
Improving MPSoC Reliability through Adapting Runtime
Task Schedule based on Time-Correlated Fault Behavior∗

Laura A. Rozo Duque, Jose M. Monsalve Diaz, and Chengmo Yang
Electrical and Computer Engineering

University of Delaware

140 Evans Hall, Newark, DE 19716

Email: {lrozo, josem, chengmo}@udel.edu

Abstract—The increasing susceptibility of multicore systems
to temperature variations, environmental issues and different
aging effects has made system reliability a crucial concern.
Unpredictability of all these factors makes fault behavior diverse
in nature, which should be considered by the runtime task
scheduler to improve overall system reliability. To achieve this
goal, this paper proposes a fault tolerant approach to model core
reliability at runtime and tune resource allocation accordingly.
Given variations in fault duration, we propose a reliability model
capable of tracking not only faults appeared in each core but also
their correlation in time. Taking this model as an input, a runtime
scheduling algorithm that allocates critical and vulnerable tasks
to reliable cores is also proposed. Experimental results show that
the proposed adaptive technique delivers up to 56% improvement
in application execution time compared to other techniques.

I. INTRODUCTION

The increasing complexity of multicore systems, together
with the unending demand for higher performance and less
energy consumption, keeps pushing the trend of shrinking
device sizes and increasing core counts on a single chip. This
trend is accompanied however with an increasing susceptibility
of these chips to faults due to different factors [1], such as
radiations, noise fluctuations, and aging effects. Not only do
these factors lead to elevated fault rates in todays systems, but
furthermore their correlation makes the fault behavior more
diverse in nature. Temperature variations due to increasing
power densities are accelerating aging effects (e.g. Electro
migration [1], [2], Thermal cycling [3], etc), which in turn
increase the number of intermittent and permanent faults.
Meanwhile, environmental issues are also affecting fault be-
havior, producing more transient faults. Together these factors
cause fault durations to vary over nanosecond to second time
scales.

With faults occurring continuously and their durations vary-
ing significantly, it is desirable for fault resilience solutions
to deliver runtime adaptability. Previous solutions [4], [5], [6]
proposed solely for permanent or transient faults will no longer
suffice as they assume a fault consistently manifesting or never
re-manifesting itself. Instead, the combined effects of both types
of faults need to be bear in mind, and runtime fault tolerant
solutions need to be able to monitor fault duration, adaptively
recover task execution, and adjust resource allocation. Transient
and intermittent faults, for example, affect a processing unit
for a while and then disappear. During that time period, it
is desirable to decrease the number of tasks allocated to that
unit. Once the fault disappears, tasks can be allocated to that
unit at the normal speed. In comparison, processing units with
permanent faults should be isolated, since allocating tasks to
them will have an adverse impact on system performance.

∗This work is supported by NSF grant #1253733.

Adaptively allocating resources, while desirable, requires a
cost-effective solution to characterize fault behavior promptly at
runtime. Yet current solutions [7] have a very limited capability
to react to faults due to the small number of defined system
states. As the only recognized resource states are healthy and
unhealthy, the reaction is just to exclude those unhealthy units
from being used, which is quite abrupt and only happens upon
identifying a permanent fault. In comparison, we propose to let
the system react to faults in a much smoother way. As faults
appear, intermediate system states will be defined, allowing the
system to progressively reduce the frequency of job assignment
to a processing unit until it becomes non-functional.

The proposed fault tolerant framework is composed of two
parts. First, we develop a core reliability model capable of
tracking not only faults appeared in each core but also their
correlation in time. Through monitoring fault occurrence fre-
quency, healthy, unhealthy and intermediate states are defined
for cores, allowing them to be ranked for task allocation.
Second, we propose a reliability-driven scheduling approach
to adaptively allocate the most critical and vulnerable tasks
to those most reliable cores. To relieve runtime overhead,
application information regarding task criticality, vulnerability,
and mobility is statically extracted and delivered to the runtime
system. In this way, the amount of computational overhead
imposed by the proposed fault tolerant framework can be
minimized.

The rest of this paper is organized as follows. Section II
reviews the related work in fault tolerant scheduling. Section III
presents the adaptive runtime fault tolerant technique. Section
IV presents the experimental methodology and obtained results,
while Section V concludes the paper.

II. RELATED WORK

Existing work in fault tolerant scheduling techniques can
be divided into three categories: static, dynamic and hybrid
approaches. Static approaches [8], [9] rely on offline analysis
to generate fixed task schedules capable of tolerating up to a
fixed number of faults. Solutions for tolerating both transient
[8] and permanent [9] faults have been proposed. These static
schedules require a Fault Tolerant Process Graph (FTPG) to
model all possible fault scenarios in advance. While these
solutions effectively hide the runtime overhead for making
rescheduling decisions, they do not deliver runtime adaptability.
Since the generated schedules consider only the worst case
scenario, spare resources are required, leading to resource
underutilization in most cases. Yang et al. [10], [11] have
developed adaptive static schedules to attain runtime adaptation
in the face of resource variations in MPSoCs. No spare re-
source is required. Instead, these schedules are partitioned into
regular yet shiftable band structures, thus maximizing resource

818978-3-9815370-4-8/DATE15/ c©2015 EDAA

utilization in most cases and enabling a regular reconfiguration
process to isolate a faulty core at runtime.

Due to the diverse behavior of faults, it would be more
desirable to have mechanisms that monitor faults at runtime and
adapt task allocation accordingly. Dynamic approaches are able
to naturally react to faults by adapting the redundancy level,
postponing tasks or redistributing workloads. Chantem et al. [4]
proposed an on-line task assignment and scheduling algorithm
that optimizes system lifetime based on the aging condition
of each core, which is computed with temperature information
sensed from each core. However, this approach only considers
temperature variations while ignoring sporadic environmental
issues that cause unpredictable fault behavior. Gottumukkala et
al. [5] presented another dynamic approach to distribute jobs
of different lengths in a way that maximizes (or minimizes)
a pre-defined system reliability function. Again, the effect of
intermittent faults is ignored. Furthermore, both approaches
involve complex function optimizations and large amount of
data processing to make reconfiguration decisions, making them
less suitable for applications with strict time constraints.

Bolchini et al. [7] proposed an approach that additionally
handles permanent faults in the system. By recording the error
history of each core, this technique differentiates transient and
permanent failures, and avoids allocating tasks to unhealthy
cores. However, since the only recognized core states are
healthy/unhealthy, the system reacts only upon identifying
a permanent fault. In contrast, the proposed fault tolerant
framework uses multiple intermediate states to characterize
intermittent faults whose duration may vary over nanosecond
to second time scales, thus enabling task allocation frequency
to be adjusted in a much finer granularity.

Hybrid approaches aim at combining the advantages of
static analysis and dynamic adaptation to efficiently tolerate
faults. In [12], an on-line adaptive recovery scheme is used to
exploit spatial and temporal redundancy based on power and
execution time constraints. Another tool is used to create an
error vulnerability profile during the design phase, that identi-
fies critical functional blocks with the most rigorous recovery
constraints. Coskun et al. [6] also proposed a hybrid approach
to improve system lifetime. A static schedule is generated
using ILP (integer linear programing), aiming at minimizing
temperature hotspots and balancing temperature distribution
across the die. This approach only considers temperature impact
but not runtime core failures.

To summarize, existing approaches are limited either by their
incapability of tolerating transient, permanent, and intermittent
faults all at the same time, or by the number of states in which
they classify resources for task allocation. Those shortcomings
make them insufficient for responding to the unpredictable
factors that boost fault occurrence, including environmental
issues, aging effects and temperature variations.

III. FAULT-DURATION AWARE TASK SCHEDULING

This section presents the proposed fault tolerant framework
that monitors time-correlated fault behavior to define reliability
levels of different resources, and gradually tunes task allocation
based on such information. We first give a brief overview of
the framework, and then describe the proposed core reliability
models, as well as task vulnerability and criticality models.
Taking these models as inputs, an adaptive task scheduling is
presented at the end.

Fig. 1. Runtime fault tolerance framework

A. Framework overview
Our fault tolerant framework is proposed for multicore

platforms with homogenous Processing Units (PU). However,
these PUs are diverse not only in their fault rates but also
in their fault duration, which in turn influence scheduling
decisions. The target set of faults includes transient, permanent,
and intermittent faults with varying durations. It is assumed that
the system already has mechanisms [13] such as acceptance
test, control flow checking, algorithm-based fault tolerance, or
redundant threading to detect faults in task results. Once a faulty
result is detected, the task will be re-executed on a different PU.

The overarching goal of the proposed reliability framework
is to schedule tasks to cores with non-constant fault behavior
in a way that minimizes the execution time of the entire
application. When a fault corrupts the result of a task, the task
has to be re-executed by another PU, and the start time of the
dependent tasks has to be delayed as a result. In this scenario,
three factors can be used to model the impact of faults on
application execution time:

• Core reliability indicates the fault rate of a core.
• Task vulnerability indicates the probability that a fault

will corrupt task results.
• Task criticality indicates the impact of a faulty task

result on application execution time.

Among these three factors, core reliability is expected to
be affected by execution conditions, while task vulnerability
and task criticality are specific to an application. To relieve
most of the computational overhead at runtime, the proposed
fault tolerant framework extracts the last two factors based on
application task graph information a priori. Meanwhile, a cost-
effective core reliability model is developed for the runtime
system to monitor time-correlated fault behavior of each core.
In this way, the runtime scheduler can easily assign more
vulnerable and critical tasks to more reliable cores.

Fig. 1 presents an overview of the runtime fault tolerant
framework, composed of a scheduler unit and a Fault Mon-
itoring and Diagnosis (FMD) unit, together with the set of
cores available in the system. The scheduler is responsible
for monitoring task execution and upon a fault, initiating re-
execution and postponing dependent tasks. The FMD unit is
responsible for recording fault occurrences and updating core
reliability levels periodically. As can be seen, task criticality and
vulnerability information is considered as an external input to
the scheduling framework.

B. Modeling Core Reliability
In the proposed fault tolerance framework, the reliability

level of each core is computed by the FMD unit. Instead

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 819

Fig. 2. Fault scenarios that each shows a fault history.

of simply counting the number of occurred faults, the FMD
unit models time-correlated fault behavior. This implies that
faults occurred at different time should have different impact to
core reliability level. To illustrate this time-correlated behavior,
Fig. 2 depicts a set of scenarios, ranked in ascending order in
terms of how reliable they are. Each scenario shows a failure
history of a single core: a “1” represents a faulty task result,
while a “0” represents a clean result.

A “1” in the rightmost bit position indicates that a fault
was observed for the most recently executed task. As the
fault may have not elapsed, it is necessary to reduce task
allocation frequency to the corresponding core, implying that
faults occurring more recently should have greater impact on
core reliability. Unless the core starts to produce clean task
results, task allocation frequency should keep decreasing. In an
extreme case, such as Scenario 1 shown in Fig. 2, the core has
not produced any clean result within the observed window, and
hence should be considered “dead”.

Another important consideration is that consecutive occur-
rences of faults should have a larger impact than faults occurred
in a random and discrete manner. This can be observed through
a comparison between Scenarios 2 and 3 in Fig. 2. While their
numbers of faults are equal, faults in Scenario 2 occurred in
a continuous manner, indicating high correlation among fault
behavior (probably an intermittent fault of long duration). As
a result, Scenario 2 is considered less reliable than Scenario 3.

Once a core starts to produce clean results, its task allocation
frequency is gradually increased. This is because a clean result
is a good sign that indicates the fault affecting the core has
probably elapsed. This situation is shown in Fig. 2 with the
rankings of Scenarios 3, 4 and 5. Scenario 4 is more reliable
than Scenario 3 because of the clean task result recorded in
the rightmost bit position, while Scenario 5 is considered most
reliable due to the consecutive clean results for the most recent
executions. The higher the number of clean recent task results,
the higher the reliability of the core.

Overall, the scenarios depicted in Fig. 2 indicate that to
effectively model time-correlated fault behavior, an algorithm
should prioritize cores based on the following criteria:

• A more recent fault should be given a higher weight
than a fault occurred long time ago.

• Continuously occurred faults should be given a higher
weight than random and discrete faults.

• A clean task result should suppress the accumulating
impact of previous faults.

To fulfill these criteria, we propose Algorithm 1, which can
be efficiently implemented in hardware. Every time a task result
is checked, the algorithm is invoked to update core reliability

Fig. 3. Changing reliability levels of the fault cases in Fig. 2, computed with
Algorithm 1. A smaller value implies more reliable.

level, and a smaller value indicates that the core is more
reliable. If the task result is clean, the reliability level of the
corresponding core is divided by 2. Otherwise, the result is
faulty, and the algorithm adds a specific f aultWeight to the
current reliability level. The exact value of f aultWeight can be
determined by the user. A larger f aultWeight makes the system
more sensitive to a faulty result, as more clean executions
are required to suppress the effect of a single fault. More
specifically, f aultWeight equal to n requires log2n consecutive
clean task results to completely suppress the fault effect. Using
f aultWeight = 8 as an example, the core reliability levels
computed with Algorithm 1 for the five scenarios in Fig. 2
are shown in Fig. 3.

One significant advantage of Algorithm 1 is that it can be
efficiently implemented in hardware. As shown in Fig. 4, only
an adder, a shifter, a 2-to-1 multiplexer, and a register are
needed, as the division operation can easily be accomplished
through shifting operations.

Furthermore, Algorithm 1 also indicates that the maximum
possible value of the reliability level equals f aultWeight ∗
FHLength, with FHLength denoting the maximum length
of fault history to keep track. Accordingly, a register of
log2(f aultWeight ∗FHLength) bits is sufficient for recording
the reliability level of each core. As a concrete example, if
f aultWeight = 8 and FHLength = 8, the size of the register is
only 6 bits. Note that the fault history information shown in
Fig. 2 is only for presenting those scenarios. It is not recorded
in the proposed fault tolerant framework, and the FMD unit
only needs to maintain the reliability Level for each core.

Finally, it needs to be noted that Algorithm 1 only updates
the local core reliability level. As shown in Fig. 1, the global
core reliability levels, which are accessed by the scheduler
unit, are periodically updated by the FMD unit. This excludes
any potential race condition between the scheduler and the
FMD unit in accessing reliability levels. This also implies that

Algorithm 1 Local Reliability Level

1: Input: taskResult∈ { f aulty,clean}
2: Output: LocalReliabilityLeveli
3: procedure LOCALRELIABILITYLEVEL(taskResult)
4: if taskResult = faulty then
5: LocalReliabilityLeveli + = f aultWeight
6: else
7: LocalReliabilityLeveli = LocalReliabilityLeveli/2
8: end if
9: end procedure

820 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 4. Hardware implementation of FMD unit

between two consecutive updates to the global reliability levels,
the scheduling policy is relatively stable.

C. Modeling task criticality and vulnerability
As mentioned before, task vulnerability and criticality are

application-specific factors. Before executing an application,
the proposed fault tolerant framework will invoke a procedure
to analyze the application task graph and extract such informa-
tion, relieving in this way most of the runtime computational
overhead.

In a nutshell, the static analysis procedure computes crit-
icality and vulnerability factors for each task, as well as a
unified priority metric that combines these two factors in a
single quantity. The inputs to this procedure are the application
task graph and a reliability weight, α , in the range of [0,1].
This parameter allows the user to define the relative importance
of reliability over performance. As shown in the following
equation, a larger value of α will make the runtime system
prioritize reliability over performance, and vise versa.

priorityi = α ∗ vulnerabilityi +(1−α)∗ criticalityi (1)

Task vulnerability measures the probability that a fault will
corrupt task results. Since the proposed fault tolerant framework
targets to faults occurring in task execution, the longer the
execution time is, the more possible that the task result may
become faulty. In light of this observation, the vulnerability
factor of task i can simply be computed as follows:

vulnerabilityi =
ETi

Max(ETi)
(2)

Here, ETi represents the execution time of task i, while
Max(ETi) retrieves the maximum execution time among all
tasks in the task graph. This equation indicates that the value of
vulnerabilityi is in the range of [0,1], and linearly proportional
to task execution time. A higher value indicates a longer task
and hence, a higher possibility for faults to corrupt the result.
The task with the largest execution time will be most vulnerable
and therefore will have a vulnerability factor of 1.

The second factor, task criticality, measures the impact on
application performance that a task has, if it is delayed due to
faults or resource unavailability. Intuitively, this factor can be
measured from two perspectives. First, a task with a smaller
slack will have a larger impact on the overall schedule length
if it is delayed. Second, a task with more dependents will have
its delay impact amplified. Both aspect have a direct effect
on application performance. It is therefore necessary for the
static analysis procedure to take both of them into account when
modeling task criticality.

Slack measures the amount of flexibility for a task to be
delayed without degrading application performance. The static

A

B C

D

Task Execution Time

Fig. 5. A sample task graph. ET refers to execution time.

TABLE I. VULNERABILITY AND CRITICALITY OF FIG. 5 TASKS.

Vulnerability Slack Fixity Criticality
A 0.222 0 1 0.75
B 1 0 1 0.75
C 0.333 6 0 0.25
D 0.111 0 1 0.5

analysis procedure obtains the slack of a task by computing the
difference between the Earliest Start Time (EST) and Latest
Start Time (LST) of the task in the task graph. Subsequently,
the obtained value is normalized to the maximum slack value
to get a fixity value in the range of [0,1]:

f ixityi = 1− slacki

Max(slacki)
(3)

Here, f ixityi and slacki respectively represent the fixity and
slack of task i, while Max(slacki) computes the maximum slack
value among all the nodes in the task graph. A higher value of
f ixityi indicates that application performance is more sensitive
to the delay of task i. For all the tasks on the critical path, their
fixity value is 1.

Once task i is delayed, its dependent task k, if any, will
probably be delayed as well. A task with more dependents will
have this impact amplified. Taking such a propagation effect
into consideration, the overall criticality factor is computed by
summing up the fixity of a task as well as its dependent tasks,
as shown below:

criticalityi =

(
f ixityi +

∑k∈childreni
f ixity

Max(OutDegreei)

)
/2 (4)

Here, OutDegreei is the number of dependent tasks of a
node i and Max(OutDegreei) retrieves the maximal number of
out-degree in the task graph. The first term models the effect
of delaying tasks, while the second term models the number
of dependent tasks that will be affected because of this delay.
Since both the fixity value and the second term are in the range
of [0,1], a normalization with respect to 2 delivers a criticality
factor in the range [0,1]. A higher value of criticalityi indicates
that if the task is delayed, it will have a larger probability
to degrade application performance through one or multiple
dependences chains.

As a concrete example, Fig. 5 shows a graph of four tasks,
their execution time and inter-task dependencies. The values of
vulnerability, slack, fixity, and criticality of each task are shown
in Table I.

D. Adaptive task scheduling
With the core reliability levels computed and updated by

the FMD unit, as well as task criticality and vulnerability

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 821

extracted based on the task graph, the dynamic scheduler is
able to prioritize task assignment. This process is shown in
Algorithm 2. As the FMD unit already delivers a core ranking
to the scheduler unit, the scheduler only needs to rank tasks
according to their priority. To do so, The scheduler first checks
all the tasks in the pending list to identify ready tasks (lines 1 to
7). A task is considered “ready” if it has no predecessor or all of
its predecessors have been scheduled. These tasks are inserted
to the ready queue according to their predefined scheduling
priority, extracted with Equation (1). After that, the algorithm
schedules the first task in the ready queue, that is, the one with
the highest priority (lines 8 to 12), by mapping it to the most
reliable idle core at the time. Then this task is added to the
scheduled list, and some dependent constraints can possibly be
cleared and more tasks may be added to the ready queue.

Algorithm 2 Dynamic Scheduling Algorithm

Input: pendingTasks, task priority, cores, core reliability level;
Output: scheduledTasks;

1: while pendingTasks.isNotEmpty or readyTasks.isNotEmpty do
2: for all task ∈ pendingTasks do
3: if PredecessorScheduled(task) then
4: readyTasks.insert(task, task.priority);
5: pendingTasks.delete(task);
6: end if
7: end for
8: toSchedule = readyTasks.first();
9: bestCore = findMostReliableAndIdleCore(toSchedule);

10: bestCore.scheduleTask(toSchedule);
11: scheduledTasks.add(toSchedule);
12: readyTasks.delete(toSchedule);
13: end while

Algorithm 2 confirms that the scheduler unit does not need to
perform any intensive computation. Instead, since all the ready
tasks and idle cores are ranked, the algorithm imposes minimum
overhead when tuning task allocation as cores in the system
become more or less reliable. Another noticeable point is that
if a task fails during execution (because a fault is observed),
it will be re-inserted to the head of the ready queue. Then
the scheduler will check its original core assignment and will
assign the task to a different and more reliable core.

IV. RESULTS

A. Methodology
To evaluate the proposed scheduling framework, we have

developed a simulator that injects faults as it executes tasks.
The simulator implements the algorithms depicted in previous
sections in C++. To model time-correlated fault behavior, the
failure probability of each core is not constant, but model as
a Weibull Distribution [13], with parameters β = 0.7 and λ
varying between 0.002 and 0.02. More specifically, the failure
probability of each core will be given by:

F(t) = 1− e−λ tβ
(5)

with t defined as the time elapsed since the last fault occurred
in the core. Since β < 1, core fault rate decreases as t increases.
In other words, a recently failed core tends to produce more
failures.

To insert faults, the simulator generates random numbers
that follow the distribution given in Equation (5). Failures are
checked both at the beginning and at the end of each execution.

TABLE II. STANDARD TASK GRAPHS USED

Task Graph Number of
nodes

Average computation/
communication time

Fast Fourier Transform (FFT) 39 20/10

Fork/ Join application 43 20/10

Gaussian elimination 49 20/10

Laplace Equation 42 20/10

LU Decomposition 44 20/10

Out Tree task graph 63 20/10

In Tree task graph 63 20/10

If a fault occurs during task execution, the task will be re-
executed, and all the dependent tasks will be delayed as a result.
In this way, the simulator is able to model runtime schedule
length, the system architecture and varying fault rates for each
core.

To show the advantage of the proposed reliability model
and the adaptive scheduler, it is compared against two other
schedules:

1) A baseline approach that considers only task criticality
and vulnerability but not core reliability when mapping
tasks into cores.

2) A dynamic technique that takes into consideration task
criticality and vulnerability, but computes core relia-
bility levels simply by counting the number of faults
occurred. Cores with higher counts of faults will be
less reliable and vice versa. With this approach, time
correlation across faults is not taken into consideration.

To mitigate the impact of randomness and obtain more
accurate results, hundreds of simulations are performed for each
task graph under the same system configuration. At the end, the
average schedule lengths obtained in different simulations and
the average number of faults per simulation are reported for
each approach. The reductions in schedule lengths compared
to the baseline approach are reported as well.

We use different standard task graphs as the input set, with
their characteristics summarized in Table II. Regarding system
architecture, four cores with λ values of 0.002, 0.005, 0.01 and
0.02 are used during runtime simulation. The goal of using this
fault rate distribution is to make the impact of lower/higher
reliability levels more observable. The proposed scheduling
technique will try to minimize the number of faults and re-
executions by mapping tasks with the highest priorities to the
most reliable cores. On the other hand, the scheduler that does
not consider core reliability will tend to produce higher number
of faults at runtime and hence, will degrade overall schedule
lengths.

B. Results
The experimental results for the different task graphs are

shown in table III. A total number of 300 simulations have
been made by the runtime simulator for each task graph and
each scheduling approach. Due to lack of space, this table
only shows results for task prioritized based on α = 0.5,
indicating that vulnerability and criticality are equally important
for ranking tasks.

From the average schedule length values in Table III, it can
be seen that the proposed technique improves schedule length
in almost all cases, compared to the baseline which does not
take into consideration core reliability levels. The proposed
technique achieves the highest reduction ratio of 56% for LU

822 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

TABLE III. COMPARISON OF A RELIABILITY-UNAWARE TECHNIQUE, THE PROPOSED TECHNIQUE, AND A FAULT-COUNT BASED TECHNIQUE.

Baseline Proposed technique Fault count based

Task Graph Fault count Schedule
length

Fault count Schedule
length

Reduction
(%)

Fault count Schedule
length

Reduction
(%)

FFT 541 241.47 471 236.04 2.25 486 237.69 1.56

Fork/ Join 664 357.03 589 350.38 1.86 583 348.50 2.39

Gaussian elimination 812 411.22 630 404.30 1.68 699 410.58 0.16

Laplace Equation 296 426.59 38 396.00 7.17 375 412.65 3.27

LU Decomposition 8523 1080.91 488 469.61 56.55 3439 742.93 31.27

Out Tree 93 406.79 0 404.00 0.69 5 404.20 0.64

In Tree 518 394.34 61 378.03 4.14 228 383.90 2.65

Decomposition task graph. Furthermore, for all benchmarks,
the number of faults occurred in the baseline approach is larger
than that of the proposed technique. These results confirm that
by tuning task allocation frequency according to core fault
behavior, both the schedule length and the number of faults
occurred in the system can be reduced as well.

When compared to the fault count based approach, the
proposed technique also outperforms it in most of the cases.
This is because while the fault count based technique takes
into consideration core fault behavior, it overlooks time cor-
relation between faults. In other words, the proposed core
reliability metric is more accurate, especially for modeling
transient/intermittent faults that have an unpredictable nature.
For instance, transient faults are not related to the actual healthy
status of the systems. Instead, they are due to external factors
that affect processing units during a short period and then
disappear. Under this scenario, a fault count based approach
will end up providing misleading information about a core that
was affected by a transient fault at some point but is healthy
now. In contrast, the proposed reliability level will quickly bring
a core back to the healthy state once it starts to produce clean re-
sults consecutively. Therefore, in real systems where transient,
intermittent and permanent faults appear indiscriminately, the
proposed approach can achieve much better results than the
fault count based approach.

Finally, for some benchmarks, such as LU decomposition,
the difference in the number of faults between the fault count
approach and the proposed approach is very large but not
proportionally reflected in the schedule length. This is due to
the fact that not all the faulty results will affect tasks on the
critical path. Instead, the impact of faults is not constant and
depends on the task where it was produced. Faulty tasks located
on the critical path will have a greater impact on the schedule
length than those faulty but non-critical tasks.

V. CONCLUSION

This paper have presented an adaptive fault tolerant tech-
nique that dynamically tunes resource allocation based on
the time correlation of faults detected in the system. The
proposed technique effectively models the impact of diverse
fault behavior in terms of the frequency at which faults occurred
and their time correlation. Task vulnerability and criticality
is also considered to improve schedule quality, by assigning
task priorities based on these two parameters and sorting
tasks dynamically based on their priorities. In the experiments,
the proposed technique is compared against two scheduling
techniques: one does not consider core reliability and one
only counts faults while ignoring their time-correlation. The
results show that by modeling time correlated fault behavior and

prioritizing tasks based on their criticality and vulnerability, our
technique can reduce runtime schedule length by up to 56%.

REFERENCES

[1] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of tech-
nology scaling on lifetime reliability,” in International Conference on
Dependable Systems and Networks, June 2004, pp. 177–186.

[2] R. Malucci, “The impact of electro-migration on various contact mate-
rials,” in IEEE 59th Holm Conference on Electrical Contacts (HOLM),
Sept 2013, pp. 1–8.

[3] J. Roberts, S. Hussain, J. Suhling, R. Jaeger, and P. Lall, “Char-
acterization of die stresses in microprocessor packages subjected to
thermal cycling,” in 13th IEEE Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm), May
2012, pp. 1003–1014.

[4] T. Chantem, Y. Xiang, X. Hu, and R. P. Dick, “Enhancing multicore relia-
bility through wear compensation in online assignment and scheduling,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
March 2013, pp. 1373–1378.

[5] N. Gottumukkala, C. Leangsuksun, N. Taerat, R. Nassar, and S. Scott,
“Reliability-aware resource allocation in HPC systems,” in IEEE Inter-
national Conference on Cluster Computing, Sept 2007, pp. 312–321.

[6] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Temperature-aware
MPSoC scheduling for reducing hot spots and gradients,” in Asia and
South Pacific Design Automation Conference (ASPDAC), March 2008,
pp. 49–54.

[7] C. Bolchini, A. Miele, and D. Sciuto, “An adaptive approach for online
fault management in many-core architectures,” in Design, Automation
Test in Europe Conference Exhibition (DATE), March 2012, pp. 1429–
1432.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling and optimization
of fault-tolerant embedded systems with transparency/performance trade-
offs,” ACM Trans. Embed. Comput. Syst., vol. 11, no. 3, pp. 61:1–61:35,
Sep. 2012.

[9] J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis
and optimization of fault-tolerant task scheduling on multiprocessor
embedded systems,” in Proceedings of the 9th International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Oct 2011, pp. 247–256.

[10] C. Yang and A. Orailoglu, “Fully adaptive multicore architectures
through statically-directed dynamic execution reconfigurations,” in 18th
IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC), Sept 2010, pp.
396–401.

[11] C. Yang and A.Orailoglu, “Tackling resource variations through adaptive
multicore execution frameworks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, no. 1, pp.
132–145, Jan 2012.

[12] T. Li, M. Shafique, J. Ambrose, S. Rehman, J. Henkel, and
S. Parameswaran, “Raster: Runtime adaptive spatial/temporal error re-
siliency for embedded processors,” in 50th ACM / EDAC / IEEE Design
Automation Conference (DAC), May 2013, pp. 1–7.

[13] I. Koren and M. Krishna, Fault-Tolerant Systems. Organ Kaufmann,
2007.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 823

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

