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Abstract—On-chip many-core systems are expected to be in
common use in the future. A set of homogeneous processors in
a many-core system can be used to implement multiple pipelines
which execute simultaneously. Pipelines of processors use varying
numbers of cores when their workloads vary at run time. In this
paper, we show how such a system executing multiple pipelines
with varying workloads can be implemented. We further show
how the system can switch cores within a pipeline (intra-elasticity)
and between pipelines (inter-elasticity). The method is named
E-pipeline, and is implemented and evaluated in a commercial
tool suite. Compared to reference design methods with clock
gating, E-pipeline achieves the same power savings, maintains the
throughput to meet throughput constraints and reduces core usage
by an average of 37.7%. The adaptation overhead for switching
cores is approximately 2𝜇s.

I. INTRODUCTION
A. Introduction

On-chip many-core systems are anticipated to become a
large part of the embedded device industry [1], [2]. Hundreds
and even thousands of cores on a chip are foreseen in the
future. Such a homogeneous many-core system is desirable to
avoid the increasing expense of fabricating, since such a chip
is reusable in many different industries and applications. Much
like a single FPGA design which pervades the industry, the next
generation of on-chip many-core systems can be programmed
in-situ and used in a wide variety of applications. In order to use
such a system in embedded applications, run-time adaptation
is necessary which allows the homogeneous many-core system
to achieve power and performance efficiencies by dynamically
adapting the system to specific applications.

The hardware/software pipeline divides a stream application
into sequential stages and assigns a number of cores to different
stages [3], [4]. Streaming applications are implemented as hard-
ware/software pipelines when high throughputs are necessary.
Traditionally, such pipelines in many-core systems are designed
such that the throughput constraints (e.g., frames per second)
are met even in the worst case of workloads. For streaming
applications with workload variations, such as H.264 [4], worst-
case designs may overestimate workloads by more than an
order of magnitude for the average case. To adapt to workload
variations, work in [5] studied run-time task mapping, and work
in [6] studied run-time task duplication. However, their works
focused on maximizing throughput rather than minimizing both
resource usage and power consumption under the throughput
constraint. Also their management overheads are typically at
the level of hundreds of milliseconds, which are over 10× the
workload variation intervals in many modern streaming applica-
tions. Hence their works are not suitable for for fast adaptation.
Works in [4], [7] applied run-time low power techniques to
reduce the dynamic power when run-time workloads were much
lower than the worst case. However, their works still allocate
as many cores as necessary for the worst case designs.

In this paper, for the first time we consider the scenario
where multiple pipelines with workload variations are executing
on the same on-chip many-core system. Since their peak times
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of workload may not happen at the same time, we study the
system to reuse cores between pipelines, thus reducing the
need for resources and reducing power. We call this Elastic
computing.

Elastic computing technologies can adapt to workload vari-
ations and reuse cores between applications. In this paper, we
propose E-pipeline, a fine-grained elastic computing method-
ology for streaming applications in on-chip many-core sys-
tems. Inside a pipeline, E-pipeline applies intra-elasticity which
adapts core assignments to the workload variations so that the
throughput constraint is met. Between separate pipelines which
are executed in parallel, E-pipeline applies inter-elasticity
which allows the unnecessary cores in one pipeline to be
dynamically given up for use by other pipelines or applications
running on the same chip. In addition, E-pipeline applies low-
power technologies (clock gating) to necessary cores to reduce
power consumption when throughput constraints of all pipelines
are met.

B. Contributions
For the first time, we introduce the concept of executing

multiple hardware/software pipelines on a many-core system,
which are able to utilize and shed processor cores as necessary
as the workload varies. The main contributions can be summa-
rized as follows:

∙ Intra-Elasticity: A method to switch cores within a
single pipeline (from stage to stage), as stages within
the pipeline are idle (or overwhelmed), so that the
pipeline can meet a given throughput.

∙ Inter-Elasticity: A method to switch cores from one
pipeline to a pool of cores which are asleep when the
cores are not necessary, and a method to obtain cores
from the sleep pool to a pipeline when the pipeline
needs an additional core to meet throughput.

∙ We further show how a distributed management system
can be incorporated for inter- and intra-elasticity of
pipelines and be effectively implemented.

II. TASK CLONING MODE

Fig. 1: (a) Pipeline with Four Stages (b) Task Cloning Mode Example

Fig. 1(a) describes a hardware/software pipeline with four
stages (S1, S2, S3 and S4). The input data of each stage is
packed as data tokens. The throughput is measured by frames
per second and each frame is composed of a certain amount
of data tokens. Each stage works on an input data token and
then produces a processed data token, which is the input data
token of the next stage. The communication between stages
is through buffers. An iteration of one stage includes fetching

363978-3-9815370-4-8/DATE15/ c©2015 EDAA



a data token, performing the task of this stage on this data
token and sending the processed data token to the buffer. The
workload of a stage is measured as the average clock cycles
consumed per iteration.

We focus on a particular program mode of hard-
ware/software pipelines, named task cloning mode, which can
be applied to various streaming applications (we applied it to
14 benchmarks ranging from media applications, such MPEG
encoder, and communication applications to signal processing
applications, such as FFT). In task cloning mode, the execution
for an iteration of the stage only depends on its input data
token and does not depend on other data tokens or other stages.
Hence, the task cloning mode allows a task of a stage to be
cloned several times, and each task clone works on different
data tokens independently. Fig. 1(b) shows a task cloning mode
example for the pipeline in (a). There are various numbers
of task clones in each stage. The throughput of a stage is
the total throughput of task clones in this stage. The stage
with the heaviest workload (the bottleneck stage) determines
the effective throughput of the pipeline (within brackets of
Fig. 1(b)). Based on the discussion in work [7], [8], we can
keep increasing the number of clones at the bottleneck stage to
increase the effective throughput until this stage is no longer
the bottleneck. Similarly, we can keep decreasing the number
of task clones in other stages without affecting the effective
throughput until the stage becomes the bottleneck stage. Details
of discussion are explained in [7], [8].

In this paper, one core executes one task clone for the
sake of simplicity thus reducing overheads. Intra-elasticity
and inter-elasticity are employed by changing the numbers of
cores/clones which are assigned to stages of pipelines.

A. Motivational Example

0

50

100

0

50

100

20 80Time (ms)

5

15

25

1 61
H.264_1 H.264_2

Total Number Maximum Number

Worst Case Design

Fig. 2: (a) Framework of H.264 Encoder Example (b) Workload
Variations of Task ME and Task TQE (c) Number of Necessary Cores
Variations of Two Pipelines

In this section, we examine an hardware/software pipeline
example of H.264 encoder with a throughput constraint of 30
Frame/s. The H.264 encoder shown in Figure 2 (a) is composed
of six tasks: task CC for color conversion; task ME for motion
estimation; task IPoMC for intra-prediction or motion com-
pensation; task TQE for transform, quantization and entropy
coding; task ITQ for inverse transform and quantization; and
task WB for writing back. Workloads of task ME and task TQE
depend on the input data (similarity between the current input
frame and the reference frame).

The workload distributions of Task ME and TQE (repre-
sented by execution time for a data token) of the H.264 example
is shown in Figure 2 (b), where the execution time of ME
and TQE varies significantly. Note that the worst case of the
workload for ME is not the worst case for TQE: When the
workload of ME is high, the workload of TQE can be low, and
vice versa. It necessitates the intra-elasticity to change core
assignments between different worst cases of the pipeline.

With run-time workload variations, the number of cores
which are necessary for the H.264 pipeline to meet the
30 Frame/s constraint also varies with time. There are two
pipelines of the H264 encoder with different input data
(H.264 1 and H.264 2). Figure 2 (c) shows the necessary run-
time numbers of cores needed by H.264 1 and H.264 2. It is
worth noting that, in Figure 2 (c), the total number of cores

used in the two pipelines varies (the third curve from the top)
and never exceeds 26 (the second dotted line from the top).
Each pipeline occupies 15 cores at their peak points, however,
they do not occupy 15 cores at the same time. If the pipelines
are designed based on worst case designs, they will always
occupy 30 cores in total (each pipeline occupies 15 cores).
Similarly, if we execute two or three differing applications,
then we would be able to execute on a lesser number of cores,
compared to the design of allocating the worst case number of
cores for each application. Thus E-pipelines allow switching for
cores between pipelines, reducing the necessity for allocating
a maximum number of cores.

III. RELATED WORK
Hardware/software pipelines have been implemented in

various architectures [9]–[13]. Traditional worst-case design
methodologies can satisfy the throughput requirement, however,
they usually are neither power efficient nor resource efficient
when workloads of pipelines vary at run time [3], [4] as they
assume worst case workloads.

Works in [14], [15] discussed run-time task mapping for
multi-objective optimization in on-chip many-core systems. The
work in [5] described a method of remapping tasks between
cores to improve the throughput when workloads vary. The
work in [6] studied dynamic task duplication at operating sys-
tem level for streaming applications to improve the throughput.
The management time overheads of all these works [5], [6],
[14], [15] are large due to coarse-grained hardware/software
managements, and the throughput decline (due to workload
variation) lasts seconds [5]. Hence, their methods are not
suitable for modern streaming applications under throughput
constraints with fast workload variations (e.g. at millisecond or
microsecond levels). Some works, such as [16], presented run-
time task mapping methods in on-chip many-core systems to
minimize communication latencies. They did not examine the
effect on throughput.

Papers in [4], [7], [17], [18] discussed pipelines with
workload variations under throughput constraint, and presented
worst-case designs with dynamic low-power methods. Works
in [7], [17], [18] reduced the operating frequency/voltage of
each core when workloads are smaller than the worst case. The
work in [4] applied knowledge of workload variation to forecast
the period when the core is not utilized. The core is set to
sleep to save power during un-utilized period. In [7], [17], [18]
and systems can adapt to fast workload variations for modern
streaming applications under throughput constraints. However,
the core-to-task assignments in these works are static. They
did not study changing core-to-task assignments and reusing
cores across multiple pipelines which are running in parallel to
optimize the total power and core usage.

Elastic computing techniques [19] such as invasive com-
puting [20] are resource-efficient methods that can adapt to
workload variations. However, their approach focuses on appli-
cation level variations rather than stage level variations, which
are more important in pipelines to improve throughput while
reducing usage of cores. Work in [8] employed a similar pro-
gram mode and applied a methodology akin to intra-elasticity.
However, the work [8] only examines a single pipeline with a
fixed number of cores, and focused on maximizing the through-
put. E-pipeline discusses optimizing power and resources with
varying numbers of cores. No run-time work exists which em-
ploys fine-grained inter-elasticity and intra-elasticity methods to
improve the power- and resource-efficiencies without violating
throughput constraints of streaming applications.

IV. SYSTEM OVERVIEW
The on-chip many-core system assigned a core named

‘manager’ for each hardware/software pipeline to be executed.
Fig. 3 shows the overview of the system with three pipelines
(Pipeline A, Pipeline B and Pipeline C). The managers perform
the run-time adaptation, while workers are assigned to separate
pipelines to execute specific tasks (workers for different stages
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Fig. 3: System Overview of E-pipeline

are separated by vertical lines within the pipelines in Fig.
3). The communication between cores in a pipeline is based
on the shared memory. There is a common sleep core pool
where unnecessary cores - depicted by S - are set to sleep
(i.e., clock gating). Fig. 3 (a) and (b) shows two scenarios
before and after the adaptation, which are demonstrated by
directed dotted arrows. For Pipeline A, an adaptation of intra-
elasticity is performed as a core is switched from one stage
to the other stage. For Pipeline B and C, inter-elasticity is
performed through sleep core pool. A sleep core is assigned
to Pipeline B, while a core in Pipeline C is set to sleep and
added to the sleep core pool, indicated by arrows. Note that, in
this paper, we assume that there is a sufficient number of cores
in the system. If there are not enough cores, it may indicate
that the system can only guarantee the throughput of important
pipelines. Such a priority based pipeline system is not studied
here, but is a simple extension of this work.

V. METHODOLOGY
A. Methodology Overview

Figure 4 (a) shows the program executed on the manager
of a pipeline. The input is a pipeline with S stages. The
manager initializes the pipeline with one core assigned to
each stage. At run time, the manager monitors the execution
information and performs an adaptation. In the adaptation, it
first reads the monitor information, then finds the bottleneck
stage and the non-critical stage (the bottleneck stage restricts
the throughput and the non-critical stage contains one or
more cores that are not necessary), performs the elasticity
management (adaptation), and finally sends task assignments to
cores (task assignments consist of choosing cores and sending
task assignment information of cores if the cores are used for
adaptation; if a core is to be sent to sleep, a sleep signal is
sent to it). The execution of the worker is explained in Section
V-B. After the adaptation, the manager monitors the pipeline
again. A new adaptation will be performed after a set number
of iterations.

Fig. 4: Manager Program

B. Worker Program
Algorithm 1 presents the execution loop of a worker. In

every iteration of the execution loop, the core first checks which
pipeline it is assigned to by fetching pipeline id, and then
checks which stage of the pipeline it is assigned to by fetching

Algorithm 1: Execution of A Worker
1 while the pipeline termination condition is false do
2 pipeline id = FetchPipelineid();
3 stage id = FetchStageid();
4 FetchDT(pipeline id, stage id);
5 ExecuteStage(pipeline id, stage id);
6 SendDT(pipeline id, stage id);
7 CollectandSendTimeInformation();

stage id. The pipeline id and stage id are the task assignment
information sent from the manager. Based on the pipeline id
and stage id, the core fetches one input data token (FetchDT()),
executes one iteration of the assigned stage (ExecuteStage()),
sends one output token using function (SendDT()) to the output
buffer and executes function CollectandSendTimeInformation().
Function CollectandSendTimeInformation() collects time infor-
mation for adaptation and stores time information in memory.
After CollectandSendTimeInformation(), the core will check to
see whether the manager has updated the pipeline id and stage
id or whether it has asked the core to go to sleep. If the manager
has changed the status, the core will execute the new task or
go to sleep. Else it will continue with the old task.

C. Adaptation Methodology
The adaptation method of manager is shown in Algorithm 2.

The new adaptation is triggered when n iterations are complete
after the last adaptation (note that we have determined n
experimentally). The input of the adaptation is an array of t
(t1 to t𝑛) and an array of unutilized time of each stage. Both
arrays are the time information collected by workers (details
of time information collection method are explained in Section
VI-C). The t1 to t𝑛 denote the finishing times of each of the
last n data tokens. The average throughput of the previous n-1
iterations is calculated by:

Throughput =
𝑡𝑛 − 𝑡1

𝑛− 1
(1)

The unutilized time is the average locking time per worker
in a stage. The locking time is caused by write/read locking
mechanism, which is employed for synchronization. For exam-
ple, the reading operation on the input data is locked when the
input buffer is empty, while the writing operation on output
data is locked when the output buffer is full. The locking time
of a stage (the time locked by write/read locking mechanism)
reflects the workload difference between this stage and the
bottleneck stage [8].

The adaptation is composed of ThroughputMeasurement(),
FindBottleneckNoncriticalStage() (see below), and Elasticity-
Management() (see below). Finally, the manager resets the
time information, and then restarts another adaptation after n
iterations.

Algorithm 2: Adaptation Methodology
1 while t𝑛> 0 do
2 throughput=ThroughputMeasurement(t);
3 FindBottleneckNoncriticalStage();
4 ElasticityManagement();
5 Reset time information;

1) Find Bottleneck Stage and Non-critical Stage: Algo-
rithm 3 shows the algorithm of FindBottleneckNoncritical-
Stage(). As mentioned in Section V-C, the unutilized time of a
stage (the average locking time of write/read locking mecha-
nism per worker in a stage) reflects the average under-utilization
extent of a worker in this stage. The stage with the least under-
utilization is considered as the bottleneck stage (S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘).
For other stages, we can calculate the normalized number
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of cores that are utilized (N𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑒𝑑), and then estimate the
throughput after removing one core in this stage. If the result
is still greater than the constraint, this stage is named the non-
critical stage (S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). When there are multiple bottleneck
stages and non-critical stages, the last one of them is identified
as S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 or S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. When there is no non-critical
stage or bottleneck stage, the value of S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 or S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
remains 0.

Algorithm 3: Find Bottleneck Stage and Non-critical
Stage
1 S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 = 0; S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0;
2 for each i from 1 to S do
3 if IsBottleneckStage(S𝑖) = 1 then
4 S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 = S𝑖;
5 if IsBottleneckStage(S𝑖) = 0 then
6 N𝑖 = the number of cores in S𝑖;
7 N𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑒𝑑 = N𝑖 × (1- Unutilized Time

Time of n iterations );
8 if throughput × 𝑁𝑖−1

𝑁𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑒𝑑

> Throughput
Constraint then

9 S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = S𝑖;

10 Output S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘, S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙;

2) Elasticity Management: Algorithm 4 shows the algo-
rithm of ElasticityManagement(). According to the compari-
son between the measured throughput (throughput) and the
throughput constraint, different strategies are chosen. When the
throughput is smaller than the constraint, the strategy, based on
the discussion in Section II, is to increase the throughput by
increasing the number of workers in the bottleneck stage. The
first option is to reassign a worker from the non-critical stage to
the bottleneck stage (intra-elasticity). If there is no non-critical
stage, the manager awakes a sleep core from sleep core pool
and assigns this core to the bottleneck stage (inter-elasticity).
When the throughput is greater than the constraint, the strategy,
based on the discussion in Section II, is to decrease the number
of workers in the non-critical stage and set the removed core
to sleep (inter-elasticity). If there is no non-critical stage, no
action is performed.

Algorithm 4: Elasticity Management
1 if throughput < constraint then
2 if S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0 then
3 C𝑖=AwakeACore(sleep core pool);
4 // inter-elasticity
5 Core-to-Stage(C𝑖, S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘);
6 Exit;
7 C𝑖 = SelectCore(S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙); // intra-elasticity
8 Core-to-Stage(C𝑖, S𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘);
9 if throughput > constraint then
10 if S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0 then
11 Exit;
12 C𝑖 = SelectCore(S𝑛𝑜𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙);
13 SleepCore(C𝑖); // inter-elasticity

VI. IMPLEMENTATION
This section details the implementation of the E-pipeline.

The platform setting is presented, followed by the implemen-
tation details of memory layout, throughput/unutilized time
measurement and core-to-stage assignments.

A. Platform Setting
Fig. 5 shows the overview of the implementation. The basic

prototype of E-pipeline is built with 48 Tensilica’s XTensa
LX4 [21] cores and two memories. Each core is working in the

frequency of 1 GHz and tailed with 1KB instruction cache, 1KB
data cache, 1MB local memory (for use of instructions as well
as local data storage). A 256MB main memory is used for gen-
eral purposes, such as storing input data, experiment results and
run-time measured power. A shared memory of 16MB is used
for the management and communication of hardware/software
pipelines. The management and communication of a pipeline
in our benchmark library require no more than 8KB, hence, the
size of 16MB is sufficient to run multiple pipelines in parallel.
Finally, there is a global timer which is used for cores to get
time stamps.

Fig. 5: System Implementation

B. Memory Layout
The shared memory are divided into blocks (Labeled by A,

B, etc. in Fig. 5) for the management and communication of
pipelines. Block A is the core-to-stage assignment table. Each
core has a core id (C1 to C48) which corresponds to an address
in the core-to-stage assignment table. Each address stores a
two-byte data. The upper byte denotes the pipeline id while
the lower byte denotes the stage id (if the core is sleeping, the
number is set to 0). Block B is the sleep core table. When a
core is set to sleep, the manager writes its core id into this
table, while the manager removes the core id of a core from
the sleep core table when this core is assigned to a pipeline.

The rest part of the memory is divided into blocks for
multiple pipelines (Pipeline1, Pipeline2, etc.). Each block (e.g.
Pipeline1) is composed of sub-blocks (as shown in Fig. 5):
Block C is an assigned core table, where the manager records
core ids of workers in the pipeline. Sub-blocks from B1 to
B𝑛 are the n buffers that are used for communication between
stages, and Mutex1 to Mutex𝑛 are for the mutual exclusion
(Mutex) locking mechanism for these buffers. Each Mutex
contains read and write pointers, empty and full signals, locks
to avoid race conditions during buffer access by multiple
readers/writers and data sequence signals. The data sequence
signal stores the sequential number of the last data token stored
in the buffer. The new data token (e.g. data token i) can be
sent to the buffer only when its previous data token (e.g. i-1)
is already recorded by the data sequence signal. Finally sub-
blocks D and E store the array of t (t1 to t𝑛) and the array
of unutilized time of each stage, which are used by adaptation.
The empty and full signals of each buffer are also used to detect
the write/read locking.

C. Throughput and Unutilized Time Measurement
When a final stage of a pipeline completes a data token,

the final stage creates a time stamp and stores it in the shared
memory in sequence as t1 to t𝑛. Time stamps t1 to t𝑛 are fetched
by the manager for throughput measurement (illustrated in
Equation 1) when n time stamps are available. After adaptation,
the time stamps are cleared by the manager so that new time
stamps can fill this area. The unutilized time of each stage is
stored in data structures in the area labeled as E in Fig. 5. Each
data structure is a software accumulator, to which all workers
of a stage send their unutilized time. When the empty and full
signal of a buffer indicates buffer empty, a core which is going
to read data from the buffer is locked by the write/read locking
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mechanism, and the core creates a time stamp to record the
beginning of the locking time. The core keeps checking the
empty and full signal of this buffer periodically until the lock is
released, and then creates another time stamp to record the end
of the locking time. The difference between the two time stamps
is the unutilized time for this core. When the empty and full
signal of a stage is full, the unutilized time is similarly recorded.
The unutilized time is accumulated in the software accumulator
of the stage. The manager gets the average unutilized time of a
core in this stage through dividing the sum of the accumulator
by the number of cores assigned to the stage.

D. Core-to-stage Assignment Implementation
The pointers of different blocks are known to cores (for

example, the addresses of A, B, etc. in Fig. 5 are known). When
a manager performs Algorithm 4. The function SelectCore(i)
returns a core id of a core from the stage i by checking assigned
core table. The function AwakeACore(S) wakes a core from the
sleep core pool and returns the core id of the core by checking
sleep core table. The returned core id is used in the function
Core-to-Stage(core id, stage id). Function Core-to-Stage(core
id, stage id) changes the task assignment of the core by writing
stage id to the corresponding address of core id in the core-
to-stage assignment table. At the start of one iteration, the
worker fetches the pipeline id and stage id from the core-to-
stage assignment table, and jumps to the new stage. The time
overhead of the worker to switch from one stage to the other
is 231ns (measured during experiments described below).

VII. RESULTS
We first execute one benchmark at a time to verify intra-

elasticity of the system, and then execute several benchmarks
in parallel to verify inter-elasticity of the system. Results of E-
pipeline are compared to reference designs (minimum number
of cores needed to satisfy throughput in the worst case) with
clock gating as used in [4]. In E-pipeline, when a core is added
to the sleep core pool, it is set to sleep (applying the same clock
gating technique as in [4]). Note that the work in [4] used a
large number of cores so that worst cases could be handled,
and the cores were switched off, when worst case scenario was
not present. E-pipeline, on the other hand, allows run-time task
reassignments from one stage to another or from one pipeline
to another. We use identical methods to find bottleneck stages,
non-critical stages and measure throughputs in both techniques
so that we can make a fair comparison.

Seven benchmarks with workload variations were
used. These were H.264 encoder (H264), MPEG decoder
(MPEGdec), MPEG encoder (MPEGenc), finite impulse
response filters (FIR), fast fourier transform (FFT), Compress
Algorithm (Compress), insert-sort algorithm (Insertsort). For
media applications, the throughput constraint was set to 30
frames per second; while for other applications, the throughput
constraint is set to the maximum throughput that can be
achieved in a hardware/software pipeline with 15 workers in
the reference design.

A. Experiment Setting
We build our E-pipeline using Tensilica’s cycle accurate

multiprocessor simulation tool – XTensa Modeling Protocol
(XTMP) [22]. The average memory delays of accessing caches,
local memories, the shared memory and the main memory are
set to 1 cycle, 3 cycles, 8 cycles and 64 cycles. We assume
that the shared memory is non-blocking for multiple accesses.
The clock gating technique is applied to both E-pipeline and
the reference designs for fairness of comparison. Based on the
LX 4 parameters given by XTMP (in 45nm technology), the
switching overhead for clock gating is set to 1 clock cycle, and
the dynamic power/leakage power is set to 41.23/4.25mW per
core. We assume that when a core is working, it consumes both
dynamic power and leakage power (45.48mW); while when a
core is set to sleep, it consumes only leakage power (4.25mW).
The power consumption is calculated by the number of working

cores multiplied by 45.48mW and the number of sleeping
cores multiplied by 4.25mW. We evaluate the average power
consumption throughout the life time of executing benchmarks.
In addition, the manager is considered to be a working core
and its power consumption is included in the measurement.

The adaptation starts every n iterations. Differing values
for n were explored. We change it from 4, 6, 10, 12 to 15,
and measure the average throughputs of all benchmarks with
different n. The average normalized throughputs with different
n are 1.044, 0.967, 1.016, 0.975 and 1.029 (the normalized
throughput constraint is 1). There was no clear pattern, due to
the varying benchmarks and the differing loads. However, for
the sake of experimentation we used n=10, which provided the
closest throughput compared to the throughput constraint, in
experiments for which the results are provided below.

B. Experiment Results
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Fig. 6: (a) Measured Throughputs in Different Benchmarks (b) Mea-
sured Power in Different Benchmarks

Fig. 6 shows the execution of running single benchmarks.
Fig. 6 (a) compares the normalized average throughputs be-
tween E-pipeline and the reference design with clock gating
(we set the throughput constraint as 1). Figure (b) shows the
normalized average power consumptions of E-pipelines and the
reference design (we set the normalized power consumption 1
when all cores of the reference designs are always working
without the manager). The average throughput of E-pipeline
(normalized 1.013) is slightly less than the reference designs
(normalized 1.016). This is due to the switching overhead for
reassigning cores to tasks in E-pipeline (typically 231ns in
experiments). However, E-pipeline achieves better power saving
(0.70) than the reference design (0.72) because it allows cores
to be reassigned from one stage to another. For example, E-
pipeline can reassign one core from Stage A to Stage B; while
the reference designs have to awake another core in Stage B,
and then set one core in Stage A to sleep, consuming extra
leakage power. The higher the leakage power is, the better
power saving E-pipeline can achieve. The management time
overheads vary from 678 to 1912ns. The 678ns is the time
overhead when the manager does not find a non-critical stage
and the adaptation function exits (line 9-10 in Algorithm 4). The
1912ns is the maximum time overhead, including adaptation
overheads and Mutex locking delays. This time only includes
intra-elasticity adaptation.

Fig. 7 shows the results of running benchmark combinations
in parallel. Fig. 7 (a) is the execution of the combination of
FIR and FFT; (b) is the combination of H.264 and MPEGdec;
(c) is the combination of MPEGenc and MPEGdec; (d) is
the combination of H.264, MPEGdec and MPEGenc; (e) is
the combination of H.264, MPEGdec and FFT; and (f) is the
combination of Insertsort, Compress and MPEGenc. The curves
at the bottom (labeled as A in Fig. 7) are the run-time numbers
of cores used for each pipeline in E-pipeline. The dotted curves
at the middle (labeled as B in Fig. 7) are the total number of
cores used in E-pipeline. The first curves from the top (labeled
as C in Fig. 7) are the numbers of cores used for the reference
designs with clock gating, and the second curves from the top
(labeled as D in Fig. 7) are the maximum numbers of cores used
in E-pipeline. Note that, the numbers of cores in Fig. 7 do not
count managers, as the number of managers do not change at
run time. From Fig. 7, we can see that resources are saved since
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Fig. 7: Run-time Core Usages (Excluding Managers)

the worst case workloads of different pipelines normally do not
occur at the same time. For reference designs with clock gating,
unnecessary cores in a pipeline can only be set to sleep rather
than share with other pipelines. Thus, the maximum number
of cores being used by pipelines is reduced in E-pipeline
by sharing cores between pipelines. The management time
overheads vary from 694ns to 2352ns. The maximum overhead
(2352ns) includes both inter- and intra-elasticity adaptation.
Compared to works in traditional methodology with adaptive
cores which take hundreds of milliseconds in management time
overheads [5], [6], [14], [15], the management time overheads
of E-pipeline are significantly small.

Table I summarizes system-level results of different bench-
mark combinations in Fig. 7 (i.e. (a) shows results of the
benchmark combination in Fig. 7 (a), and (b) shows results of
the benchmark combination in Fig. 7 (b), etc.). In Table I, E-
pipe denotes E-pipeline and Ref.D denotes the reference design.
Results include the total number of cores used in the system
at run-time (Number of Cores - the range and the average
number), the average power of the system (Power) and the
energy consumption of the system (Energy). Note that, mangers
are considered in system-level results. From the table, we can
see that E-pipeline can achieve nearly the same power saving
factor as the reference design with clock gating. However, the
E-pipeline can save an average 37.7% of resources compared
to reference designs (measured by the average number of cores
used in E-pipeline and the number of cores used in the reference
design). As the number of pipelines being executed increases,
the number of cores saved will continue to increase, allowing
additional applications to be executed in the many-core system.

TABLE I: Summary of Results (Including Managers)
Number of Cores Power (mW) Energy (mJ)
E-pipe Ref.D E-Pipe Ref.D E-Pipe Ref.D

Rang. Ave.
(a) 16 ∼ 29 18 33 803 820 111 113
(b) 17 ∼ 28 20 31 912 925 119 123
(c) 17 ∼ 27 20 31 931 948 127 129
(d) 22 ∼ 40 28 46 1296 1321 175 183
(e) 23 ∼ 38 26 46 1199 1233 160 163
(f) 21 ∼ 44 36 48 1651 1747 241 242

C. Conclusion
The paper describes E-pipeline, an elastic computing

method for power and resource efficiencies in on-chip many-
core systems. Based on task cloning mode, E-pipeline ex-
plores intra-elasticity and inter-elasticity for multiple hard-
ware/software pipelines operating in parallel on a chip. The

manager cores monitor the execution of each pipeline, change
task assignments of workers to adapt to workload variations
and meet throughput constraints, reuse cores between pipelines
by the use of a sleep core pool and set unnecessary cores to
sleep. In experiments on a platform of 48 cores, the results
show that E-pipeline can meet the throughput constraints for
pipelines with fine-grained workload variations, achieve the
same power efficiency as reference designs with clock gating,
and save 37.7% in the use of cores for a variety of benchmarks,
with roughly 2𝜇s adaptation overhead.
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