
A Methodology for Automated Design of Embedded
Bit-flips Detectors in Post-Silicon Validation

Pouya Taatizadeh and Nicola Nicolici
Department of Electrical and Computer Engineering

McMaster University

Hamilton, Ontario L8S 4K1, Canada

Email: taatizp@mcmaster.ca and nicola@ece.mcmaster.ca

Abstract—Post-silicon validation is concerned with detecting
design errors that escape to silicon prototypes and need to be
fixed before committing to high-volume manufacturing. Electrical
errors are particularly difficult to catch during the pre-silicon
phase because of the insufficient accuracy of device models, which
is often traded-off against simulation time. This challenge is
further aggravated by the rising number of voltage domains,
especially if subtle errors are excited in unique electrical states.
Since these electrically-induced subtle errors most commonly
manifest in the logic domain as bit-flips, to the best of our
knowledge there are no systematic methods to design embedded
hardware monitors for generic logic blocks that can detect bit-
flips with low detection latency. Toward this goal, we propose
a methodology that relies on design assertions that are ranked
based on their potential to detect bit-flips and subsequently
mapped into user-constrained embedded hardware monitors with
the aim to increase bit-flip coverage estimate.

I. INTRODUCTION

Pre-silicon verification offers full controllability and ob-
servability, nonetheless it is known to be very slow when com-
pared to the real-time execution; for example, register-transfer
level (RTL) simulation is approx 5-6 orders of magnitude
slower than the silicon prototypes [1]. Considering the growing
size and complexity of modern designs, functional verification
might require tens and even hundreds of person-years and
the computing power of thousands of workstations [2]. When
combining the above constraints with tight project timelines,
it is common practice that designs are taped-out when the ver-
ification confidence is deemed sufficient. Nonetheless, before
committing to high-volume manufacturing, some verification
steps continue on the silicon prototypes, a task commonly
referred to as post-silicon validation [3].

Unlike manufacturing test, where the primary focus is to
detect fabrication defects, the purpose of post-silicon validation
is to check the design correctness rather than the manufacturing
process. A large number of validation tests, ranging from
random input sequences to end-user applications, such as
operating systems, computer games or scientific applications,
are applied to the silicon prototype and the behaviour is
monitored at runtime for unexpected events, such as system
crashes or incorrect results [4]. There are two main classes of
design errors (or bugs) that escape to silicon: functional and
electrical. Functional errors occur when the implementation
deviates from the specification, e.g. the condition for a state
transition was incorrectly described in the RTL code. Electrical
errors, on the other hand, are caused by subtle interactions
between the design and the electrical state of the system,
such as power supply noise or thermal effects. Due to the

approximations used in circuit-level modelling, as well as the
computational requirements needed to account in sufficient
detail for the device physics, it is difficult to discover all
the electrical errors before tape-out. Therefore, they are the
dominant type of design errors that escape to silicon. They
emerge at apparently random times under unique and difficult
to reproduce conditions; for instance, a sub-block of a circuit
might exhibit faulty behaviour only at a certain working
temperature due the variations in power supply. The most
common manifestation in the logic domain of these subtle
electrically-induced errors is in the form of bit-flips in flip-
flops [5]. The very purpose of post-silicon validation is to
detect and localize such errors in order to enable their fix
during the subsequent re-spin, rather than to compensate for
the erroneous behaviour through fault tolerant mechanisms. In
order to achieve this goal, it is critical to detect bit-flips within
a low number of clock cycles after their occurrence, since the
traces that are acquired on-chip are constrained in depth.

To reduce the error detection latency, which is the amount
of time it takes for an error, e.g., a bit-flip, to cause an
observable failure, system-level methods have been thoroughly
investigated [6]. The core idea from [6] is to detect errors
rapidly using time-redundant execution, which is diversified
and combined with fine-grained checking. The transformation
of validation tests is done in a systematic manner, nonetheless
the method has been architected for, and hence restricted to,
microprocessor-based designs. Another direction of research
for reducing detection latency, which is applicable to any
circuit block, is to rely on embedded hardware monitors for
run-time property checking. Assertions are extensively used to
detect and localize design bugs during pre-silicon verification
and, using hardware mapping [7], they have shown promise for
in-system validation by monitoring the synthesized properties
at run-time. In order to expand the number of assertions
that can be checked at run-time, time-multiplexing can be
employed [8]. Although using assertions in hardware enables
the real-time checking for any circuit block, as it is the case
during the pre-silicon phase, crafting these hardware assertions
based on design functionality, rather than its structure, makes
it difficult to assess how many of the potential bit-flips were
monitored during a validation session.

In this paper, we propose a methodology that identifies
assertions that are most suitable for improving bit-flip coverage
estimate in post-silicon validation. At the core of the proposed
methodology is a new algorithm that ranks a large pool of pre-
silicon assertions, based on their potential to detect bit-flips in
real-time, before committing them to hardware.

73978-3-9815370-4-8/DATE15/ c©2015 EDAA

II. METHODOLOGY

Before elaborating on the main steps in our methodology,
we first motivate the usage of assertions for bit-flip detection.

Due to the inherent lack of real-time observability in
circuit blocks that are deeply embedded into the design under
validation, depending on the workload, most bit-flips will
not manifest themselves at an observable output, despite the
fact that their presence proves an underlying problem with
the design. For example, some of our exploratory simulation
experiments have shown that for the s38417 circuit (from the
ISCAS89 benchmark set [9]) only one in ten of the injected
bit-flips were observable at the primary outputs. Moreover,
even if intermittent errors do propagate to outputs, unlike
simulation where signal values can be compared against a
pre-computed golden response, this is not feasible for post-
silicon validation. This is because of the huge volume of clock
cycles that are applied to silicon prototypes, which makes pre-
computation of golden responses impractical. Another concern
that arises when bit-flips are not detected soon after they occur
is because failing experiments, which are caused by bit-flips,
are not easily reproducible due to the electrical phenomena
that cause them (e.g., unique temperature and power supply
noise). Hence, on-chip embedded memories that collect a set
of trace signals [10–12] will record only a short recent history
that lead to the system failure. This recorded information is
critical during root-causing [13] and, to ensure that meaningful
information is analyzed, the error detection latency must not
exceed the depth of the trace buffers. Consequently, consid-
ering the goal of low error detection latency, using assertions
during post-silicon validation is motivated by the following:

• Assertions can perform property checking without
needing a golden response;

• Techniques, such as [7], have been proposed for
mapping assertions to hardware, thus making them
suitable candidates for post-silicon validation;

• Traditionally, assertions have been carefully crafted by
verification engineers before being deployed. Recent
researches, such as [14], have explored automatic
assertion generation.

Although the original goal of automated assertion gener-
ation is to aid pre-silicon verification, e.g., when the design
implementation changes iteratively or design blocks are reused
in different environments, we recognize the potential of these
discovered assertions for post-silicon validation. Therefore we
build our methodology (illustrated in Figure 1) by leveraging
the recent advancements in both assertion discovery [14] and
their hardware mapping [7]. A key observation is that bit-flips,
unlike functional errors, are related to the design netlist, which
facilitates both a quantification of the error space to be covered,
as well as a method that does not rely on design functionality
but rather on its structure. This, in turn, facilitates automation
in a manner that resembles common tasks in the electronic
design flow, such as, for example, logic synthesis, place and
route, or automatic test pattern generation. Nonetheless, to
make the methodology practically feasible, one has to account
for unique hardware constraints. Therefore, the huge number
of assertions that are mined during the pre-silicon phase need
to be consciously selected before mapping them to hardware,
which is an important novel aspect of our work.

A. Automatic Assertion Generation

As illustrated in Figure 1, the first step of our methodology
is to find assertions for a given design. Although one can
develop assertions manually, in order to enable an automated
methodology, it is necessary to rely on tools that can generate
non-obvious assertions automatically. In other words, asser-
tions must be extracted from the given design (either netlist
or RTL code) irrespective of circuit’s functionality. There are
two commonly used languages for writing assertions: Property
Specification Language (PSL) and System Verilog Assertion
(SVA). An example of an SVA assertion is shown below:
assr1: ((x == 1) && (y == 0) |=> ##2 (a == 0))

where a is the destination signal and x and y can be flip-flops,
primary inputs or internal nets.

Most of the available tools for automatic assertion genera-
tion are customizable, thus meaning that the user can choose
the destination flip-flops. Since the objective is to detect bit-
flips that occur in flip-flops, assertions that target flip-flops as
destination are deemed to be the ones important to be added
to the discovered assertion pool. For instance, in the assertion
statement above, if a is a flip-flop and a bit-flip occurs in the
circuit changing its value from 0 to 1, and all other conditions
hold, then this assertion would be violated. If the status of the
assertions is monitored during circuit’s operations, then this
bit-flip can be detected as soon as the assertion is fired. We
call this flip-flop as a potentially covered flip-flop if its affected
by a bit-flip. We will come back to the topic of coverage in
the following subsections.

B. Preparation Experiments

Our exploratory experiments (on the ISCAS89 circuits [9])
indicate that a design block with one thousand flip-flops can
easily have more than twenty thousand assertions. Mapping
all these assertions to hardware is obviously impractical due
to both area and wiring constraints. For this reason, assertions
need to be weighted and a subset of them must be selected as
candidate assertions for hardware mapping.

Since our objective is to improve the bit-flip coverage, as-
sertions that are more likely to violate after bit-flip occurrence
within a time window are preferred over the other ones. For
example, if, during a bit-flip injection experiment, assr i detects
12 different bit-flips and assr j detects 5 different bit-flips,
but 4 of these bit-flips that are detected by assr j are also
detected by assr i, then it would be logical to select assr i
as the candidate assertion and dismiss assr j. There are many
other factors, other than the violation count, that need to be
taken into account and they will be elaborated in section III.

After discovering assertions, preparation experiments are
carried out in order to determine the violation count for each
assertion when bit-flips are randomly, but uniformly, injected
in all the flip-flops. As shown in Figure 2, the following steps
are needed to perform the preparation experiments:

1) As it is common for bit-flip injection experiments,
flip-flops are instrumented with a 2-to-1 mux and
an inverter. The select signal of the mux determines
when and where the bit-flip should occur. Also, all
discovered assertions are added to the design.

2) For each simulation, we load the circuit in a random
state. We wait for a user-defined time (e.g., 10 clock

74 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 1. Tool flow for finding the most suitable assertions to embed on-chip under wire constraints with the aim of maximizing bit-flip coverage.

cycles), during which we monitor assertions to make
sure no violation happens due to the unlikely possi-
bility that the initial state is an unreachable state.

3) If there is no violation after that user-defined period,
we will target one flip-flop at a time and simu-
late the design using random input stimuli. In each
simulation, bit-flips are injected at n random times
and the circuit is simulated for a user-defined time
(e.g., 256 clock cycles) after error injection; during
this time assertions are monitored and their violation
is recorded, as illustrated in Figure 2. As a result,
if the circuit has m flip-flops, the total number of
simulations will be m× n.

4) Finally, by combining the violation reports for each
simulation, a m × n matrix is created. Each entry
in this Violation Matrix represents the total violation
count of an assertion for a specific flip-flop in all
simulations. For instance, entry (1,2) in Figure 2
means that assr1 has been violated 12 times for all
the errors injected in flip-flop 1.

It is important to note that the violation matrix captures the
error space of bit-flips that can be detected by the assertions
that were assessed during the preparation experiments. Due
to the randomness in the preparation experiments, which is
needed to account for the random occurrence of bit-flips on
silicon prototypes, an assertion that is fired for one bit-flip
injection might not be violated for another bit-flip injection

module
design(x,y,z)
input x;
input y;
output z;
always@()

.

.

i. Choose x random times to inject errors
ii. Inject errors in each single flop
iii. Run simulation and monitor assertions

flo
p

1
flo

p
2

flo
p

m

3
0

1
2

12
1

0
23

0
0

14
0

2
0

4
5

as
sr

 1

as
sr

 2

as
sr

 3

as
sr

 n

flop 1
flop 2

flop m-1
flop m

// assertion
always@()
assr1: assert property ((G0 == 1) |=> (G23 == 0));
assr2 : assert property .

.

endmodule

Fig. 2. Preparation Experiments illustrating steps towards creation of the
Violation Matrix. Each entry in this violation matrix shows the total number
of violations of the assertion (from the corresponding column) when the bit-
flip was injected in the respective flip-flop (identified by the row).

in the same flip-flop; this is due to the circuit being in a
different state and also the effect of the bit-flip might not
propagate to the assertion checker due to a different input
sequence. This is the reason for referring to the flip-flops from
the violation matrix, for which at least one assertion has fired
during the preparation experiments, as potentially covered. It
is up to the user of the methodology to exclude or include flip-
flops of interest for the bit-flip injection experiments. Hence,
the number of rows in the violation matrix is upper-bounded
by the number of flip-flops in the design and the number of
columns, i.e., the number of assertions to be considered by
the preparation experiments, can be bounded based on, for
example, the available computational resources. It should also
be noted that the quality of the violation matrix is central to
the accuracy of the assertion ranking algorithm. The more
simulations we run during the preparation experiments, the
more relevant is the information in the violation matrix.

C. Mapping Assertions to Hardware

Assertions have been developed for verification and are
composed of logic and temporal operators and regular ex-
pressions. These statements can be added to the source code
in pre-silicon verification to monitor errors using functional
simulators. However, for using them in post-silicon validation,
they must be mapped into hardware in order to do on-line
property checking. Both PSL and SVA assertions are not
synthesizable by default. However, as mentioned before, there
are tools such as [7] that can accomplish assertion synthesis.
Once assertions are discovered, assertion mapping can be done
simultaneously with the preparation experiments. This will
provide accurate area estimates for each assertion, which are
needed by the ranking algorithm, as it can be seen in Figure 1.

D. Assertion Ranking

Due to area and wiring constraints, adding all assertions
to hardware is not feasible. Therefore, the large pool of
available assertions must be assessed and only a subset of
them are chosen and marked as candidate assertions to be
embedded into hardware. In this work, by having established
a relationship between assertions and bit-flips that they might
detect, we focus on maximizing the number of flip-flops that
are potentially covered, as defined above, under user-provided
constraints. The ranking algorithm, which will be detailed in
section III, uses the violation matrix, area estimates, the wire
count report and user-specified constraints. Steps needed to
produce the violation matrix were explained in section II-B;
likewise, area estimates for assertions are obtained as explained
in section II-C. The wire count report can be directly extracted
from the assertions pool by counting the distinct number
of wires that comprise each assertion statement. Finally, the

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 75

constraints are provided by the user and, in our current
implementation, we provide the wire count as the constraint.

E. Confirmation Experiments

The last step in our methodology is to run confirmation
experiments, which are carried out using only the subset of
assertions selected by the ranking algorithm. The circuit is sim-
ulated using random stimuli during which one error is injected
at a time (injections will be uniformly distributed across all the
flip-flops throughout the entire duration of the confirmation
experiments) and the assertion violations are recorded. In the
ideal case, whenever a bit-flip is injected into an arbitrary flip-
flop, a violation will be detected if at least one of the selected
assertions was identified during the preparation experiments
to potentially cover the respective flip-flop. Considering the
random occurrence of bit-flips, it can happen that some bit-
flip injections will not cause a violation despite the fact that
more than one of the selected assertions was expected to fire.
Further, though it is less likely, it might also happen that some
of the selected assertions, that were not identified during the
preparation experiments to be related to a particular flip-flop,
will fire during the confirmation experiments when a bit-flip
is injected in the respective flip-flop.

The ratio between the number of bit-flips detected by the
confirmation experiments and the total number of bit-flips
injected during the confirmation experiments is defined as
the bit-flip coverage estimate and it can provide important
feedback to different steps of the proposed methodology. For
example, the original pool of assertions might need to be ex-
panded if the confirmation experiments indicate that, for some
flip-flops, no bit-flips were detected; it is also possible that
an insufficient number of preparation experiments have been
carried out, and the confirmation experiments will indicate that
the quality of the violation matrix needs to be improved. In
addition, this coverage estimate can also serve as a proof of due
diligence when the subset of the selected assertions was used
on the silicon prototype and, after extensively long post-silicon
validation experiments, no failures were recorded; in this case,
the confidence to commit to high-volume of manufacturing is
substantiated by the value captured by the coverage estimate.

III. RANKING ALGORITHM

As emphasized in the previous section, mapping all the
assertions from the violation matrix to hardware for the pur-
pose of low-latency bit-flip detection is impractical. Therefore,
as summarized in section II-D, we present a novel algorithm
to select a subset of assertions by accounting for a wire count
constraint. The objective is to maximize the potential coverage
of bit-flips for each flip-flop, while at the same time the area
should be contained. The flow of the ranking algorithm is
illustrated in Figure 3. Specific details of each step are given
next:

• In order to prioritize one assertion over another, a
metric is defined for the purpose of one-to-one com-
parison. We define the importance metric (IM) as:

Assr(i)IM =
BFCov × TotalV iolation

(α×WireCnt) + (β ×Area)
× 1

σ

where BFCov is the total number of bit-flips that
are covered by assr(i), TotalViolation is the

flop1
flop2

Fig. 3. Flow for the ranking algorithm.

total number of times that assr(i) has been violated
in all simulations during preparation experiments,
WireCnt is the number of wires used in assr(i),
Area is the area estimate obtained through mapping
assertions to hardware, and α and β are empirically
determined parameters used to bring the wire and area
units on the same scale. The standard deviation σ of
the violation count for each assertion is important
because of the following: if two assertions have a
similar BFCov, area, wire count and TotalViolation,
the selected assertion should not have a significant
discrepancy in violation counts for different flip-flops,
since it will likely have a higher potential to detect
bit-flips for all the flip-flops that it is related to.

• Once the importance metric is computed for all the as-
sertions, the next step would be to select the one with
highest IM. In Figure 4, assuming that all assertions
have equal wire count of 4, area size of 6 and unit
size coefficients, the following IMs will be computed:

assr(1)IM =
3 × 19

(1 × 4) + (1 × 6)
× 1

7.26
= 0.392

assr(2)IM =
3 × 19

(1 × 4) + (1 × 6)
× 1

13.7
= 0.208

assr(3)IM =
3 × 8

(1 × 4) + (1 × 6)
× 1

3.63
= 0.33

assr(4)IM =
3 × 13

(1 × 4) + (1 × 6)
× 1

8.43
= 0.231

Based on the above, assr1 has the largest IM so it is
selected first (Steps 1 and 2 in Figure 3). It is important
to note that both assr1 and assr2 have similar BFCov
and TotalViolation. However, TotalViolation for assr2
is dominated by the high violation count for flip-
flop 1, which leads to its standard deviation to be
larger than the one for assr1; therefore, it is not chosen
to cover flip-flops 1-3. For the same total violation
count, it is of interest to choose an assertion that is
equally likely to cover all the flip-flops it is related to,
rather than choose an assertion whose total violation

76 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

5
8
6
0
0

16
1
2
0
0

0
0
1
4
3

0
0
10
1
2

as
sr

 1

as
sr

 2

as
sr

 3

as
sr

 4

flop 1

flop 2

flop 3

flop 4

flop 5

5
8
6
0
0

16
1
2
0
0

0
0
1
4
3

0
0
10
1
2

as
sr

 1

as
sr

 2

as
sr

 3

as
sr

 4

flop 1

flop 2

flop 3

flop 4

flop 5

5 161616 0 0
8 111 0 0
6 2 22 1 10

5
8
6
0
0

16
1
2
0
0

0
0
1
4
3

0
0
10
1
2

as
sr

 1

as
sr

 2

as
sr

 3

as
sr

 4

flop 1

flop 2

flop 3

flop 4

flop 5

5 161616 0 0
8 111 0 0
6 222 1 10

5
8
6
0
0

16
1
2
0
0

0
0
1
4
3

0
0
10
1
2

as
sr

 1

as
sr

 2

as
sr

 3

as
sr

 4

flop 1

flop 2

flop 3

flop 4

flop 5

5 161616 0 0 00
8 111 0 00 0
6 2 22 1 101010

0 0 00 4 111
0 0 00 3 2 22

Fig. 4. Example of ranking assertions based on the violation matrix. Note
that after a particular assertion is selected, the flip-flops that are covered by
it are added to the covered list and are not taken into further consideration.

count is dominated by the violation count for one flip-
flop only. Once an assertion is selected, all the flip-
flops that are covered by that assertion are marked
(dotted line in Figure 4 and Step 3 in Figure 3), so
that other assertions are chosen based on the covering
requirements for the rest of the flip-flops.

• After each selection, it is mandatory to check if we
have reached the available wire budget. Likewise,
there is no point to select more assertions if the set
of assertions selected so far covers all the flip-flops in
the violation matrix (Steps 4 and 5 in Figure 3).

• If none of the aforementioned conditions hold, then
the next step is to re-compute the Importance Metric
for all the unselected assertions. This is a critical
step, since BFCov and TotalViolation must take into
account only the values for bit-flips in flip-flops that
have not been covered so far. For example, assr4 has
an original TotalViolation larger than assr3, however it
is not chosen because, once only uncovered flip-flops
are taken into account, its TotalViolation will be less
than that of assr3 (Step 6 in Figure 3).

IV. EXPERIMENTAL RESULTS

The software for all the steps for our methodology, includ-
ing the proposed ranking algorithm, have been implemented on
an Intel Core i7 machine with 32GB of RAM using GCC 4.8.2.
For assertion discovery, we have used GoldMine, an automatic
assertion generation tool that uses data mining and formal
verification. GoldMine has several modes of operation and the
detailed discussion on its different modes and configurations
are out of the scope of this paper; the interested reader is
referred to [14]. Results from a combination of mining engines
of GoldMine have been used for gathering assertions in our test
cases; we should note that decision forest and coverage mode
engines have been used more often than the other engines.
With regard to the input stimuli, if Value Change Dump (VCD)
file is provided to GoldMine, it will be used as input for

assertion discovery; otherwise, it will automatically generate
random stimuli to be used for assertion discovery. We have
used both random stimuli and deterministically generated VCD
files obtained using the Validation Vector Generator tool from
Virginia Tech [15]. MBAC [7] has been used for mapping
assertions to hardware. All assertions have been added to
the original source code and passed to MBAC. Once the
synthesizable Verilog model for all the assertions is produced
by [7], the area estimate for each is determined using Synopsys
Design Compiler (based on generic implementation libraries).

After creating the violation matrix (the output of prepa-
ration experiments explained in section II-B) and extracting
area estimates and wire counts of assertions, the ranking
algorithm will select a subset of assertions. Although a user
can choose constraints specific to his hardware environment,
in our current implementation we have used the number of
wires as the constraint. The objective is to maximize bit-flip
coverage estimate within the wire count budget, as discussed
in section III. Once the assertions are selected, confirmation
experiments are carried out to obtain the coverage estimate, as
introduced in section II-E. In this work, in order to reflect the
random occurrence of bit-flips in post-silicon environments, all
the preparation and confirmation experiments are performed
using random stimuli. The total run-time for our current
implementation is mostly dominated by the assertion discovery
part. For the benchmark circuits studied in this paper, the task
of finding assertions varies in the range of three to ten days.
Once this step is complete, the run-time for subsequent steps
depends on the constraints and the number of simulations,
though their contributions to the total run-time are insignificant
compared to assertion generation. It should be noted that the
preparation and confirmation experiments can be migrated to
emulation-based environments that will further improve both
the run-time of experiments and the accuracy of the violation
matrix, which indirectly will impact the quality of the results.

Figure 5a illustrates how the coverage estimate changes as
the number of wires is varied for the three largest ISCAS89
benchmark circuits [9]. Since there exists an overlap between
the nets that are used by different assertions, and also the fact
that some assertions which have been used for this work cover
multiple bit-flips, we can notice that, in general, as the wire
count is increased, the slope of change in coverage gets steeper.
In addition, Figure 5b shows how much area is needed by the
hardware assertion checkers with respect to the total area of
the circuit when the wire count is varied from 15% to 40%
of the total number of flip-flops (and not the total number of
nets) in the design.

As motivated in section II, the key reason to use assertion
checking for bit-flip detection is to minimize the error detection
latency. Table I shows the number of errors that fall into
different error detection latency windows. As it can be seen
in this table, the vast majority of the bit-flips are detected in
less than 10 clock cycles after their occurrence. An interesting

TABLE I. EVALUATION OF THE ERROR DETECTION LATENCY FOR THE

DETECTED ERRORS

Circuit <5 clock cycles <10 clock cycles >10 clock cycles
s35932 98.1% 99.4% 0.6%
s38417 96.3% 99.1% 0.9%
s38584 98.4% 99.4% 0.5%

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 77

(a) Coverage estimate when varying the wire count (b) Area evaluation when varying the wire count

Fig. 5. Analysis of coverage estimate and area based on varying the number of wires, running the assertion ranker and carrying out the confirmation experiments.

topic to explore in future work is how one can trade-off the
error detection latency, which is acceptable to be in the range
of tens to hundreds of clock cycles in practice, for a lower
area investment for the bit-flip assertion checkers.

V. CONCLUDING REMARKS

In this paper we have presented a methodology for au-
tomatically assessing the quality of assertions based on their
potential toward maximizing the bit-flip coverage estimate in
post-silicon validation. As shown by our experimental results,
a coverage of approx 40% is attainable when using a number
of wires equal to 40% of the number of flip-flops in the
design. In other words, by injecting bit-flips, we have estimated
that at least 40% of them will be detected by a subset of
selected assertions that are mapped onto hardware. It should
also be noted that this coverage estimate has been achieved
by embedding, on average, only 4% of the total number of
assertions discovered during pre-silicon verification.

It is noteworthy to mention that the reported coverage
estimates are based on random bit-flip injections that are
distributed uniformly across all the flip-flops in the as-
sessed designs. However, it has been investigated in [16] that
electrically-induced errors are more likely to affect the val-
ues of timing-critical flip-flops. Therefore, if the experiments
would be done only for a subset of timing-critical flip-flops,
the coverage estimates for these flip-flops are expected to be
significantly higher when the same wire constraint would be
used (and also a similar amount of on-chip hardware would be
allocated). Running this type customized experiments is fully
supported by the methodology presented in this paper.

Finally, since post-silicon validation experiments run for
extensively long times, it is possible to have multiple debug
sessions during which assertions for a subset of flip-flops are
configured into an embedded programmable event-detector, as
proposed in [8]. In this paper we did not assume that event-
detectors will be programmable and hence all of the assertions
have dedicated hardware circuitry and monitor concurrently.
Nonetheless, if embedded programmable logic cores are used
for implementing the assertion checkers, then, through time-
multiplexing, the coverage estimate can be further improved
using the same area invested for event detection.

ACKNOWLEDGMENT

The authors thank McGill University for MBAC [7] (asser-
tion synthesis), UIUC for GoldMine [14] (automatic assertion
generation) and Virginia Tech for the Validation Vector Gen-
erator [15] (used for deterministic stimuli for Goldmine).

REFERENCES

[1] J. Goodenough and R. Aitken, “Post-silicon is too late avoiding the
$50 million paperweight starts with validated designs,” in ACM/IEEE
Design Automation Conference (DAC), June 2010, pp. 8–11.

[2] A. Adir, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and J. Schu-
mann, “Leveraging pre-silicon verification resources for the post-silicon
validation of the IBM POWER7 processor,” in ACM/IEEE Design
Automation Conference (DAC), June 2011, pp. 569–574.

[3] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B. Bent-
ley, H. Foster, A. Hu, V. Bertacco, and S. Kapoor, “Bridging pre-
silicon verification and post-silicon validation,” in ACM/IEEE Design
Automation Conference (DAC), June 2010, pp. 94–95.

[4] Intel Corp, “Intel platform and component validation,” 2003, http:
//download.intel.com/design/chipsets/labtour/PVPT WhitePaper.pdf.

[5] S. Mitra, S. Seshia, and N. Nicolici, “Post-silicon validation opportuni-
ties, challenges and recent advances,” in ACM/IEEE Design Automation
Conference (DAC), June 2010, pp. 12–17.

[6] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. Kaleq, N. Hakim,
H. Naeimi, D. Gardner, and S. Mitra, “QED: Quick error detection
tests for effective post-silicon validation,” in IEEE International Test
Conference (ITC), Nov 2010, pp. 1–10.

[7] M. Boule, J.-S. Chenard, and Z. Zilic, “Assertion checkers in veri-
fication, silicon debug and in-field diagnosis,” in IEEE International
Symposium on Quality Electronic Design, March 2007, pp. 613–620.

[8] M. Gao and K.-T. Cheng, “A case study of time-multiplexed assertion
checking for post-silicon debugging,” in IEEE International High Level
Design Validation and Test Workshop (HLDVT), June 2010, pp. 90–96.

[9] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS), May 1989, pp. 1929–1934 vol.3.

[10] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based signal
selection for state restoration in silicon debug,” in ACM/IEEE Int. Conf.
on Computer-Aided Design (ICCAD), Nov 2011, pp. 595–601.

[11] K. Rahmani, P. Mishra, and S. Ray, “Efficient trace signal selection
using augmentation and ILP techniques,” in IEEE International Sympo-
sium on Quality Electronic Design (ISQED), March 2014, pp. 148–155.

[12] H. Ko and N. Nicolici, “Automated trace signals identification and state
restoration for improving observability in post-silicon validation,” in
ACM/IEEE Design, Automation and Test in Europe (DATE), March
2008, pp. 1298–1303.

[13] Y.-S. Yang, N. Nicolici, and A. Veneris, “Automated data analysis
solutions to silicon debug,” in ACM/IEEE Design, Automation Test in
Europe Conference Exhibition (DATE), April 2009, pp. 982–987.

[14] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “Goldmine: Automatic assertion generation using data mining
and static analysis,” in ACM/IEEE Design, Automation Test in Europe
Conference Exhibition (DATE), March 2010, pp. 626–629.

[15] A. Parikh, W. Wu, and M. Hsiao, “Mining-guided state justification with
partitioned navigation tracks,” in IEEE International Test Conference
(ITC), Oct 2007, pp. 1–10.

[16] M. Gao, P. Lisherness, and K.-T. Cheng, “Post-silicon bug detection for
variation induced electrical bugs,” in ACM/IEEE Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2011, pp. 273–278.

78 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

