
Synergistic Use of Multiple On-Chip Networks for
Ultra-Low Latency and Scalable Distributed Routing

Reconfiguration

Abstract—Extending the principle of partially good die al-
lowance to manycore processors, and testing them over time to
detect the onset of permanent faults, are only feasible through
proper support in the on-chip interconnection network. In fact,
this implies the ability to reconfigure the routing algorithm at
runtime to reflect changes in network topologies. Current liter-
ature cannot avoid a large hardware and/or software overhead
when tackling this challenge. This paper exploits the existence
of multiple physical networks in industry-relevant manycore
processors in a synergistic way, for the sake of fast and scalable
distributed reconfiguration of the routing function at runtime.

I. INTRODUCTION

While most network-on-chip (NoC) research contributions
have focused on the architecture design principles or on the
physical design flow so far, concerns associated with the low
reliability of the silicon substrate at upcoming technology
nodes are calling for new design methods for runtime man-
agement of the system interconnect. On one hand, sustaining
manufacturing yield and device lifetime imply that a failure
of a NoC component cannot cause the entire chip to be
considered as defective. This goes beyond fault-tolerant routing
algorithms [2] or flexible routing mechanisms [3], since the
above techniques fail to capture the transition from one network
configuration to the next one, which is potentially deadlock-
prone and penalizing for instantaneous performance of network
traffic. On the other hand, testing complex manycore chips
cannot be only a post-manufacturing course of action, but needs
to make inroads into the lifetime of the device. One clear trend
is toward fault detection and reconfiguration frameworks [4],
[5], where network resources are tested aggressively to detect
early signs of an upcoming fault through a built-in self-testig
infrastructure. The key novelty of the testing challenge lies in
the fact that NoC links should be taken offline during runtime
testing, while at the same time guaranteeing uninterrupted
availability of the NoC. In order to maintain maximum flexibil-
ity in link deactivation, the routing algorithm must be able to
change dynamically in reply to changes in system state, while
preserving deadlock freedom. Current approaches to runtime
network configuration suffer from large hardware/software
overhead and/or lack of scalability. In general, centralized
approaches have the disadvantage that some reconfiguration
tasks (e.g., the computation of the new routing function) are
performed in software. In contrast, distributed reconfiguration
suffers from suboptimality of emergency routing solutions and
overly high implementation cost and complexity. This paper
moves from a different perspective: the synergistic exploitation
of routing resources that are already there in many NoC
implementations. In a sense, there is an overhead which is
increasingly accepted in NoC design, and which is justified
by other design goals, which consists of the use of multiple
physical networks instead of logic ones. Although this seems
to run contrary to much previous work [1], [26], it is actually
motivated by how the relative costs of network design change
for implementation on a single die [6]. First, wiring resources

are abundantly available on chip, for realistic tile sizes. Second,
logic networks do not cut down on the amount of used
buffering resources. Third, building multiple physical networks
via replication simplifies the design and provides more intertile
communication bandwidth. This is the reason why up to 5
physical networks can be found in industrial designs. Each
one can even be customized for the needs of the specific
traffic class it accommodates. Given this, this paper proposes
to exploit the existing multiple physical networks to spatially
separate resource allocations that may close dependency cycles.
The most straightforward way of accomplishing deadlock-free
spatial separation is to double the number of resources used
by a routing algorithm to escape from deadlock and to allow
dependencies from new-epoch traffic to old traffic, but not vice
versa. Whenever a switch port processing old traffic has a
routing dependency with a port already migrated to the new
epoch, an escape path is set up into another network plane.
This way, deadlock cannot take place. The only requirement the
escape network should fulfill consists of its compatibility with
the network under reconfiguration from the message-dependent
deadlock viewpoint, unless a specific course of action is set
up to tackle this concern differently. This paper develops a
reconfiguration methodology around the above basic ideas and
demonstrates a substantial improvement over state-of-the-art in
terms of reconfiguration latency, area overhead, impact over
the performance of running traffic, and scalability to large
networks.

II. RELATED WORKS

An overview of existing fault-tolerant routing techniques
has been reported by [13]. On one hand, routing tables and
logic can be updated upon each fault occurrence [13]–[17].
On the other hand, bypass rules can be exploited to reroute
around faults using local connectivity information [18], [19].

Runtime reconfiguration of the routing function has been
first investigated in high-performance local area networks,
spurred by the need to deliver incremental expansion ca-
pabilities. Static reconfiguration (SREC) has long been the
dominant solution. With SREC, no packets can be routed
according to the new routing function while there are still
packets in the network routed according to the old one [9].
Dynamic reconfiguration (DREC) techniques overcome this
limitation [10]–[12]. However, they are applicable only to a
limited set of routing functions, or rely on dropping packets
to avoid deadlocks, or appear to be more complex than the
straightforward static approach, or have requirements on the
minimal set of hardware resources implemented. For instance,
the double scheme proposed in [7] proposes the spatial and/or
temporal separation of the routing resources used by each
routing function into two sets, and allows dependencies to
exist from one set of resources to the other but not from both
at any given time. Unfortunately, it requires the network to
implement two sets of data virtual channels. Other approaches
strike a trade-off between SREC and DREC. For instance, the

Marco Balboni
ENDIF - MPSoC Research Group
University of Ferrara, ITALY
email: marco.balboni@unife.it

José Flich
GAP - Parallel Architectures Group

Universidad Politécnica de Valéncia, SPAIN
email: jflich@gap.upv.es

Davide Bertozzi
ENDIF - MPSoC Research Group
University of Ferrara, ITALY
email: davide.bertozzi@unife.it

806978-3-9815370-4-8/DATE15/ c©2015 EDAA

Figure 1. Segments and scroll-up token propagation in a 2D mesh.

work in [8] describes how the various phases of SREC can be
overlapped in order to increase parallelism.

When it comes to on-chip networks, a few main approaches
stand out. ARIADNE [14] is fully distributed, however it
undergoes subtle effects: its latency badly scales with network
size, and it does not guarantee a transparent transition between
configurations. MD [18] routes packets adaptively through the
shortest paths in the presence of a faulty link, as long as
a path exists. The local visibility of this mechanism causes
the network to become rapidly disconnected as the number
of faults increases. OSRLite [25] has been proposed as an
embodiment of native OSR into an on-chip environment. [20]
improves [25] with an algorithm that extends coverage of fault
patterns. The main issue with OSRLite is its centralized nature,
which causes overhead for manager notifications, and puts
software computation of the global manager on the critical path
for the reconfiguration process. This latter disadvantage is also
shared by the work in [13]. Recently, BLINC has significantly
raised the bar for fast, deadlock-free, distributed and localized
routing reconfiguration [4]. BLINC uses precomputed routing
metadata to quickly evaluate localized detours upon each fault
manifestation. Unfortunately, the complexity of this scheme
is significant (more than 500 bits per router in an 8x8 mesh,
with poor scalability as the network size increases). However,
since [4] has demonstrated superior reconfiguration latency and
fault tolerance with respect to the main competing schemes in
literature, we consider BLINC as the reference solution for
comparison.

This paper aims at a distributed routing reconfiguration
method at runtime for NoCs. It borrows the same deadlock-
avoidance principle from OSR/OSRLite, that is, separation of
old and new packets with a token. However, the scheme is then
augmented to become fully distributed, which was possible due
to the same spatial separation concept for deadlock freedom
proposed by the double scheme [7]. However, the difference
with the original schemes is significant. Differently than OSR,
we do not have a centralized control function, since our
reconfiguration process is fully distributed. Differently than
the double scheme, we do not envision a dedicated physical
network only for reconfiguration, but we exploit existing ones,
therefore we need to meet the additional constraint of minimum
performance perturbation of the background traffic in the es-
cape network through a smart escape strategy. The outcome is
a new design point for runtime and distributed reconfiguration
of the routing function in NoCs.

III. RECONFIGURATION MECHANISM

A. Background

The paper relies on segment-based routing (SR). SR is
topology-agnostic in nature, and works by partitioning a topo-
logy into segments (an example is in Fig.1). This allows to
place bidirectional turn restrictions locally and independently
within a segment, thus making the network deadlock-free.

Without lack of generality, we assume the uLBDR (Uni-
versal Logic-Based Distributed Routing) routing mechanism as
proposed in Rodrigo et al. paper [22]. It has several routing
configuration bits at each switch (26) that enable to take the
proper routing decision based on the destination coordinates
of the packet at hand, and on the routing restrictions posed by
SR. uLBDR supports non-minimal paths through the use of
deroutes.

This paper moves from the OSRLite runtime routing recon-
figuration function, and ultimately augments it to overcome
its global and centralized nature. Before delving into the
proposed method, some OSRLite basics are recalled. In OSR,
a global controller is in charge of initiating reconfiguration,
either because of a planned decision (e.g., power management)
or of an unexpected event (e.g., the likely onset of a permanent
fault). In the latter case, the event needs to be notified to
the manager. The manager computes the configuration bits
for the new routing function to activate, and updates the
corresponding registers in NoC switches through a dual NoC.
However, the transition from the old to new routing function
occurs in a controlled way, so to avoid deadlock. In practice, a
separation token crosses the network in the order of its channel
dependency graph, starting from a root node. As the token
is received at switch input ports, the new routing function is
activated as those ports are emptied by old traffic. Similarly,
output ports evolve to the new epoch as the input ports that
have no routing restrictions toward them have moved into the
new epoch. In practice, the network evolves to the new routing
function progressively, by enabling concurrent local and static
reconfigurations at its switch ports.

Fig.1 shows the direction of token propagation across the
network. Only the scroll-up phase is shown. The scroll-down
phase, which causes the remaining links to receive the token,
is omitted for lack of space. Fig.2a also shows the scroll-up
token propagation tree. A switch with a given ID can fire a
token in its output ports only when all tokens from the input
ports have been received, and have internally propagated to the
output ports through the stated rules.

The main issues with OSRLite are:

• the global manager is on the critical path of the
reconfiguration process.

• the token propagation starts from a root node.

• a separate control network or virtual channel is needed
for communication with the global manager.

B. Key Idea

We overcome the main limitations of OSRLite in the
direction of a fully distributed and dynamic reconfiguration
mechanism by relying on the following key intuitions:

First, considering results of Triviño et al. [21], we can
identify a region around a NoC fault that is affected by it.
In practice, for each fault in the NoC, we don’t have to update
all the routing configuration bits of all switches in the NoC,
but only of a limited subset of them. This means that it is
possible to border the region where the routing function has to
be changed.

Second, since each switch is involved only in a limited
number of fault regions, the modifications of the uLBDR
configuration registers for those cases could be encoded in a
small table for each router. The size of the table would be
26 bits for each relevant fault. This way, the routing function

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 807

should not be computed by a global controller, but would
be encoded in distributed tables. The fault coverage of this
approach will be addressed in section IV-D.

Third, making OSRLite a distributed mechanism implies
that not only the root node, but also every node in the network
can trigger token propagation, as an effect of a detected risk
of malfunctioning in a link, or of a dedicated testing phase
which is about to start in the link under test. Consider for
instance Fig.2b, where the indicated link needs immediate
disconnection. Switch with ID 10 needs to avoid routing traffic
through the critical link. To do that, OSRLite would require
tokens in the two input ports from 9 and 14. Our scheme
mimics the same behavior by redirecting the links of those
input ports into an escape network. When this happens, and
switch 10 is drained by old traffic, no packets will cross the
critical link any more, and a token will appear at the south port
of switch with ID 6. For the same reason, a regular token will
be concurrently triggered to the east. However, this way the
token propagation would stop, because for instance switch 11
needs also a token from south to fire. Similarly for switches 4
and 5. Therefore, we need to open more tunnels. In the next
section, this mechanism will be further optimized to reduce
inter-network tunneling and speed-up the reconfiguration.

The proposed method has the key requirement of an escape
network. For instance, networks carrying intra-partition or
inter-core traffic in a manycore processor could be reconfigured
on top of a global network (for I/O or memory controller
communication). Alternatively, a network carrying one mes-
sage type could be reconfigured on top of a network carrying
a different message type, provided the two message types
do not form a dependency chain rising the risk of message-
dependent deadlock. For instance, memory requests messages
cannot be tunneled into a response network, and vice versa.
Nonetheless, another case falls within reach of this paper, that
is, multiple networks with multiple virtual channels each. For
instance the memory request VC of physical network 0 could
be tunneled into a memory request VC of physical network 1.
This is message-dependent deadlock safe. Last but not least, the
mechanism is complementary, that is, the role of the network
under reconfiguration and the escape one can be flipped for the
sake of exhaustive testing.

Finally, in order to enable the two coupled links during
reconfiguration to have different routing functions, escape paths
are assumed to go through the local ports of escape switches,
hence ending up being multiplexed with the traffic from IP
source cores.

C. The Baseline Mechanism

When putting together the three ideas from the previous
section, we get the following reconfiguration methodology. A
switch can enforce the fast disconnection of an attached link by
triggering the token propagation process. It will handshake the
opening of inter-network tunnels with nearby switches. Normal
tokens are then fired by the target switch, which will trigger
the scroll-up phase of the token propagation. Once completed,
the scroll-up phase will trigger the scroll-down phase. Once
the scroll-down phase reaches the OSRLite root node, then the
missing scroll-up phase (since the token propagation started
somewhere in the middle of the network) will be triggered, till
the tokens reach the tunnels and these latter are closed. This
completes the reconfiguration process.

Once reached by a token, the input port of a switch will
behave like in vanilla OSR, with the difference that a fault
identifier needs to travel with tokens. Fault IDs will be searched

(a) Scroll-up token propagation
graph

(b) Tunnel opening for triggering
distributed reconfiguration

(c) Tunnel propagation (d) Eager token request

Figure 2. Token OSR..

in a local CAM memory, indicating whether that fault ID
requires routing bit modifications at the switch under test or
not. For this reason, the token can be a single-flit special packet
carrying the fault ID in its body. There is a fault ID for every
bidirectional link in the network (say M), however the number
of CAM entries in a switch is limited, since not all faults
affects its routing bits. The methodology does not need to affect
the network as a whole. In fact, thanks to the notion of fault
region around a faulty link, only switches in the fault region
should be affected by the token propagation. Incoming links
from boundary switches may be assumed to already exhibit a
token, since incoming traffic will be eventually derouted inside
the fault region.

D. Optimized Mechanism

The three phases of the process (partial scroll-up, scroll-
down, residual scroll-up) make it overly long in time. This
motivates our next optimizations.
Tunnel Propagation
The switch directly attached to the link to disconnect requests
tunnel opening to upstream switches with channel dependen-
cies with the link under test. These latter open such tunnels
right after pending packets are completed. See for instance
switches 9 and 14 in Fig.2c. However, tunnels between 8-4, 9-5
and 15-11 are not opened, thus avoiding the need for dedicated
multi-hop signaling. The novelty is that these switches then
iterate the mechanism with their upstream switches in the
scroll-up token propagation graph. That is, they pretend that
tunnels are fired tokens, and try to fulfill the requirements to
fire these tokens. For instance, switch 9 will handshake with
switches 8 and 13 the opening of tunnels on the connecting
links. Once this is completed, and switch 9 has internally
processed all pending old traffic, tunnels between 9-10 and 14-
10 will be closed, since all the traffic routed across those links
will belong to the new routing function (that is, no traffic at
all). Overall, tunnels are propagated backwards along the token
propagation graph, till they reach the OSRLite root node. This
mechanism overlaps the token partial and residual scroll-up
phases.
Eager tunnel Request
When switch 11 in Fig.2d receives the token from switch 10,
it temporarily misses a token from south to fire. In order to

808 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

avoid multi-hop dedicated signaling between 10 and 15 to
open a tunnel in that location, switch 11 directly asks switch
15 for the missing token through an eager token injection
handshaking. Switch 15 opens the tunnel, then in turn applies
tunnel propagation with its upstream switches in the token
propagation graph. This mechanism is applied by all switches
in the network as they receive an incoming token, and speeds
up the reconfiguration process significantly. In particular, it is
applied also by switch 6 at the opposite side of the link to
be put offline. In that case, the switch receives the token from
the link under test, and handshakes tunnel opening on those
input links that have routing dependencies with the target link.
The relevant aspect here is that a few such input links will
belong to the scroll-down phase. In turn, switches opening
tunnels will propagate them further upstream, thus speeding up
the partial scroll-up phase, and overlapping it with the scroll-
down phase. Eager tunnel request raises a new condition for
stopping tunnel propagation. This latter finishes not only when
tunnels reach the OSRLite root node, but also when tunnel
backward propagation is requested for a link which has (or is
firing) a token. In that case, the tunnel is closed. An example
is illustrated in Section III-E.

The ultimate effect of our optimizations can be understood
as though several spots were enlarging simultaneously on a
white surface, thus contributing to cover the whole surface in
the smallest possible time. Tunnels are the borders of such
spots. As the tunnels propagate as a wave, the incident traffic
is derouted to the escape network, since it is old traffic that is
trying to enter a new domain.

E. The mechanism at Work

Let us consider a 4×4 mesh and the link between routers
8 and 9 becoming faulty (although still operational) or under
test. Fig.3 illustrates the mechanism at work. The sequence of
events is displayed under the assumption that token propagation
inside switches takes 3 cycles as from the RTL characterization
in [25]. In contrast, tunnel opening requests are processed in
one cycle.

After detecting the fault event on the link (Fig.3a), the
two switches, connected to the link, trigger the reconfiguration
process by sending token/tunnel activation requests to neighbor
switches to open tunnels at some of their output ports (those
with dependencies with the link under test, see Fig.3b). Once
tunnels are opened (Fig.3c), and after an emptying transient of
in-transit traffic of at least 3 cycles, switches 8 and 9 guarantee
tokens are triggered through the faulty link (Fig.3e). Indeed, all
input dependencies of the output port connected to the faulty
link are either inexistent or there is a tunnel at the input port.
Thus, it is guaranteed that no old traffic in any direction will
arrive needing to cross the failed link.

Figure 3c shows the initial location of tunnels (at N output
ports of routers 12 and 13, at S output port of router 5 and at W
output port of router 10) and their equivalence with tokens at
upstream switches of tunneled ports. Once tunnels are opened,
they trigger new tunnels (Figure 3c). In particular, switch 12
and 13 request tunnel propagation to the east, since without a
tunnel from there it is not possible to close their tunnels on
the north ports (see token propagation requirements in Fig.1).
However, switch 13 is on the boundary of the fault-region,
therefore its request is dropped (equivalent to an incoming
token in Figure 3d). Similarly, tunnel opening requests from
switch 10 (affecting both scroll-up and scroll-down links) will
be dropped. Finally, only one request from 5 is served (Figure
3d). Always in Figure 3d, switch 4 is showed to be further
propagating tunnels at its inputs.

(a) Detection of a link
fault

(b) Token requests trig-
gered

(c) Tunnel Creation

(d) Token request at
boundaries

(e) Token propagation on
the link.

(f) Tunnel propagation

Figure 3. Tunneling Mechanism at Work.

In Figure 3e the normal OSRLite token propagation occurs.
In particular, switches 8 and 9 have completed the processing
latency of their input tokens and can fire this token on the
output ports. Interestingly, we can see that the tunnel request
from switch 4 is not served because a token is concurrently
fired by switch 8 on the connecting link. After 3 cycles, the
tunnel between 4 and 5 will be closed (it would be logically
in Figure 3g, not shown). It is exactly at the point in time
illustrated by Figure 3e that the link under test is actually put
offline.

Finally, in Figure 3f tokens coming out from switch out-
put ports have closed the associated tunnels. Here, token
propagation becomes apparent, since the initial tunnels have
disappeared by crossing the fault region boundary, and a
derived tunnel is still open awaiting to disappear in the same
way.

In order for the reconfiguration process to complete, a
few scroll-down links are left (in black in figure), whose
reconfiguration will be triggered by switch 5. This latter in
fact has all conditions to fire a token to the west, which will
in turn cause the token propagation across the remaining links.

IV. EXPERIMENTAL EVALUATION

We evaluate our mechanism using an RTL-equivalent Sys-
temC model of the xpipesLite NoC architecture [23].

A. Reconfiguration Latency

We evaluate the reconfiguration latency in an unloaded 4×4
mesh network. We perform the analysis for every 1-link failure
and for three different mechanisms. The first one represents
the native OSRLite mechanism. The second and third ones
represent our mechanism (Tunneled OSR, TOSR) with and
without its limitation to the fault-region.

As Fig.4) shows, the baseline OSRLite mechanism (in red)
provides a uniform reconfiguration delay, as OSR involves a
global reconfiguration process, involving the whole network
and starting from the root node. We did not consider possi-
ble signaling needs with the global controller, nor the new
routing function computation of this latter, but only the pure
reconfiguration latency. In blue, we show TOSR without the
fault-region optimization. As we see, reconfiguration latency

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 809

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

F2
1

F2
2

F2
3

FAULT ID

Figure 4. Reconfiguration Latency in a 4×4 mesh: baseline OSRLite(red),
Global TOSR (Blue) and optimized Local TOSR (yellow).

Figure 5. Average reconfiguration Latency in an 8×8 2D mesh.

is always better than the baseline solution with OSRLite. This
reduction is achieved as the tunnel approach speeds up the
reconfiguration process during both the scroll-up or scroll-
down phase. As we can observe, TOSR triggered at failures
in the center of the mesh achieve lower reconfiguration times
as the scroll-up and scroll-down phases are balanced and take
the same time. Contrary to this, at the corner of the mesh (link
F0) TOSR highly depends on the scroll-down phase which is
slower as it needs to wait for the token given by the scroll-up
phase to be created with tunnel mechanism.

Finally in yellow, the figure shows the TOSR reconfigura-
tion when the fault-region optimization is included. In our case,
the defined region includes from 5 up to 8 routers. As we can
see, Local TOSR achieves faster reconfiguration times as the
reconfiguration domain is much smaller. The reconfiguration
dynamics are also changed, since faults in the middle of the
NoC cause the largest fault-regions to be reconfigured.

Figure5) shows the average reconfiguration latency for
an 8×8 mesh network. We add available results for BLINC
and ARIADNE for this network size (extracted from their
publications). Only for (Local) TOSR we consider the worst
case latency. Clearly, TSOR achieves about 35% of speedup
with respect to the closest competitor, that is BLINC, under
the same operating conditions. While BLINC’s latency grows
weakly with the network size (15% from 8x8 to 10x10), TSOR
worst case latency stays constant because the maximum fault
bounding region (8 switches) has already showed up in an 8x8
network. Therefore, our gap with BLINC widens.

B. Area Overhead

MECHANISM 8x8 2D mesh 16x16 2D mesh
TOSR 464 464
BLINC 648 2368

Table I. AREA OVERHEAD IN TERMS OF REGISTER BITS.

We express area overhead in terms of number of additional
register bits that each mechanism under test requires with re-
spect to the baseline architecture not capable of reconfiguration.
Considering the worst case of TOSR, as shown in Table I), it
scales better then other solutions proposed because of the fixed
maximum dimension the region to be reconfigured can reach.
We have to consider that, as shown in [21], in the worst case

Figure 6. Impact on upper-network considering a medium injection rate.

a router can be involved in 16 faults, so it needs 26 LBDR
bits for each fault. This creates an overhead of 416 bits per
switch. Additionally, to support the TOSR optimization with
the token propagation localized in a region around the failure,
we need 4 extra Connectivity bits to inform a router that it’s on
the boundary of a reconfiguration region, so it has to absorb
the token request during the propagation. Also in this case
we have to consider that a switch can be part of different
region boundaries, depending on the position of the fault that
is occurring. In the worst case, we calculate that a switch can
be part of 12 boundaries, giving 48 additional bits. Already in
an 8x8 mesh, this result outperforms BLINC’s one, essentially
due to its preference list to provide good-enough emergency
paths.

As the table shows with a 16×16 mesh, while TOSR stays
constant, BLINC’s requirements skyrocket, due to the longer
children sets and preference list, clearly denoting a lack of
scalability of this latter scheme.

C. Impact on Packets Latency

BLINC is too conservative and does not exploit the routing
capabilities of SR since multiple valid paths are possible from
any pair of source-destination nodes. This negative impact can
be alleviated in BLINC by using the expensive preference list
table. In contrast, with our mechanism, we manage to use
minimal paths for every source-destination pair even when
the failure is present. This is achieved since we rely on
already computed entries for all the one-link failure cases.
Non-minimal paths are taken only when bypassing the failed
link, thus being minimal for the topology with the failure.
As a result, our mechanism yields a steady state with better-
performing routes. Fig. 6 in [4] quantifies this penalizing gap
for BLINC as an increase by 3% of the average hop count
with respect to optimal routes, the same optimal routes that
this work provides.

Next, we then explore the impact of tunnel opening on the
two coupled networks during the reconfiguration transient. We
consider two 4 × 4 mesh NoCs. The injectors are synthetic
testbenches set to generate uniform random traffic.

The first experiment is set considering a medium injecting
rate on the network under reconfiguration, with 0% injection
rate on the escape network. A reconfiguration is triggered after
45 cycles of the simulation, when the link between switches
8 and 9 needs to be put offline. Fig.6 shows instantaneous
maximum packet latency over time. Our approach gives im-
provements from 1% to 11% with respect to OSRLite, and an
average improvement of 6%, which means the escape network
is providing the expected improvements in performance pre-
dictability during reconfiguration. It is worth recalling that
the OSRLite variant used here is the one which yields quasi-
transparent reconfiguration from [24], hence it is not the native
OSRLite, which would have been trivially outperformed by
40%.

810 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Figure 7. Impact on escape network traffic considering a 40% injection rate.

The counterpart of opening tunnels is a perturbation on the
traffic in the escape network. We test this effect considering
two different setups: first considering 5% of the traffic from
the masters injected into the escape network, then 40% . In the
former case, the effect of having tunnels opened causes less
than 9% worst-case increase of the maximum latency, while
in the latter case, due to a bigger amount of traffic in the
network, the latency is worsened by about 45% in the worst
case (Fig.7). But being the reconfiguration mechanism very
fast, this perturbation dies out quickly (roughly 30 cycles).

D. Coverage

BLINC states that is able to support any failure combi-
nation whenever every link failure is localized on a different
segment. This is a property of the SR algorithm since it keeps
connectivity and deadlock-free conditions by constructions.
Indeed, a failed link represents a turn restriction located inside
the segment. Therefore, BLINC achieves 100% coverage for
1-link failure cases. For link failure combinations with two
failed links in the same segment BLINC relies on an external
and conservative solution that will recompute the algorithm
again. Therefore, BLINC does not achieve (by its own) 100%
coverage for 2-link failures and beyond. Our mechanism
achieves the same coverage of BLINC since it also relies on
the segment-based approach. That is, we achieve 100% 1-link
failure coverage. For 2-link failures the coverage is 98.8% for
an 8x8 mesh, which grows to 99.3 for a 10x10 mesh. The
proof is in [21], since it relies on a similar table of encoded
1-link faults, but implemented in software. As stated in that
work, failure combinations are compatible in the sense that
the correct actions to perform in the network is the addition of
each individual action to handle each link failure.

V. CONCLUSIONS

In this paper, we show that the synergistic exploitation of
multiple physical networks can lead to a fast, low-impact and
scalable dynamic reconfiguration of the routing function at
runtime. We bound the area affected by a fault, and devise a
mechanism for the fast yet controlled switching of the routing
function to the new epoch in it. We rely on concurrent token
and tunnel propagation, thus quickly moving the boundaries
between new-old traffic and old-new traffic respectively. We
show minimum perturbation of the escape NoC, and only for
an overly short amount of time with respect the reconfiguration
latencies of competing approaches. The mechanism can finally
scale to a large number of cores, since the bounding area of
faults stays the same.

ACKNOWLEDGEMENT

This research has been supported by the 7th Framework
Program of the EU through the vIrtical Project, GA 288574.

REFERENCES

[1] Young-Jin Yoon, Nicola Concer, Michele Petracca, Luca P. Carloni:
”Virtual Channels and Multiple Physical Networks: Two Alternatives to
Improve NoC Performance.” IEEE Trans. on CAD of Integrated Circuits
and Systems 32(12): 1906-1919 (2013)

[2] D.Fick, A.DeOrio, G.Chen, V.Bertacco, D.Sylvester, D.Blaauw: ”A
Highly Resilient Routing Algorithm for Fault-Tolerant NoCs.” Design
Automation and Test in Europe Conference, pp.21-26, 2009.

[3] S.Rodrigo et al.: ”Yield-oriented evaluation methodology of network-on-
chip routing implementations.” Int. Symp. on Systems-on-Chip, 2009.

[4] D.Lee, R.Parikh, V.Bertacco: ”Brisk and Limited-Impact NoC Routing
Reconfiguration.” DATE 2014.

[5] Alberto Ghiribaldi et al.: ”A complete self-testing and self-configuring
NoC infrastructure for cost-effective MPSoCs.” ACM Trans. Embedded
Comput. Syst. 12(4): 106 (2013).

[6] D.Wentzlaff et al.: ”On-Chip Interconnection Network Architecture of
the Tile Processor.” IEEE Micro, Vol.27, Issue 5, pp.15-31, 2007.

[7] R.Pang, T.M.Pinkston, J.Duato: ”The Double Scheme: Deadlock-Free
Dynamic Reconfiguration of Cut-Through Networks.” ICPP 2000.

[8] O.Lysne, J.M.Montanana, J.Flich, J.Duato, T.M.Pinkston, T.Skeie: ”An
Efficient and Deadlock-Free Network Routing Reconfiguration Protocol.”
IEEE Trans. on Computers, vol.57, issue 6, pp.762-779, 2008.

[9] D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and M.
Horowitz: ”Hardware Fault Containment in Scalable Shared- Memory
Multiprocessors.” Proc. 24th Ann. Int. Symp. Computer Architecture,
Computer Architecture News, vol. 25, pp. 73-84, 1997

[10] R. Casado, et al.: ”A Protocol for Deadlock-Free Dynamic Reconfig-
uration in High-Speed Local Area Networks.” IEEE Trans. Parallel and
Distributed Systems, 2001

[11] D. Avresky and N. Natchev, ”Dynamic Reconfiguration in Computer
Clusters with Irregular Topologies in the Presence of Multiple Node and
Link Failures.” IEEE Trans. Computers, vol. 54, no. 5, May 2005.

[12] D. Avresky and N. Natchev, ”Intelligent Dynamic Network Reconfig-
uration.” Proc. 21st Intl. Parallel and Distributed Processing Symp., pp.
1-9, 2007.

[13] E. Wachter, A. Erichsen, A. Amory, and F. Moraes, ”Topology-agnostic
fault-tolerant NoC routing method.” Proc. 21st Intl. Parallel and Dis-
tributed Processing in Proc. DATE, 2013.

[14] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacc0, ”ARIADNE:
agnostic reconfiguration in a disconnected network environment.” in Proc.
PACT, 2011.

[15] A. DeOrio et al., ”A reliable routing architecture and algorithm for
NoCs,” IEEE Trans. CAD, vol. 31, no. 5, 2012.

[16] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, ”Immunet: a cheap
and robust fault-tolerant packet routing mechanism,” in Proc. ISCA, 2004.

[17] S. Rodrigo et al., ”Addressing manufacturing challenges with costeffi-
cient fault tolerant routing,” in Proc. NOCS, 2010.

[18] M. Ebrahimi, et al., ”MD: minimal path-based fault-tolerant routing in
on-chip networks,” in Proc. ASPDAC, 2013.

[19] Z. Zhang, A. Greiner, and S. Taktak, ”A reconfigurable routing algo-
rithm for a fault-tolerant 2D-mesh network-on-chip,” in Proc. DAC, 2008.

[20] F. Trivino, D. Bertozzi, and J. Flich, ”A fast algorithm for runtime
reconfiguration to maximize the lifetime of nanoscale NoCs,” in Proc.
INA-OCMC, 2013

[21] F. Trivino, et al., ”A complete self-testing and self-configuring NoC
infrastructure for cost-effective MPSoCs,”, ACM Transactions on Em-
bedded Computing Systems (TECS), Volume 12 Issue 4, June 2013.

[22] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Cama-
cho, F. Silla, J. Duato, ”Addressing Manufacturing Challenges with
Cost-Efficient Fault Tolerant Routing”, Proceedings of the 2010 Fourth
ACM/IEEE International Symposium on Networks-on-Chip.

[23] S. Stergiou, F. Angiolini, S. Carta, L.Raffo, D. Bertozzi, G. De Micheli.
”xpipes Lite: A Synthesis Oriented Design Library For Networks on
Chips”, DATE 2005: 1188-1193.

[24] Marco Balboni, Francisco Triviño, José Flich, Davide Bertozzi. ”Opti-
mizing the Overhead for Network-on-Chip Routing Reconfiguration in
Massively Parallel Multi-Core Platforms”, Int. SoC Symposium, 2013.

[25] A. Strano, D. Bertozzi, et al., ”OSR-Lite: Fast and deadlock-free
NoC reconfiguration framework”, International Conference on
Embedded Computer Systems (SAMOS), July 2012.

[26] F. Gilabert, M.E. Gomez, S. Medardoni, D. Bertozzi. ”Improved utiliza-
tion of NoC channel bandwidth by switch replication for cost-effective
multi-processor systems-on-chip”, pp.165-172, NOCS 2010.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 811

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

