalescing for memory 

requests at Steps 3 (for array C) and 4 (array V) in Figures 2 and 3. 
We run PageRank with three real graphs on the GPU architecture 
used in our experiments (see Section 6). Y-axis represents the 
amount of memory requests normalized to the cases of unit window 
size in Figure 5 (b). X-axis represents the window size of temporal 
coalescing. The window of unit size corresponds to the case of 
baseline GPU architecture where only the instantaneous coalescing 
is applied and then the requests can also be coalesced or served by 
MSHR or caches. As the window size increases, more temporal 
coalescing can be performed thereby reducing memory traffics. For 
instance, in the case of graph amazon-2008, by applying temporal 
coalescing to 16 warp-level memory operations with minimum 16 
coalesced requests and maximum 16*32 un-coalesced ones, we can 
reduce memory traffics by 45.8%. Since the performance of graph 
processing is sensitive to effective memory bandwidth, temporal 
coalescing has large potential of improvement in performance and 
energy efficiency (by shorter runtime and less memory traffics). 

In order to realize the potential shown in Figure 5, we need as 
many outstanding requests as possible to expose structural locality 
as much as possible. However, due to the stall-based warp 
execution, each warp can issue only one set of coalesced requests 
at a time. Only after all the previous memory requests are served, 
the warp can resume its execution to issue next memory requests. 
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5. Memory Fast-Forward (MFF) Unit 
Our proposed solution, memory fast-forward (MFF) unit enables a 
warp to issue much more memory requests than in the stall-based 
warp execution. To do that, the MFF unit performs pointer chasing 
(PC) on behalf of threads to make threads move fast forward in their 
memory accesses. In our current work, the MFF unit supports two 
main functions. First, it supports pointer chasing to issue as many 
memory requests as possible. Second, it performs temporal 
coalescing thereby reducing memory traffics. In order to utilize the 
MFF unit for graph computation, we use global variables, 
active_vertex_list (the bit vector used to identify vertices to process 
in the next super-step), and arrays R, C, and V. A GPU program can 
call one of the following functions. 

PC_gather(vertex_attr_array* target, int c_index, int size): The 
function fetches the attributes of neighbor vertices to the array 
target. c_index is the start index of adjacency list in array C and size 
the number of vertex attributes to fetch, i.e., the number of neighbor 
vertices covered by the function PC_gather(). For each vertex (i.e., 
thread), it fetches size indices of neighbor vertices starting from 
index c_index of array C. Then, it fetches size vertex attributes from 
array V, and stores them in the array target. In our implementation, 
the maximum size is 32. Thus, when there are more than 32 in-edges 
for a vertex, PC_gather() is called multiple times for the vertex. 
Each thread in a warp calls PC_gather(). Thus, the array target of 
32 threads in a warp constitutes a two-dimensional array having 
maximum 32 x 32 words which is allocated in the shared memory 
of the GPU core to avoid cache coherence issues. In summary, when 
PC_gather() is called by a thread in a warp, for the thread, the MFF 
unit first accesses the array C and then issues size read requests to 
access the array V. After receiving vertex attributes, it returns to the 
GPU core an array of size words, i.e., vertex attributes. 

PC_scatter_set(int c_index, int size): It is a non-blocking function 
and typically used to set the bit vector for vertex scheduling [12]. 
For instance, the single source shortest path (SSSP) algorithm (to 
be explained in Section 6) uses this function to activate vertices for 
vertex processing in the next super-step. It first fetches size words 
from array C starting from index c_index in the out-edge-based 
CSR data. The fetched data corresponds to the indices of destination 
vertices. Then, the function sets the corresponding entries of 
active_vertex_list  to ‘1’. 

 
Figure 6 Memory fast-forward unit in the GPU structure.  

The GPU program calls MFF functions as typical software-based 
prefetch functions. Thus, after calling an MFF function, e.g., 
PC_gather() (e.g., between lines 5 and 6 in Figure 2), the GPU 
program waits for the required data, e.g., vertex attribute, Rankl-1(w) 
by calling a simple synchronization function, PC_wait() as shown 
in Figure 2. On receiving the whole data in the array target, each 
GPU thread processes the associated data in target, e.g., adds the 
vertex attributes (after a weighting operation) to the temporary 
variable T in line 6 of Figure 2 until all the data of target are 
consumed. 

Figure 6 shows where the MFF unit is located in the GPU 
architecture and how it coalesces memory requests. As shown in the 
figure, the MFF unit is located between on-chip interconnect and 
memory units. A memory unit consists of an L2 cache and memory 
controllers. There are typically 6~8 memory units (each with 2 
memory channels) in a GPU [19]. Figure 6 illustrates how the MFF 
unit issues memory requests and communicates with the GPU core. 
In this figure, to give a concrete view, we use the operations in 
Figure 3 where memory requests to V[3] are coalesced by the MFF 
unit. We assume that the three arrays, R, C, and V are located in the 
memory connected to two memory units 0 and 1 as shown in the 
figure. For simplicity, we assume that data in array R already exist 
in the L1 cache of the GPU core. 

In Figure 6 (a), assume that thread 1 calls PC_gather() with the 
arguments of the start index (=R[1] as shown in Figure 3) and the 
size (=R[2]-R[1]) of the adjacency list. The GPU core collects PC 
requests, i.e., PC_gather() calls, from threads of a warp and issues 
one warp-level PC command to the MFF unit. After calling 
PC_gather(), the warp is stalled at a synchronization point 
(PC_wait() in Figure 2) until a reply to the PC_gather() arrives 
from the MFF unit. When receiving, from the MFF unit, a reply to 
the PC command, i.e., vertex attributes in the array target, the GPU 
core resumes the execution of corresponding warp. 

In Figure 6 (a), on receiving a warp-level PC command (Step 1 
in the figure), for each thread, the MFF unit issues a read request to 
Memory Unit 0 to read a chunk of data from array C (Step 2). After 
reading a data chunk (e.g., C[8] in Step 3), the MFF unit sends a 
read request to Memory Unit 1 to fetch an entry from array V (Step 
4). After reading the data, V[3] in this case (Step 5), the MFF unit 
sends the data V[3] (with the corresponding warp and thread IDs) 
to the GPU core (Step 6). The GPU core stores the data at the 
corresponding position in the array target on the local shared 
memory of GPU core. Note that the MFF unit performs the above 
operations for each thread associated with the PC command. 

Figure 6 (b) shows how the MFF unit handles the PC command 
for thread 0 whose vertex 0 (in Figure 1 (a)) has multiple in-edges. 
In Step 1, the MFF unit receives the PC command from thread 0. 
Note that both Step 1’s in Figure 6 (a) and (b) represent the same 
single warp-level PC command. After the MFF unit fetches a data 
chunk, C[0:7] (Steps 2 and 3), it tries to issue multiple (8 in this 
case, since the number of in-edges is 8) read requests to fetch 
corresponding entries in array V, i.e., V[0], V[3], etc. (Steps 4 and 
5). In this case, the MFF unit can coalesce a request to fetch V[3] 
with an existing one issued by thread 1 (in Figure 6 (a)). The request 
coalescing allows the MFF unit to prepare the required data, i.e., 
V[3] early as well as issue less requests to the memory unit.  

 
Figure 7 Operation detail of MFF unit. 

Figure 7 shows the structure of MFF unit. It consists of three parts: 
Issue Engine, Work Register, and Tag Unit. Issue Engine receives 
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warp-level PC commands from GPU cores. Work Register manages 
the per-thread execution state of warp-level PC command. Tag Unit 
keeps the information (address, associated PC register and a pointer 
to data array) of outstanding memory requests and associated data 
array called Line Data. Assume that the warp in Figure 3 issues a 
PC command (corresponding to PC_gather()) to the MFF unit. On 
receiving it, a job entry is allocated in Issue Engine. As shown at 
the top of Figure 7, the job entry contains the PC information for 
each thread in the warp, a counter indicating the remaining total 
number of per-thread PC commands, and warp ID. 

When there are free registers in Work Register, a job is issued and 
allocates a required number of registers (size registers for a thread) 
in Work Register (Step 1 in Figure 7). Figure 7 illustrates two 
allocated registers (two white rectangles). We call the state of 
initially allocated register C state since they contain information to 
access array C in the CSR format data. In this example, the two 
registers are used to fetch the attributes of two neighbor vertices for 
thread 0 in warp 0 (see the format of work register in the gray 
rectangle). They differ in A_offset (offset in the adjacency list) and 
C_offset (offset in cache block-size data in the Line Data of Tag 
Unit). According to A_offset values, the two registers are used for 
two entries, C[R[0]] and C[R[0]+1]. Note also that the two registers 
are connected in a linked list using a field Ptr as shown in the figure. 

After allocating a register, an associated entry of Tag Unit is 
allocated (Step 2 in Figure 7) and an associated read request is 
issued to the memory to fetch a chunk of data from array C (Step 
3). The allocated entry of Tag Unit points to the associated register. 
In this example, a memory read request is issued to fetch a cache 
block C[0:3] containing C[0]. The fetched block is stored in Line 
Data (Step 4). After obtaining the corresponding entry of array C, 
C[0], the register changes its state from C state to V state (Step 5). 
As soon as the register becomes V state, the corresponding memory 
read request is issued, e.g., for V[0] in this case (Step 6). A new 
entry of Tag Unit is allocated to keep the address information, C[0]. 
The new entry points to the associated register and a block in Line 
Data. When the read data, V[0:3], arrive at the MFF unit, they are 
stored in Line Data (Step 7). Then, the required vertex attribute, V[0] 
is sent to the GPU core (Step 8). When all the required vertex 
attributes (corresponding to a warp-level PC command) are sent to 
the array target on the shared memory of the GPU core, then the 
MFF unit sends a message to the GPU core to resume the execution 
of stalled warp. Then, the warp processes the data in target and the 
associated resources of Work Register and Tag Unit become free to 
be reallocated for a new job. 

Figure 7 does not illustrates request coalescing in details. Every 
new memory read request looks up Tag Unit for a match. If there is 
a match, it can be coalesced with an outstanding one. In this case, a 
linked list is formed using a field Ptr between the V state register of 
the new request and that of the existing outstanding one. Thus, when 
the associated data arrive from the memory unit, all the coalesced 
requests in the linked list can be served. 

6. Experiments 
6.1. Experimental Setup 
In order to evaluate the performance and power consumption of 
GPU, we use a cycle accurate GPU simulator, GPGPU-Sim 
(version 3.2.1) [19] and GPUWattch [20]. Table 1 shows the 
GTX480 configuration used in the experiments. The MFF unit has 
a configuration of 32 Issue Engines, 8 job entries per Issue Engine, 
8192-entry Work Register, and 256-entry Tag Unit per memory unit 
and 20-entry Line Data (each cache line has 128B data). Their 
parameters are obtained through an extensive sensitivity analysis. 
The power consumption of MFF unit is estimated with CACTI6.5 
[22] because the majority of area and power in the MFF unit is 
consumed by data storage and tag comparison.  

Table 1 Hardware configuration 

 
Table 2 Graphs used in the experiments  

 
Table 2 shows 5 real graphs used in the experiments. These 

graphs are known to have similar characteristics, such as power-law 
degree distribution and small diameter, to large real-world graphs 
[21]. We use the CSR representation in our experiments. However, 
our method can be applied to other graph representations, e.g., the 
one in [6] since pointer chasing is inevitable in graph 
representations. We run 4 different graph algorithms with different 
characteristics of data access as follows. 

 PageRank: We adopt BSP model. Thus, every vertex is updated 
in each super-step. 

 BFS (breadth first search): It sweeps the graph structure. From 
a start vertex, it traverses all the paths following out-edges. 
Iterations continue until a specified depth is reached or all the 
vertices are visited.  

 SSSP (single source shortest path): It is similar to BFS in that 
the traversal takes tree-like paths. However, as path costs are 
updated, vertices need to be revisited with updated path costs. 

 WCC (weakly connected component): It determines largest 
connected components in the graph. Two vertices are 
considered in the same component if there is an edge between 
them. In the beginning, all vertices are updated and, as iterations 
continue, the number of updated vertices gets smaller.  

 
Graph algorithms are typically composed of two stages, vertex 

schedule and algorithm computation. In our experiments, we focus 
on algorithm computation stage which takes most of graph 
computation runtime. We assume all the graph data reside in the 
main memory. 
6.2 Experimental Results 
Figures 8 shows the energy consumption of MFF-based GPU 
normalized to the baseline GPU. The MFF unit gives average 54.6% 
reduction in energy consumption. Reduction in energy consumption 
is related with both power consumption and speedup. We first give 
power analysis and then speedup. 

 
Figure 8 Energy consumption of MFF-based GPU. 

Figure 9 shows the breakdown of power consumption. We show 
the results of two graphs (A: Amazon-2008 and B: DBLP-2011) 
due to space limit. As the figure shows, the MFF-based GPU gives 
higher power consumption, especially in main memory power. It is 
because the MFF unit enables more outstanding memory requests 
than the baseline and, thus, the memory needs to handle more 
requests per unit time. However, other components, e.g., core and 
interconnect (NOC in the figure) consume less power than in the 
baseline which will be explained in the performance analysis. The 

Model Frequency Core Cluster Bandwidth TDP

GTX 480(Fermi) 1.4 GHz 15 177.4 GB/s 250 W

Graph name Vertices Edges Type

DBLP-2010 326186 1615400
Bibliography network

DBLP-2011 986324 6707236

CNR-2000 325557 3216152 Italian CNR domain

Amazon-2008 735323 5158388 Similarity lookup

DeWiki-2013 1532354 36722696 Wikipedia snapshot
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overhead of MFF unit is not shown in the figure since it is negligible 
(0.3% of total energy).  

 
Figure 9 Power consumption breakdown. 

Figure 10 shows the MFF unit gives average 1.75x~5.22x 
speedup. In each algorithm, speedup varies across graphs. In the 
case of BFS, speedup is the most significant because it uses only 
PC_scatter_set() and the scatter operation can coalesce up to 1024 
requests (one for setting one bit in 128B data) into one for a cache 
block stored in Line Data of the MFF unit. In contrast, the average 
speedup of PageRank is smaller than the other algorithms because 
PageRank uses only PC_gather() and the gather operation can 
coalesce up to only 32 requests (each for 4B data) per cache block 
in Line Data. The other two algorithms use both functions thereby 
showing an intermediate level of speedup between PageRank and 
BFS. The MFF unit gives average 27.5% reduction in memory 
traffics. The MFF unit performs pointer chasing on behalf of threads 
near memory units (avoiding interconnect traffics), which reduces 
workload in on-chip interconnect as well as GPU cores thereby 
reducing their power consumption as shown in Figure 9. Our 
analysis on the interconnect traffics and stall cycles reveals that the 
reduced interconnect traffics enabled by the MFF unit significantly 
(by average 88.3%) reduces interconnect stall cycles, which also 
contributes to speedup. Note that the energy consumption in Figure 
8 comes from the combined effects of reduced runtime (in Figure 
10) and increased power consumption (Figure 9). 

 
Figure 10 Speedup 

In the baseline GPU architecture, a similar effect of temporal 
coalescing can be obtained by increasing cache sizes. We compared 
speedup between the baseline architecture with larger caches and 
the MFF-based architecture. We explored the sizes of L1 and L2 
caches up to 16 times assuming an ideal condition that there is no 
increase in latency with larger caches. The larger L1 caches give the 
larger speedup. However, even in the case of 16 times larger, 
256KB L1 cache, the large cache-based design with the ideal 
latency assumption still gives lower speedup (71% of MFF speedup) 
than the MFF-based design. In reality, the large (16x) L1 cache 
solution is prohibitively expensive in terms of power consumption 
(5.3x and 15.7x higher active and static cache power, respectively), 
cache access latency (2.3x longer latency than the conventional 
16KB L1 cache), and area (additional area cost of 3.52MB in 15 
core clusters). The L2 cache is not as effective as the L1 cache partly 
due to interconnect bottlenecks. 

The area estimation with CACTI6.5 shows that the MFF unit 
consumes  in 32nm technology. Compared to GTX480’s 
die size, 521   at 40nm and GTX780’s die size, 551  at 28 
nm technology, the area overhead is negligibly small. 

7. Conclusion  
In our work, we investigated the conventional GPU architecture for 
emerging server workload, namely, graph computation. In order to 
resolve the problem of losing opportunity for further coalescing of 
memory requests, we present a low cost special function unit called 
memory fast-forward (MFF) unit and show how the MFF unit can 
exploit structural locality in graph computation to significantly 
reduce memory requests. Our experiments with four graph 
algorithms and real graphs show that the MFF unit gives average 
54.6% reduction in energy consumption mostly due to the reduction 
in memory traffics. In future work, we will work on applying the 
concept of temporal coalescing and the MFF unit to larger systems, 
e.g., multi-GPU and other application areas. 
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