
Hardware Trojan Detection for Gate-level ICs Using
Signal Correlation Based Clustering

Burçin Çakır
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

Email: bcakir@princeton.edu

Sharad Malik
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

Email: sharad@princeton.edu

Abstract—Malicious tampering of the internal circuits of ICs
can lead to detrimental results. Insertion of Trojan circuits may
change system behavior, cause chip failure or send information
to a third party. This paper presents an information-theoretic
approach for Trojan detection. It estimates the statistical cor-
relation between the signals in a design, and explores how this
estimation can be used in a clustering algorithm to detect the
Trojan logic. Compared with the other algorithms, our tool does
not require extensive logic analysis. We neither need the circuit
to be brought to the triggering state, nor the effect of the Trojan
payload to be propagated and observed at the output. Instead we
leverage already available simulation data in this information-
theoretic approach. We conducted experiments on the TrustHub
benchmarks to validate the practical efficacy of this approach.
The results show that our tool can detect Trojan logic with up
to 100% coverage with low false positive rates.

I. INTRODUCTION

The development and supply chain of Integrated Circuits
(ICs) is increasingly being spread globally to lower manufac-
turing costs. Outsourcing of the manufacturing process makes
the controlling of the design cycle impossible, while making
it vulnerable to malicious modifications. This situation raises
serious concerns about the integrity and security of ICs.

The part of the circuit which alters the intended circuit
behavior is often referred to as a hardware Trojan. Trojans,
by definition, have a stealthy nature, i.e., they are hard to
detect using conventional pre-silicon verification and post-
manufacture tests. Further, they are small in size and occupy
only a small fraction of the circuit. They can be inserted
without changing the physical characteristics of the circuit like
circuit area, die size or pin count. Trojans generally behave
like a monitor in the chip which waits for certain events
or a sequence of events to trigger the malicious circuitry.
Although they stay dormant for most of the circuit operation,
they can eventually cause the failure of the device, change
the system behavior or leak confidential information. The size
and complexity of modern ICs make their exhaustive testing
infeasible, and limits the controllability and observability of
circuit gates, while making it easier for an adversary to hide
the malicious logic using the gates that are not associated
with highly controllable or highly observable parts of the chip.
Therefore, detection of Trojans has risen as a concern for
possible threats to military systems, space facilities, financial
infrastructure and medical devices.

This work was supported in part by C-FAR, one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA.

Previous work in the area explored side-channel analysis as
a way for IC authentication and Trojan detection. Several new
techniques have been suggested to extract IC signatures based
on non-functional characteristics such as delay and power
in [2]–[6]. In [6], the authors propose a successful model
to de-noise collected power signals and build a side-channel
fingerprint for a family of ICs. However, due to degraded
signal-to-noise ratio, the accuracy of these approaches reduces
significantly with decreasing Trojan size and increasing pro-
cess variation [7].

Logic verification, on the other hand, is independent of pro-
cess variations. Extensive logical testing can detect very small
Trojans even in multi-million gate circuits. However, given the
large scale of the problem, it becomes almost impossible to
exhaustively test the whole circuit or find the input condition
that triggers the Trojan [8]. On-chip test structures like scan-
chains or Built In Self Test (BIST) are widely used to reduce
the testing time and detect chip failures and defects [1], [9]–
[11]. Yet, these tests still may be unable to put the circuit to the
triggering state. The test patterns are usually generated based
on the controllability and observability of gates at the outputs.
Hence, a Trojan logic may not be found if it is not activated,
or even if the tests activate it and the malicious circuitry does
not change the state of the circuit or the expected behavior of
the outputs, an information leaking circuit for example.

In [12], a logic based analysis is presented. They propose a
metric calculation to identify nearly unused logic in the design
by sampling the corresponding truth table. The success of their
method is sensitive to the number of sampled rows in the truth
table and this brings about a trade-off between practicality and
the accuracy. As the authors mention in the paper, compared
to other techniques, this tool also has a potential failure on
detection for distributed Trojans where the trigger condition is
stretched over a chain of logic.

In this paper we propose a novel approach to detect Trojans
employing a statistical-correlation-based clustering. Using the
simulation data, we compute a correlation-based similarity
weight for the input-output pairs of each gate in the circuit.
We convert the gate-level design to a circuit graph, and weigh
each edge this similarity value. The triggering wire of a Trojan
is associated with gates with very low controllability, and the
payload of such a malicious logic, typically, appears as a gate
with a low observability value. Therefore, a correlation based
weighting is likely to help identify such gates as outliers of the
graph. To detect that, we apply a density-based clustering al-
gorithm and flag the outliers in the graph, which are then used

471978-3-9815370-4-8/DATE15/ c©2015 EDAA

to indicate Trojan logic in the circuit. Compared to traditional
logic-based verification, our approach does not require the
circuit to be pushed the actual triggering state. As long as there
is enough activity on the gate outputs, our method can capture
the statistical similarities between signal pairs. Experimental
results on TrustHub benchmarks [13], show that the proposed
technique has an accuracy of ∼ 0.01 false positive rate with
Trojan coverage up to 100%.

The rest of the paper is organized as follows. Section II
provides background material on the classification of hardware
Trojans, and discusses the Trojan detection techniques and
challenges. In Section III, the preliminary material about the
proposed clustering method is introduced. Section IV presents
the Trojan detection algorithm and simulation analysis flow.
Section V illustrates the experimental results on different
TrustHub benchmarks. In Section VI, the proposed approach
is discussed in comparison with other logic testing based
Trojan detection techniques. Finally, Section VII provides
some concluding remarks.

II. PROPOSED APPROACH

We assume that the hardware design that we are given is in
the form of soft intellectual property (IP). It is either extracted
from the actual physical chip, as a netlist, provided as the be-
havioral description written in a hardware description language
(HDL) or the gatelist obtained by logic synthesis of the source
code. Our tool works on the gate-level representation of the
design, and applies to the cases where the Trojan is visible in
the netlist/gatelist.

Overview

The main insight behind the simulation-based Trojan de-
tection approach is that Trojan logic has weak statistical
correlation with the rest of the circuit. Functionally related
signals merge at certain nodes inside the circuit before propa-
gating the data to the next block. They share the same fan-in
cone, exchange information and finalize the computation at
reconvergence points. Finding the regions, where the pairwise
correlation of signals at the inputs and the output of a gate are
low helps us find statistically uncorrelated group of signals
as this indicates some level of functional divergence. The
similarity measure is calculated by taking the cross-correlation
of the input-output pairs of each gate, and computing the
energy of the resulting signal. We use a graph representation
of circuits. In a circuit graph, the outputs/inputs of each
gate/latch and all primary I/O ports are represented by a
vertex. An edge exists if and only if one of the vertices of
the edge is an output and the other one is an input of the
same gate/latch. The similarity measures that we compute are
used to assign a weight to each edge in this graph. Fig. 2(a)
shows a small circuit where the edges associated with the
Trojan backdoor circuit are weighted. Here, we do not use a
directed graph, since the similarity that we are trying to capture
is symmetric. The reason why this computation captures the
functional relation between the signals is based on information
theory and will be explained in detail in Step 1.

Once the above setup is complete, we use the weights that
we assigned to the edges of the graph to obtain a local connec-
tivity distance and apply a density-based clustering algorithm

called Ordering Points To Identify the Clustering Structure
(OPTICS) [14] to reveal the clusters of functionally related
structures. OPTICS is a a widely used clustering technique to
compensate the shortcomings of many clustering methods on
detecting clusters with varying densities. It has been success-
fully used in applications such as protein sequencing and data
mining. The algorithm outputs a special kind of dendrogram,
called a reachability plot, which we use to detect the clusters
and mark some of the nodes as Trojans. Additional explanation
on OPTICS is provided in the Appendix, and it is suggested
that reader go through the provided summary to understand
the details of our algorithm.

Step 1 - Functional Simulation based Statistical Correlation

The initial setup requires the computation of edge weights
on the circuit graph. In order to compute the weights, we
use functional tests and generate digital stimuli on different
regions of the circuit with high coverage. We believe that
test sets developed during design verification of a design
should suffice for this step. The target, here, is to excite as
many nodes as possible to estimate the statistical correlation
between neighbouring nodes on the circuit graph. The wave-
forms obtained from logical tests take only binary values and
transition at different times during the simulation. An output
of a gate will changes its value only if at least one of its
inputs switches. Therefore, the transition count depends on
the inputs of the gate. However, this dependency is not even
among all input-output pairs. Whichever input has statistically
higher correlation to the output it will have more control on the
switching behavior. Therefore the weight of the edges on the
graph representation of the circuit will have different values.
Recognizing this relation, we developed a model to capture
the similarity between each adjacent pair, i.e. nodes connected
by an edge on the graph. We obtain a new signal from the
waveform of each node such that for every transition in the
waveform, a unit pulse is added to the corresponding point in
the new signal. In this way, we model the transition-triggering
signal of each waveform. If an input of a gate has higher
control on its output compared to the other inputs, then this
input-output pair has higher correlation than the others. Hence,
if their Fourier Transform is taken, we see that they share
many common frequency components, which we can use as a
similarity measure.

i2
i1

w1 = E(f�h)

w2 = E(g�h)

o1

. . .
f =< 0, 0, 0, 0, 1, 1, 0, >

waveform : i1

. . .
g =< 1, 1, 1, 1, 1, 1, 1, >

waveform : i2

. . .
h =< 1, 1, 1, 1, 0, 0, 1, >

waveform : o1

Fig. 1. Weight calculation for the input-output pairs of an OR gate from the
simulation waveforms by calculating the energy of the cross-correlation signal

In order to compute such a metric, we take the cross-
correlation of all adjacent signal pairs, which, by definition,
eliminates the uncommon frequency factors [15] and tells us
how similar the two waveforms are. Then, we calculate the
energy of the resulting signal as follows.

Ex =
N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X[k]|2 =
1

N

N−1∑
k=0

|Ψx[k]| (1)

472 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

where x[n] is the signal obtained from the cross correlation of
the signals g and h as (g � h)[n] =

∑∞
m=−∞ g[m]h[m + n].

|X(k)| denotes the N -point Discrete Fourier Transform (DFT)
of the sequence x[n]. The quantity, |X[k]|2, is an estimation for
the energy spectral density (ESD) of x and is conventionally
given the symbol Ψ. Parseval’s identity allows us to write the
right hand side of the above equality by summing the squared
magnitude of its transform [15]. The ESD of a signal describes
how the energy of x is distributed at the various frequencies.
It can be shown that if x is a real-valued signal, the ESD is
also real, and non-negative.

As given in (1), the energy of a signal is equal to the sum
of its distributed energy over different frequencies. Therefore,
the energy of the cross-correlation can quantify how much
common frequency components the two signals share. Due to
Parseval’s equality (1), we do not actually need to take the
Discrete-Time Fourier Transform, and can do the calculation
in the time domain. However, since, we work with discrete
signals, we require as many samples as possible, meaning
high switching activity in the circuit in order to get a good
approximation. Fig. 1 illustrates how to compute the similarity
weights from simulation waveforms.

This simulation-based similarity model is thought as a way
to capture the actual mathematical correlation between input-
output pairs in the netlist written in terms of the primary inputs.
This is why we expect higher similarities at reconvergence
points and between functionally related nodes, and can also
detect weakly correlated signals in the circuit.

Step 2 - Weight Normalization & Clustering

The calculations that we do so far gives us a similarity
measure between neighboring nodes based on pure simula-
tion analysis. For the clustering algorithm that we will use,
however, the structural connectivity of the graph is needed to
be considered to come up with an accurate clustering, since
it provides important information to identify the hubs and
outliers in the graph. To take into account the effect of the
graph structure, in [16], the notion of structural similarity is
introduced. It is defined as the local connectivity density of two
adjacent nodes in a weighted graph and formalized as follows:

σ(u, v) =

∑
xεΓ(u)∩Γ(v)

w(u, x) · w(v, x)
√ ∑

xεΓ(u)

w2(u, x)
√ ∑

xεΓ(v)

w2(v, x)
(2)

where u ∈ V and v ∈ V are adjacent vertices connected with
the edge e ∈ E and weight w(u, v) ∈ W in the weighted
graph G = (V,E,W). The weight w(u, u) is defined as 1.
Γ(u) denotes the neighborhood of the node u including u and
its all adjacent vertices, and formally stated as Γ(u) = {v ∈
V |{u, v} ∈ E} ∪ {u}.

After we obtain the σ values for every edge, we define
the distance between each vertex u and its adjacent vertices
x ∈ Γ(u)−{u} to be inversely proportional to the correspond-
ing similarity rate, σ(u, x). The distance between non-adjacent
vertices u and v, s.t. v /∈ Γ(u) but u is connected to v through
multiple edges, v � u, is defined as the sum of the distances
on the shortest path which connects them. Now, we are ready
to run OPTICS and get the reachability plots.

T

i6
i5
i4
i3
i2
i1

F
payload

s0
Trojan trigger

w3

w1

w2

Trojan value

(a) Simple Trojan payload with weighted
edges

y1

s0

w5

x0
w1

T w2

F

s1

w6

y0
w3

w4

(b) Distributed Trojan

Fig. 2. Examples of gate-level hardware Trojan templates with T denoting
the Trojan value to be propagated, with the control wires s0 & s1

Step 3 - Trojan Detection based on Reachability Plots

Trojans show some kind of functional divergence from the
rest of the circuit. The reachability plots generated by OPTICS
shows this weak relation either by pushing them with high
reachability-distances to the borders of the clusters, i.e. the
Gaussian bumps on the plot, where the reachability-distance as
explained in the Appendix, measures the proximity of a node to
dense regions in the graph; or explicitly showing the malicious
logic as a different cluster in case of a large Trojan. Two types
of reachability plots observed in conducted experiments are
illustrated in Fig. 3, and discussed in more detail in Section
III.

Typically, a Trojan backdoor consists of a good and a
malicious part fed into some logic semantically equal to a
multiplexer [12] which, when enabled, propagates the load of
the Trojan or activates an invisible circuitry which may just, for
example, increase the power consumption of the circuit without
changing any of the outputs. The triggering condition of such
an attack should happen very rarely, otherwise it is likely
detected during design validation. Therefore, these wires are
associated with nodes which have low enough controllability to
serve as a backdoor. Also, if the Trojan is intended to change
the behavior of the circuit, then, the payload has also to be
chosen carefully to make sure that it has low observability
value. These conditions imply that these wires, even if they
have some activity, have a certain statistical distance from the
rest of the circuit, and likely to appear as noise in the graph.
Here, by noise, we refer to the points in the graph which look
like outliers in a density-based clustering algorithm. Hence, it
is reasonable to expect these nodes at the end of the ordered
list with high reachability-distances. In order to detect such
peak points, we use an outlier detection technique proposed in
[17] based on the definitions of OPTICS.

lof(p) =

∑
oεNcd(p)

lrd(o)

|Ncd(p)| /lrd(p) (3)

where lrd(p), the local reachability density, is the average
reachability-distance of vertex p from its neighbors which are
at most its core-distance away. The set of neighbors of p
which are in its core-distance range are denoted by Ncd(p).
As explained in the Appendix, the core-distance of a node is
computed according to the MinPts parameter of the algorithm.
It denotes the minimum radius for a node to have at least
MinPts in its neighborhood. Outliers lie between relatively
denser regions of a graph and show some local deviation
from their neighbors [17]. The idea behind lof is comparing

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 473

the local density of a vertex with respect to its neighbors,
finding the regions of similar density and scoring the vertices
which have lower densities than their neighbors for anomaly
detection. After we calculate the lof values, for each node we
derive a rough probability value for being an outlier or not by
fitting a Gaussian model to the lof scores as proposed in [18].

Given that we have enough simulation data in practice,
our method is quite effective finding suspicious nodes, since it
estimates real statistical distributions of the circuit. Normally,
it is difficult to activate a Trojan, but we can detect suspicious
stealthy logic even if the Trojan is not fully activated, or
is activated but the resulting effect cannot be propagated to
the output due to low observable gate selection for payload.
Sometimes, although the Trojan is triggered during regular
logic testing, it may go undetected, because it does not directly
change any of the ports in the circuit, but has some invisible
action (such as leaking information through some side channel
or scan chain outputs). In all cases, the reachability plots reflect
the Trojan logic as a rise in reachability-distance along the
triggering path. Further, if the malicious logic inserted by the
adversary is larger than a couple of gates, it can even be seen as
a separate cluster in the reachability plot. Fig. 3 (a & b) show
the examples of such reachability plots and will be discussed
in Section III.

Fig. 2(a) shows a simple template for a Trojan payload with
correlation based weights on the edges. Here, the weights of
the input-output pairs of the payload, F , are denoted by w1,
w2 and w3. We expect w1 � w3 and w1 � w2 due to the
low activation probability of the Trojan. Therefore, the Trojan
related logic is driven apart from F , and we compute higher
lof values for these nodes. Together with the triggering wires,
our tool can also help to identify the payloads of the Trojans,
since these nodes are usually wires with low observability
values. Although this is not always the case, most of the
time the adversary will pick low observable nodes in order
to decrease the detection probability during functional tests,
and indirectly, keep them weakly connected to the rest of the
circuit.

Another type of Trojan template is illustrated in Fig. 2(b)
where things get a bit more interesting. Instead of one wire to
trigger the malicious logic, here, we have distributed control
on the propagation of the Trojan value T to the payload F . The
Trojan gets activated at a specific state of the control inputs s0
and s1. Lets take the worst case where although the triggering
combination is rare, the switching probability of s0 and s1 is
not low; meaning they do not have low correlation with the
other nodes and their weights w5 and w6 are high. In such
a case, detecting the control wires based on stealthiness will
be more difficult. However, the low probability of carrying a
Trojan value to the payload is still hidden in the statistics of the
graph and our tool can detect it. If w1 > w2, then the Trojan
value has already a relatively higher distance to the payload.
As the value of w2 gets larger; due to the stealthy nature of the
Trojan, w3 gains almost the same amount of increase, and the
structural similarity between y1 and F decreases. Therefore,
overall, the distance between T and F cannot get shortened.
The adjustment between the weights can be thought as similar
to the mechanism of a spring of which the middle point is
y1. Depending on the weight distribution it moves either right
or left. As long as there is some activity in the nodes, it

cannot stay in the middle due to the nature of Trojans as
discussed above. It bridges two nodes T and F with unequal
distances and behaves like an outlier between two clusters.
Hence, our algorithm can identify such nodes easily since they
have lof values larger than 1. This is one of the strengths of
our algorithm, because we neither require the circuit to be
brought to the triggering state nor need the Trojan effect to
be propagated to the output to be observed. Some activity to
estimate the pairwise correlation is all we need.

III. EXPERIMENTAL RESULTS

Our technique was evaluated on the eight different
TrustHub groups of verilog circuits. In order to test out tool
on different designs, we picked one circuit from each of
the groups, and used Synopsys Design Compiler to synthe-
size/translate them to IBM/ARM cell library for 45nm SOI
process. In our circuit graphs, we replaced the buffer and
inverters with one vertex since they have the exact same signals
according to our model. We also ignored the clock and reset
signals, since they connect the whole circuit and makes the
clustering more noisy.

In order to generate the test patterns with high circuit
coverage, for the designs for which we do not have access
to the behavioral description, and the ones for which is not
easy to write functional tests manually, we used the Synopsys
TetraMAX ATPG tool to generate tests for manufacturing
faults. For these circuits, we did not completely remove the
scan-chain, instead treated them as regular circuit gates/latches.
Although this increases the probability of bringing a circuit to a
state which is supposed to happen on very rare conditions, even
with this added controllability and observability our approach
was able to separate the Trojan during clustering.

(a) Reachability plot for RS232-800
showing the receiver (REC) and the
transmitter (TX) modules of the uart
circuit with Trojan (TJ) logic pushed
to the border of the REC cluster

(b) Reachability plot for AES-1800
with the Trojan (TJ) logic appearing
as a separate cluster at the end of the
ordered list

Fig. 3. Types of reachability plots observed with TrustHub Trojan benchmarks

Brief information about the benchmarks used is provided
in Table I. AES-1800 is a cryptographic IP core which
implements an AES cipher. Its Trojan payload is a shift
register which continuously rotates and increases the power
consumption after activation.

In our experiments, we were able to detect the Trojans
for all designs. Fig. 3 shows the typical types of reachability
plots that we observed. As seen in Fig. 3(b), the part of the
Trojan logic in AES-1800 benchmark which consumes power
after the Trojan gets activated is clearly separated from the
rest of the circuit as a different cluster where the trigger wires
appear on the borders, i.e. the begin and end, of the cluster
bump. Fig. 3(b) shows the clustering result of a UART circuit
(RS232-800), where we can distinguish the receiver (REC)
and transmitter (TX) parts easily. The Trojan logic in the
receiver part of RS232-800 consists of only a couple of gates,

474 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

TABLE I. RESULTS FOR TRUSTHUB BENCHMARKS

Design Information Trojan Detection
name gate/latch MinPts TPR(%) SPC(%) Notes
s15850-100 3478 50 61 99 Two comparators (distributed trigger). Enabled in functional mode. Leaks information through output port.
s35932-200 8107 10 27 99 A comparator over 16 wires, triggered only in functional mode. Changes the output of four gates.
s38417-100 8422 50 100 99 A comparator over 16 wires. While active, changes the value of an internal gate.
s38584-200 9548 50 99 98 Compares 8 wires to increases a counter. Leaks information when the counter is between 100 & 110.
AES-1800 164800 50 92 99 Gets activated after observing a predefined input plaintext. Increases the power consumption.
wb-conmax-200 20224 50 28 96 A state machine. Activated when a specific state is reached. Changes priority of the first wishbone master.
PIC16F84-100 1616 20 75 96 A counter that increases based on the executed instruction. Changes the program memory address.
RS232-800 205 5 80 94 A counter over 19 wires. On activation, manipulates one of the outputs in receiver circuit.
† As seen from TPR values, in each case, at least a quarter of the nodes of each Trojan have been identified.
Note that TPR: True positive ratio, Specificity: 1-False positive ratio, MinPts: Parameter to the OPTICS clustering algorithm

therefore, we do not see an explicit Gaussian bump. However,
the triggering logic is still pushed to the clustering boundary
with relatively higher reachability-distances as labelled on the
plot.

The sensitivity of the results is measured by the true
positive rate (TPR), i.e. the number of Trojan nodes correctly
detected as a percentage of the total number of Trojan gates.
Note that in each case, even though we may not include every
node on the Trojan, we successfully identify the Trojan. The
exact nature of the Trojan can then be determined through code
review of the nodes flagged as suspicious. To demonstrate that
our tool whitelists most of the design successfully, we also
provide the specificity (SPC) results, which tells us the ratio
of the true negatives over the number of non-Trojan gates. (1-
SPC) is the fraction of gates that are falsely flagged as being
suspicious and will need to be ruled out in detailed review.
The Fig. 4 shows the TPR and SPC values of the RS232-
800 benchmark with varying MinPts. On the figure, the x axis
represents the threshold to label nodes as malicious according
to their outlier probabilities.

As explained in Appendix, the parameter ε is used to
make an n-dimensional sphere around each point and limit
the reachability computation to the data points in the sphere.
For our calculations, we take ε as infinity, since for OPTICS, ε
is usually needed for performance reasons, not clustering. We
also do not want the reachability-distance of any node to be
flagged as undefined, which is what OPTICS computes if the
number of points in the ε-neighborhood of a node is less than
MinPts. The choice of MinPts, however, cause some variations
on the accuracy. There is a range of acceptable values for the
MinPts parameter. As described in [14], it has a smoothing
effect on the clustering and hence, the reachability plot of
the objects. The lower MinPts means, the algorithm is likely
to build more clusters and add more noise to the specificity.
However, if MinPts is chosen to be a large number, then there
is also a possibility that it will start labelling a lot of nodes
as outliers. As MinPts, gets even larger, due to its smoothing
effect, there will be saturation in the clustering algorithm. The
reachability plot will be almost flat and nothing will look like
an outlier.

For a good clustering, the suggested way of choosing
MinPts may be to estimate the size of the smallest circuit
module/cluster in the dataset. However, in our case, it is
even enough to flag a small part of the Trojan. Our target
is to minimize the false positive ratio, i.e., (1-SPC), while
still detecting some part of the Trojan circuitry which we
always can due to rare statistics of the Trojan logic. Recall
that we are not really interested in maximizing TPR as long

Fig. 4. The TPR (sensitivity) and SPC (specificity) values for s35932-200
bechmark with different MinPts

as we can detect the Trojan, because the activation logic of
a Trojan can usually be detected during region specific code
review once we flag some part of it. Therefore, to demonstrate
the experimental results, for each benchmark, we choose the
MinPts values such that the the number of nodes flagged as
malicious is manageable (or a relatively small set) with the
chosen threshold for manual inspection. Table I shows the
true positive rate (TPR) and specificity (SPC) values of each
circuit for a fixed threshold 1. As seen in the table, even
with the highest threshold, our tool can flag the Trojans for
all benchmarks successfully with high SPC values, i.e. true
negative rates.

IV. CONCLUSION

There is a growing body of research on hardware security.
The ability to identify malicious insertions to trusted designs is
becoming increasingly important. In this paper, we address this
problem by proposing a simulation-based clustering technique
to detect hardware Trojans in gate-level circuits. We present a
methodology to find weakly-correlated nodes or functionally
isolated sections in the netlist. We convert the gate-level netlist
to a circuit graph, and use simulation data to weight each edge.
Then, by using a density-based clustering algorithm, we can
detect Trojan-related nodes, which appear as outliers in our
graph model, with low false positive rates. In this work, we did
not attempt to find all Trojan logic, but to flag a small subset of
gates to be reviewed which can help reduce the authentication
time. We believe that our tool will yield even better results
for real chips with with extensive test sets that provide higher
coverage and better statistics about the activity across the chip.

REFERENCES

[1] M. Banga and M. S. Hsiao, “A novel sustained vector technique for
the detection of hardware trojans.” in VLSI Design. IEEE, 2009, pp.
327–332.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 475

[2] J. Li and J. Lach, “At-speed delay characterization for ic authentication
and trojan horse detection.” in HOST, M. Tehranipoor and J. Plusquellic,
Eds. IEEE Computer Society, 2008, pp. 8–14.

[3] B. Gassend, “Physical random functions,” Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, 2003.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in ACM Conference on Computer and Communica-
tions Security. New York, NY, USA: ACM Press, 2002, pp. 148–160.

[5] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-
ference. New York, NY, USA: ACM Press, 2007, pp. 9–14.

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using ic fingerprinting.” in IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2007, pp. 296–310.

[7] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in Hardware-Oriented Security and Trust, 2008. HOST
2008. IEEE International Workshop on, June 2008, pp. 51–57.

[8] R. Chakraborty, S. Paul, and S. Bhunia, “On-demand transparency
for improving hardware trojan detectability,” in Hardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE International Workshop
on, June 2008, pp. 48–50.

[9] C. Fagot, O. Gascuel, P. Girard, and C. Landrault, “On calculating
efficient lfsr seeds for built-in self test,” in European Test Workshop
1999. Proceedings, May 1999, pp. 7–14.

[10] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. S. M. Hassan,
and J. Rajski, “Logic bist for large industrial designs: real issues and
case studies.” IEEE Computer Society, 1999, pp. 358–367.

[11] W.-T. Cheng, M. Sharma, T. Rinderknecht, L. Lai, and C. Hill,
“Signature based diagnosis for logic bist.” in ITC, S. Davidson and
A. Gattiker, Eds. IEEE, 2006, pp. 1–9.

[12] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: Identification
of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, New York, NY, USA, 2013.

[13] “Trusthub benchmarks,” accessed: Sep. 2014. [Online]. Available:
http://www.trust-hub.org/resources/benchmarks

[14] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in Proceedings of
the 1999 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’99. New York, NY, USA: ACM, 1999, pp. 49–60.

[15] M. Roberts, Fundamentals of signals and systems. Boston: McGraw-
Hill Higher Education, 2008.

[16] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu, “Shrink: A
structural clustering algorithm for detecting hierarchical communities in
networks,” in Proceedings of the 19th ACM International Conference
on Information and Knowledge Management, ser. CIKM ’10. New
York, NY, USA: ACM, 2010, pp. 219–228.

[17] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Optics-
of: Identifying local outliers,” in Proceedings of the Third European
Conference on Principles of Data Mining and Knowledge Discovery,
ser. PKDD ’99. London, UK, UK: Springer-Verlag, 1999, pp. 262–270.

[18] H. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Interpreting and
unifying outlier scores,” in Proceedings of the Eleventh SIAM Inter-
national Conference on Data Mining, SDM 2011, April 28-30, 2011,
Mesa, Arizona, USA, 2011, pp. 13–24.

[19] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Second International Conference on Knowledge Discovery and Data
Mining. AAAI Press, 1996, pp. 226–231.

APPENDIX

OPTICS - ORDERING POINTS TO IDENTIFY THE

CLUSTERING STRUCTURE

OPTICS is a hierarchical clustering algorithm for finding
density based clusters in a given dataset [14]. The algorithm is
based on the notions introduced in DBSCAN [19] where the
data space is divided based on global density parameters ε and
MinPts. DBSCAN forms clusters such that each one contains

Fig. 5. An example reachability plot (right) generated by OPTICS for a data
set (left) with hierarchical clusters of different sizes, densities and shapes [14]

at least MinPts number of points (dense regions) in a radius
of ε. The points which do not belong to any cluster are treated
as noise. OPTICS can be considered as a generalized version
of DBSCAN to compensate for its shortcomings in detecting
clusters with varying densities. It computes a walk through the
dataset based on the parameters ε and MinPts.

The density of an area is measured by the number of
objects in it. The basic idea behind density-based clustering
is dividing the dataset into clusters such that each has at least
a minimum number of points (MinPts) in a given radius ε. An
object which has at least MinPts objects in its ε-neighborhood,
Nε(p), is called a core object. The clusters are defined as
the maximal sets of density-connected objects. An object p
is said to be density connected to object q, if there is an
object o in the dataset such that both p and q are density-
reachable from o with respect to ε and MinPts. Object p
is density-reachable from an object q, if there is chain of
objects p1, ..., pn, pn = q such that pi+1 is directly density-
reachable from pi with respect to ε and MinPts. Object p is
defined as directly density-reachable from an object q with
respect to ε and MinPts, if q is a core object and p lies in
the ε-neighborhood of q. The DBSCAN algorithm proposed in
[19], provides a single flat density-based clustering. It is useful
in many cases, but not for datasets with varying densities or
hierarchical structures. OPTICS overcomes this problem by
producing an augmented order of the dataset to reflect the
clustering structure of the dataset at different clustering levels.
It adds two new notions to density-based approach explained
above: core-distance and reachability-distance. The core-
distance of an object p is the smallest distance ε′ ≤ ε such
that the neighborhood of p contains at least MinPts objects,
|Nε(p)| ≥ MinPts. The reachability-distance of an object p
w.r.t. o is defined as the maximum of the core-distance of o
and the actual distance between p and o [14]. If ε′ > ε, then the
core-distance of o and the reachability-distances of all objects
according to o are undefined.

OPTICS computes a walk on the dataset by calculating
the core-distances of all objects and ordering each one based
on the smallest reachability-distance with respect to an object
processed before it. Therefore, a low reachability-distance
means that the corresponding object is part of a dense region,
whereas a high reachability-distance indicates noise or start
of a new cluster. The ordered list of objects are represented
a bar plot called reachability-plot based on the reachability-
distances of each object. As illustrated in Fig. 5 of [14], the
dense regions consisting of objects which are likely to form a
cluster correspond to the areas, so called Gaussian bumps, in
the plot with low reachability-distances [14].

476 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

