
On the Automatic Generation of SBST Test
Programs for In-Field Test

Andreas Riefert ∗ Riccardo Cantoro � Matthias Sauer ∗ Matteo Sonza Reorda � Bernd Becker ∗

∗ Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ riefert ∣ sauerm ∣ becker }@informatik.uni-freiburg.de

� Politecnico di Torino
Corso Duca degli Abruzzi 24

10129 Torino, Italy
{ riccardo.cantoro ∣ matteo.sonzareorda }@polito.it

Abstract— Software-based self-test (SBST) techniques
are used to test processors against permanent faults
introduced by the manufacturing process (often as a
complementary approach with respect to DfT) or to
perform in-field test in safety-critical applications. A
major obstacle to their adoption is the high cost for
developing effective test programs, since there is still
a lack of suitable EDA algorithms and tools able to
automatically generate SBST test programs. An efficient
ATPG algorithm can serve as the foundation for the
automatic generation of SBST test programs.

In this work we first highlight the additional con-
straints characterizing SBST test programs wrt func-
tional ones, with special emphasis on their usage for in-
field test; then, we describe an ATPG framework target-
ing stuck-at faults based on Bounded Model Checking.
The framework allows the user to flexibly specify the
requirements of SBST test programs in the considered
scenario. Finally, we demonstrate how a set of properly
chosen requirements can be used to generate test pro-
grams matching these constraints.

In our experiments we evaluate the framework with
the miniMIPS microprocessor. The results show that
the proposed method is the first able to automatically
generate SBST test programs whose fault efficiency is
superior to those produced with state-of-the-art manual
approaches.

I. Introduction

Testing a processor against permanent faults arising dur-
ing the manufacturing process or during the operational
phase is a complex task, no matter whether the processor
is a stand-alone device or a core within a System on a
Chip (SoC). In several cases, the task can be solved by
resorting to Design for Testability (DfT) techniques, such
as scan. However, functional approaches based on forcing
the processor to execute a suitably written test program
and checking the produced results are gaining momentum,
and increasingly complement existing DfT-based approaches
for specific purposes. The new popularity of the functional
approach, that was first proposed already three decades ago
[1], has several motivations, including the following:

● The higher defect coverage that can be achieved by a
functional test, since it typically runs at the processor’s
operational frequency.

● The lower overtesting it produces, since it excites the
processor circuitry exactly as the operational phase does,
without the reconfiguration involved by DfT.

● The reduced external ATE requirements: Functional ap-
proaches are often implemented in the form of Software-

Based Self-Test (or SBST [2]), which involves first
uploading the test program at low speed in an internal
memory, then running it at full speed, and finally
downloading the results produced by the processor at
low speed. The external ATE is only involved in the first
and last phase, that can be performed at low speed.

● The possibility of exploiting functional test sequences
for detection of permanent faults during the operational
phase.

Finally, it must be mentioned that sometimes the DfT
structures, even if present, cannot be used by the test
engineer, e.g., because they are not documented by the
processor producer: this is for example the typical scenario
in which system companies operate when they develop the
in-field test for a processor.
As a consequence, functional test approaches are increas-

ingly adopted by industry for manufacturing ([3][4]) and
in-field test [5], and also became a hot research topic.

In this paper we consider a common scenario for companies
manufacturing SoC devices to be used in safety-critical
applications: The netlist of the processor core is available,
DfT structures possibly exist, but some SBST test program
is required, either to complement scan test for manufacturing
test, or to provide a test usable during the operational phase
(in-field test) [6]. In this scenario a major issue is the cost
for generating such a test program. In fact, commercial tools
still lack comprehensive support for functional test program
generation, and hence this task has to be performed manually,
requiring a significant effort by skilled programmers. It is
crucial to note that the complexity of the task not only stems
from the difficulty of writing a test program able to achieve
a sufficient fault coverage, but also derives from the fact
that the test program must be activated in the operational
phase. This means that several constraints imposed by the
specific test infrastructure of a SoC need to be considered
(e.g., related to the size and location of the memory area
available for storing the test program code and data, as
well as the bus protocol). Moreover, the test program must
match a number of additional constraints connected to the
specific characteristics of the SBST paradigm: As an example,
each time the processor fetches an instruction from the same
memory location, the same instruction must be retrieved and
executed. Similarly, if the test program reads the content of
a memory location, the value returned by the memory must
be the same of the last write operation on the same memory
location. All these constraints do not exist in other scenarios,

1186978-3-9815370-4-8/DATE15/ c©2015 EDAA

e.g., when an ATE tests a processor following the functional
approach. As a result, we can claim that writing an SBST
test program is more constrained than writing a generic
functional test program. To the best of our knowledge the
method we propose in this paper is the first able to flexibly
specify the constraints characterizing the addressed scenario
and to automatically generate SBST test programs matching
them.

The approach we propose is based on the usage of Bounded
Model Checking (BMC). We first show how to manage stuck-
at faults when working with the BMC paradigm; we then
describe a method to specify constraints, and we summarize
how to express the typical constraints of an SBST scenario.

When compared with other methods (e.g., [7]) our ap-
proach is easier to adopt, since it does not require modeling
the processor architecture, but only specifying constraints
on a high abstraction level. We also show that the way in
which constraints are imposed heavily impacts the efficiency
of the method, and provide some solutions to effectively
trade-off the quality of the achieved results with the required
computational effort. Moreover, our algorithm is able to
identify untestable faults (in particular those caused by the
additional constraints related to the SBST in-field scenario),
which is crucial when the processor is used in safety-critical
applications, where a given fault coverage is required by
standards and regulations (e.g., ISO 26262 [8]). Experimental
results gathered on the miniMIPS processor [9] demonstrate
that the approach is able to automatically generate an
effective SBST program, which is superior to test programs
generated by sophisticated manual methods (e.g., [7]).

The organization of the paper is the following. Sections II
and III discuss related work and the preliminaries, respect-
ively. Section IV describes the framework used to perform the
test generation procedure. In Section V the interface for the
specification of constraints is explained and the developed
set of constraints for SBST is detailed. Finally, Section VI
presents the experimental results and Section VII draws the
conclusions.

II. Related work

A significant amount of research has been carried out in
the field of functional test pattern generation. Several ATPG
tools for sequential or functional test pattern generation
are simulation-based. [10] constitutes an example for this
approach. In this work an initially random test set is
modified incrementally using wavelet and inverse wavelet
transformation in order to improve its fault coverage. In [11]
a combination of simulation-based sequential ATPG with
SAT-based Bounded Model Checking (BMC) is proposed.
The ATPG procedure is intended to target testable faults,
whereas BMC shall identify untestable faults. [12] provides
a detailed comparison of SAT-based BMC with sequential
ATPG based on structural methods. In [13] a new approach
based on BMC was explored. It proved to be able to effect-
ively and automatically generate test sequences for small-
delay faults for a pipelined processor. A major contribution
of that paper was the description of a method allowing to
specify constraints for the generated test patterns.

An extensive overview of processor and software-based self-
test is given in [2]. Several approaches first generate a test
sequence for a fault on a low level by only considering the
faulty module. Then they try to extend this test to a sequence
of processor instructions. The method in [14] computes low
level test sequences with an ATPG tool and maps these
sequences to instructions with the Cadence SMV BMC. In
their experiments the authors investigate the OpenRisc 1200.
A similar approach is proposed in [15], where a SAT solver
is used for justification and propagation of the precomputed
test. An approach for the automatic generation of an SBST
test program is presented in [16], where an evolutionary
algorithm is used to improve the quality of a given test suite.
An additional FPGA-based hardware acceleration is utilized
in order to speed up the fault simulation. [17] proposes
the use of an evolutionary algorithm in combination with
Binary Decision Diagrams (BDDs). Both together are used
to generate an SBST test program for path-delay faults. [7]
focuses on testing the faults related to the pipeline of a
microprocessor. The authors develop an SBST methodology
in order to tackle these faults and provide experimental
results for the miniMIPS and OpenRISC 1200. Lastly, [18]
proposes an instruction-based test generation for a pipelined
processor by manually creating a graph model representing
the behavior of the processor.
However, all the previously mentioned papers mainly

address the generation of SBST test programs for end-
of-manufacturing test, and no one specifically addresses
the constraints which are typical of in-field test (as this
paper does). This means that in practice the generated test
programs require a manual step to check their compliance
with the SBST constraints, triggering a complex and ex-
pensive transformation in the likely case that they don’t
match them. Moreover, our approach is able to provide test
sequences of optimal length and to prove untestability of
faults. Furthermore, it provides a flexible interface allowing
to specify constraints for the test sequences. This enables
the automatic generation of an effective SBST test program
for in-field test.

III. Preliminaries

We provide essentials on SAT-based Bounded Model
Checking (BMC) together with Craig Interpolation as far
as they are necessary for the understanding of the following.
More details can be found in [19], where functional ATPG
for small-delay faults is presented. The underlying engines
of [19] are used in our approach too.

The core of our ATPG framework is a solver which applies
BMC together with Craig Interpolation. A classical BMC
solver tries to solve a formula, which is defined by an initial
state I0, a transition relation Ti,i+1 and a target property Pk

BMCk = I0 ∧ T0,1 ∧ ... ∧ Tk−1,k ∧ Pk (1)

Ti,i+1 defines the progress of the system from timeframe i to
i+1, whereas Pk specifies the property to be verified. Starting
with k = 0 the solver searches for a solution which satisfies
the target property or proves that the target property cannot
be satisfied within k steps. k is increased stepwise until a
solution is found or no new system states can be reached. In

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1187

Figure 1. ATPG flow

general the latter case requires very large values for k, which
are not feasible in practice.
However, several approaches for a more efficient unreach-

ability proof exist. The solver used for this work [20] uses
Craig Interpolants to over-approximate the reachable system
states within each step. This in many cases allows to prove
effectively that a target property will not be satisfied for
arbitrary values of k.

IV. ATPG framework

This section describes the proposed algorithm for func-
tional ATPG. The overall flow of the test generation process
is as follows: A stuck-at fault list is used, where each fault is
processed one after the other. The test generation for the first
considered fault starts from the state after the application of
the initialization sequence as we cannot assume the existence
of a scan chain. If a test sequence is found, it is appended
to the initialization sequence. Then a fault simulation is
executed and all faults, which are covered additionally to the
target fault, are dropped. The final state of this test sequence
is then used as the starting state for the test generation of
the next fault.

In the first step of the actual ATPG process (see Figure 1)
a check is executed, which determines whether a fault is
structurally testable. This check is done with a SAT solver
and identifies all faults which are untestable within a scan
design. These faults do not have to be considered anymore, as
they also will not be testable in the more restrictive functional
scenario. This step is convenient as it is significantly faster
than the following sequential testability check.
The second step determines whether the considered fault

is sensitizable within the sequential test scenario. For the
transition relation a ’01’-encoding of the circuit is created.
The target property requires that the considered faulty signal
line is sensitized with the proper logic value. If the solver
returns unsatisfiable, it has been proven that the fault is
sequentially untestable, i.e., there exists no sequence which
can test the fault.
If both the first and the second step were satisfiable, we

know that for the currently considered fault a sequence exists
which is able to sensitize this fault. The third step then
tries to find a test sequence which sensitizes the fault and
propagates the fault effects to a primary output. For the
transition relation of the formula a ’Good-Bad’-encoding of
the circuit is created, where ’Good’ models the fault-free
and ’Bad’ the faulty circuit. The target property requires
that a fault effect, i.e., a difference between ’Good’ and
’Bad’, is visible at a primary output. If the solver returns a
satisfiable solution, a valid test sequence can be extracted.
Please note that the solver is optimal with regard to the

unrolling depth. Thus it always returns the shortest possible
test sequence from the given starting state. If the solver
returns unsatisfiable, it has been proven that no test sequence
of arbitrary length exists which propagates the fault effect
to a primary output.

If testing the considered fault requires a too high unrolling
depth of the circuit, the solver aborts after a user-defined time
bound. In this case the test sequence generation is divided
into two steps, namely the extended fault sensitization and
the fault propagation step. The idea is to approach the
problem with two solver calls, in order to find solutions with
higher unrolling depths. In order to compute the extended
fault sensitization sequence, again a ’Good-Bad’-encoding
of the circuit is utilized. The target property requires the
sensitization of the faulty signal line and the propagation of
the fault effect to a directly (i.e., in one time frame) reachable
flip-flop. If the fault effect could be latched in a flip-flop,
a sequence is required which propagates it to a primary
output. The fault propagation step utilizes the final state
of the extended fault sensitization as its initial state and
the same ’Good-Bad’-encoding for the transition relation. In
its target property we require the fault effect to be visible
at a primary output. If the fault propagation step succeeds
the solutions from the extended fault sensitization and the
fault propagation together form the test sequence for the
considered fault.

If the fault propagation fails, it is most probably due to the
fact, that the fault effect was latched in a circuit state which
prevents any further propagation. For example, assume a
register in a microprocessor which temporarily stores the
result of the ALU. This result is only used if the processor is
currently executing an ALU instruction. If not, the register
value is overwritten in the next clock cycle and a possibly
stored fault effect immediately vanishes. This means that the
extended fault sensitization step has to latch the fault effect
into a system state which allows the further propagation.
For this reason we created a heuristic to guide this ATPG
step and latch the fault into suitable system states. We have
randomly chosen several functional circuit states, where we
consecutively inserted a fault effect in each flip-flop and tried
to propagate it to a primary output by utilizing our solver.
Depending on how often the fault propagation succeeded
for a given circuit flip-flop and how long the corresponding
sequence was, we heuristically compute a score for each flip-
flop which expresses how suitable it is for fault propagation.
In the extended fault sensitization step we now modify the
target property by requiring the fault propagation to flip-
flops with high scores. The extended fault sensitization step
is repeated for a user-defined number of iterations. In the
first iteration only flip-flops are targeted which are directly
reachable from the fault location. If the extended fault
sensitization into one or more of these flip-flops succeeds
but the consecutive fault propagation to a primary output
fails, the next iteration also targets suitable flip-flops which
are reachable directly from the flip-flops which could be
sensitized in the first iteration.

1188 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Figure 2. Application of the Validity Checker Module

V. Constraining the input space

A. Validity Checker Module

The functional ATPG algorithm described in the previous
section computes pattern sequences, which test a fault by
applying values to primary inputs and observing primary
outputs. For the applied primary input values each possible
combination is allowed and primary outputs can be ovserved
at each clock cycle. However, this is unrealistic for the SBST
test of a processor. For example, a microprocessor which is
embedded in an environment will only load (valid) instruc-
tions and data from the available memory. Furthermore, the
communication with the memory has to respect a certain
memory protocol. If the generated test sequences also have
to respect such additional constraints, which are required for
functional or software-based self test, the input space has to
be constrained in a suitable way.

In [13] a Validity Checker Module (VCM) was proposed for
the functional test of small-delay faults. The idea of the VCM
is to provide an easy-to-use interface for a test engineer for
specifying functional constraints (see Figure 2). The VCM
is a circuit which can be specified in a hardware description
language like VHDL or Verilog. The inputs of the VCM
comprise the primary inputs, primary outputs and internal
signals of the Circuit Under Test (CUT), which are required
to describe the desired constraints. For each constraint the
VCM contains one validity output, which is active if the
constraint is fulfilled and inactive if not. After the VCM has
been designed, it is synthesized to a gate netlist. This netlist
is properly combined with the netlist of the CUT. Both
together represent the input netlist for the ATPG algorithm.

During the execution of the algorithm the validity outputs
are required to be active, thus generating sequences which
respect the specified constraints. Please note that the final
CUT is not changed in any way. The described process is
only required to integrate the specified constraints into the
ATPG algorithm.

In [13] a basic usage of the VCM concept was explored,
in which only invariant constraints have been supported,
i.e., constraints which have to be fulfilled at each clock
cycle. In this work we extend this concept by considering
constraints whose fulfillment is only checked at the last
cycle of a sequence and denote them as target constraints.
Furthermore, we introduced the so called pseudo-D inputs
for the VCM. A Pseudo-D input is a primary input in the
VCM and corresponds to a fault effect at a certain signal

line or register in the CUT. This allows the user to specify
constraints with regard to fault propagation. By using a
unique suffix, a Pseudo-D input is identified by our ATPG
tool and connected to the corresponding internal variable.

In general, a constraint can invalidate the test generation
for a certain fault, i.e., a fault which was testable before
becomes untestable because of the constraint. For this reason
it is possible to turn each constraint on or off during
the ATPG process, for example when we realize that the
constraint overrestricts the search space.
Our framework can also be used as guidance for the

development of new constraints. By first executing an un-
constrained ATPG run a user can get an impression of how
a certain fault is tested. This can be used as a starting
point for adding simple and less restrictive constraints. These
constraints are then stepwise improved until the generated
sequences satisfy all requirements of the user. The execution
of the ATPG at each step gives feedback about the quality of
the constraint with respect to the given test environment and
allows to identify ineffective or overly restrictive constraints.
We applied this flow to devise the constraints which are
described in the following.

B. Constraints for in-field SBST

Developing a program suitable for in-field SBST is a
complex task, as it not only requires a fault to be sensitized
and propagated to a primary output, but additionally to
respect several further constraints (e.g., concerning the
coherence of the memory content). Consequently, not only
a proper test sequence for a fault has to be found, but also
other constraints have to be considered too, depending on
the specific addressed scenario. This requires accurate and
flexible modeling of these constraints.
In order to better clarify the kinds of constraints that

should be considered when creating an SBST test program
for in-field test, we are going to list them in the following.

A first set of constraints (denoted as functional constraints)
was already introduced in [13], as listed as follows:

1) Reset : The system reset signal is only allowed to be
active once at initialization and then has to remain inactive,
as activating it at certain clock cycles would be hard to
control in an in-field SBST scenario.

2) Interrupt : For a similar reason, external interrupts are
not allowed.

3) Memory protocol : The memory protocol adopted by the
processor should be enforced, e.g., imposing a given memory
response time.
4) Valid instructions: If the processor is loading an

instruction, only valid instructions are allowed to be applied.
Using the functional constraints during ATPG results in

test sequences, which can only be applied to the micro-
processor by resorting to an external ATE. It means, they
cannot be directly mapped to program and data memory. An
extended set of constraints (denoted as SBST constraints)
has been developed in order to meet this requirement. In the
following the additional constraints are described:
5) Code memory coherence: During the execution of an

SBST test program, successive fetch operations from the
same memory cell should return the same instruction.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1189

6) Data memory coherence: During the execution of an
SBST test program, any couple of read accesses to the same
data memory cell should return the same value, unless a
write operation is performed on the same cell in the middle.
Moreover, any read operations should be preceded by a
write operation initializing the accessed memory cell with
the required logic value.

7) Fault detection: As in the SBST scenario only the
memory content after the program execution can be observed,
a fault must lead to a memory content which differs from
the fault free one.

C. Constraint enforcement

The above constraints can be enforced resorting to different
solutions, all mapped on a specific VCM implementation.
Different solutions may result in different impact on the
ATPG.

All functional constraints (1 to 4) and constraint 7) are
implemented as purely combinational blocks. They produce
a reduction of the search space in the ATPG process. On the
contrary, constraints 5) and 6) are implemented as sequential
blocks, which may increase the search space.

An effective solution to force the fulfillment of the con-
straint 5) is to prevent instructions which could decrease
the program counter. This avoids several fetch operations
from the same memory cell. In order to implement this
constraint we propose to only allow branch instructions
executing forward jumps with a fixed value. The value is
chosen by taking into account the number of fetch operations
which take place after loading the branch instruction until
its execution. This number is determined by the number of
pipeline stages which have to be passed before the instruction
is executed. The constraint is fulfilled also due to the fact
that any kind of interrupts are not permitted.

The aforementioned implementation of 5) presents some
critical aspects. The first issue concerns the branch prediction
unit, which requires jumping to the same memory address
more than once. We used a specialized constraint to test
this module. It consists of a state machine realizing a small
loop, which includes a store instruction. A fault will prevent
the proper execution of the store instruction. Furthermore,
jumps with a fixed offset result in high instruction addresses
being hard to reach. For this reason we propose a specialized
constraint, which enables a sequence of two jump and link
instructions and one store instruction. A fault in the address
logic will cause a jump to a wrong target address and storing
the wrong program counter value.

An effective strategy for enforcing the constraint 6) is to
define a starting address and then to force each load and store
instruction to use a distinct memory address as their target
address. In our implementation a general purpose register
is used to store the starting address. All load and store
instructions use this register value for their target address.
After the execution of each load or store instruction the
register value is incremented. Thus all memory instructions
will always address distinct memory cells. Memory cells which
are addressed by load instructions are pre-charged with the
computed value.

The constraint 7) can be addressed by exploiting some
Pseudo-D inputs (see V-A). We require that either the
memory write signal is faulty or the memory write signal
is active and a fault effect is visible at either the address
or the data bus. The first requirement will cause a store
instruction which is only executed in either the fault free or
the faulty case. The latter requirement leads to an executed
store instruction which either writes to an erroneous memory
address or writes an erroneous data value into the memory.

Taken together, the proposed solutions allow the designer
to flexibly trade-off between the complexity of the constraint
and their effectiveness. In some cases (e.g., forbidding inter-
rupts), the proposed solution slightly reduces the achieved
fault coverage, but proved to be computationally effective.

VI. Experimental Results

The miniMIPS processor was used to prove the viability
and effectiveness of the proposed approach. The available RT-
level description [9] was synthesized with Synopsys Design
Vision using an in-house developed library. The resulting
gate netlist contained 18,279 gates and 1,966 flip-flops which
were all considered for stuck-at fault test generation. The
VCM containing all described constraints (Section V-B) was
specified in VHDL and comprises about 400 lines of code
which resulted in a synthesized netlist consisting of 395 gates
and 21 flip-flops. All ATPG experiments were run on one
core of an Intel Xeon processor running at 3.3 GHz.
In the first experiment we activated only the functional

constraints 1 to 4 (Section V-B). Another experiment applied
all previously listed constraints. The runtime needed to
generate the test sequences was 89 hours using the set of
functional constraints and 295 hours for the complete set of
SBST constraints.

While the runtime is relevant, the reader should note that
the complexity of our approach is substantially affected by
the enforced constraints. Hence, we believe that our approach
could be easily adopted on any single pipeline processor /
controller, thus covering a good percentage of the current
safety-critical embedded systems.
Table I lists the detailed evaluation of all modules of the

miniMIPS. The subdivision corresponds to the modules in
the available VHDL code. The column #faults contains
the number of faults for this module, columns testable
and untestable state the number of detected and provably
untestable faults. abort contains the faults which could not be
detected and were not proven as being untestable. The values
of testable, untestable and abort are based on the experiment
using the functional constraints. The following columns give
the fault efficiency of each experiment in percent.
In the last column we compare to the results of [7],

which also reported detailed stuck-at fault coverages for
the miniMIPS. As their approach is not able to identify
untestable faults, their fault coverage is equivalent to the
fault efficiency. For the instruction decode unit (di), the
execution unit (ex) and the data forwarding unit (renvoi)
a range is given, as the modules were further subdivided in
[7]. For the branch prediction unit (predict) no results are
given, as their evaluated miniMIPS version did not contain
this module.

1190 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Table I
Experimental results

faults testable untestable abort %FE [Functional Const] %FE [SBST Const] %FE [7]
pf 2,118 2,109 9 0 100.00 91.97 86.32
ei 1,478 1,470 7 1 99.93 96.82 90.86
di 7,090 6,738 238 114 98.39 92.45 83.53 – 90.24
ex 23,042 22,173 710 159 99.30 96.20 84.12 – 97.85
mem 2,658 2,014 396 248 90.67 71.29 81.87
renvoi 3,746 3,548 198 0 100.00 99.68 86.60 – 93.64
banc 41,600 41,536 64 0 100.00 100.00 99.98
syscop 6,696 5,148 1,548 0 100.00 98.04 87.90
bus ctrl 1,988 1,877 65 46 97.69 92.20 93.95
predict 20,982 20,923 56 3 99.99 99.34 —
total 111,398 107,536 3,291 571 99.49 97.46 95.08

As it can be seen by the experimental results, our auto-
matic SBST approach yields generally a very high fault
efficiency and fault coverage which outperforms the previous
results, which were manually generated. Clearly, the number
of considered constraints significantly affects the complexity
and effectiveness of the ATPG process. Depending on the
number of constraints used, the fault efficiency of the
generated test sequence ranges from 97.46% when applying
all constraints to 99.49% using the reduced set of constraints.
When all constraints are applied, our generated test program
requires 10,139 clock cycles for execution. [7] has a total
length of 7,162 clock cycles. Please note that the additional
clock cycles of our approach mainly stem from the sub-
sequences testing the branch prediction unit, which does
not exist in the miniMIPS version considered in [7].

VII. Conclusions

We presented an efficient functional ATPG algorithm able
to generate effective SBST test programs for in-field testing
of stuck-at faults.
In particular, we demonstrated how our framework can

be used to flexibly constrain the generated test programs in
order to match the specific requirements of in-field SBST
testing, which is becoming important for safety-critical
applications. To the best of our knowledge, this is the first
approach able to automatically generate high quality in-field
SBST test programs without the need for manually generated
(or adapted) test routines and in-depth knowledge about the
evaluated processor.
As a conclusion, we believe that our results demonstrate

that the proposed approach, although expensive from a
computation point of view, represents a significant step
forward, thus paving the way to its adoption with real-sized
microcontrollers.

References

[1] S. M. Thatte and J. A. Abraham, “Test generation for micropro-
cessors,” IEEE Transactions on Computers, pp. 429–441, 1980.

[2] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda,
“Microprocessor software-based self-testing,” IEEE Design and Test
of Computers, pp. 4–19, 2010.

[3] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITSA
microprocessor functional BIST method,” in IEEE International
Test Conference, pp. 590–598, 2002.

[4] I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident
functional microprocessor testing: Avoiding high speed IO issue,”
in IEEE International Test Conference, pp. 1–7, 2006.

[5] M. De Carvalho, P. Bernardi, E. Sanchez, and M. Sonza Reorda,
“Increasing fault coverage during functional test in the operational
phase,” in IEEE 19th International On-Line Testing Symposium
(IOLTS), pp. 43–48, 2013.

[6] P. Bernardi, L. Ciganda, M. de Carvalho, M. Grosso, J. Lagos-
Benites, E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-line
software-based self-test of the address calculation unit in RISC
processors,” in 17th IEEE European Test Symposium (ETS), pp. 1–
6, 2012.

[7] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos,
A. Paschalis, A. Raghunathan, and S. Ravi, “Systematic software-
based self-test for pipelined processors,” IEEE Transactions on
Very Large Scale Integration Systems, pp. 1441–1453, 2008.

[8] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and
O. Ballan, “On-line functionally untestable fault identification
in embedded processor cores,” in Design, Automation & Test in
Europe, pp. 1462–1467, 2013.

[9] miniMIPS. http://opencores.org/project,minimips.
[10] S. K. Devanathan and M. L. Bushnell, “Sequential spectral ATPG

using the wavelet transform and compaction,” in IEEE Interna-
tional Conference on VLSI Design, 2006.

[11] M. R. Prasad, M. S. Hsiao, and J. Jain, “Can SAT be used to
improve sequential ATPG methods ?,” in IEEE International
Conference on VLSI Design, pp. 585–590, 2004.

[12] D. G. Saab, J. A. Abraham, and V. M. Vedula, “Formal verification
using bounded model checking: SAT versus sequential ATPG
engines,” in IEEE International Conference on VLSI Design,
pp. 243–248, 2003.

[13] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. Sonza Reorda,
and B. Becker, “An effective approach to automatic functional
processor test generation for small-delay faults,” in Design, Auto-
mation and Test in Europe Conference and Exhibition (DATE),
pp. 1–6, 2014.

[14] S. Gurumurthy, S. Vasudevan, and J. A. Abraham, “Automatic
generation of instruction sequences targeting hard-to-detect struc-
tural faults in a processor,” in IEEE International Test Conference
(ITC), pp. 1–9, 2006.

[15] L. Lingappan and N. K. Jha, “Satisfiability-based automatic test
program generation and design for testability for microprocessors,”
in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 518–530, 2007.

[16] E. Sanchez, M. Sonza Reorda, G. Squillero, and M. Violante,
“Automatic generation of test sets for SBST of microprocessor IP
cores,” in 18th Symposium on Integrated Circuits and Systems
Design, pp. 74–79, 2005.

[17] K. Christou, M. K. Michael, P. Bernardi, M. Grosso, E. Sanchez,
and M. Sonza Reorda, “A novel SBST generation technique for
path-delay faults in microprocessors exploiting gate- and RT-level
descriptions,” in IEEE VLSI Test Symposium (VTS), pp. 389–394,
2008.

[18] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-
based self-testing of delay faults in pipelined processors,” in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 1203–1215, 2006.

[19] M. Sauer, S. Kupferschmid, A. Czutro, I. Polian, S. Reddy, and
B. Becker, “Functional test of small-delay faults using SAT and
craig interpolation,” in IEEE International Test Conference (ITC),
pp. 1–8, 2012.

[20] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incre-
mental preprocessing methods for use in BMC,” Formal Methods
in System Design, pp. 1–20, 2011.

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

