
Low-cost Checkpointing in Automotive
Safety-Relevant Systems

Carles Hernandez, Jaume Abella
Barcelona Supercomputing Center (BSC-CNS)

Abstract—The use of checkpointing and roll-back recovery
(CRR) schemes is common practice to increase the likelihood of
a task completing with the correct result despite the presence
of faults. However, the use of CRR mechanisms is challenging
in the severely constrained design space of safety-relevant em-
bedded systems, such as those controlling critical functions in
the automotive domain. CRR schemes introduce non-negligible
time and memory overheads that may jeopardize the feasibility of
their implementation. In this paper we propose a low-cost check-
pointing mechanism suitable for safety-relevant embedded systems
deploying light-lockstep architectures. The proposed checkpointing
mechanism increases the reliability of the system while keeping
timing and memory overhead low enough.

I. INTRODUCTION

The need for increased functionality has forced designers of
safety-relevant embedded systems to include more computation
and memory resources within a single chip. The integration
of a higher number of transistors in the same chip cannot be
achieved without using smaller technology nodes, that suffer
increased process variability. Small imperfections in transistors
and wires introduced in the manufacturing process become more
significant as they are a significant fraction of the feature size.
Additionally, as the number of transistors per unit area increases,
lower voltages are required to keep power density below a
certain threshold, thus making signals within the chip to be
more sensitive to electromagnetic disturbances [3].

Hardware faults may make programs in charge of some
safety-related functions lead to unexpected behaviour. When-
ever this occurs, hardware/software means must take care of
detecting those errors and recovering the system to a safe
state. Redundant execution is a common mean for error de-
tection in safety-relevant applications usually running on top of
light-lockstep architectures [9], [13], [14]. Additionally, error
handling methods like recovery through repetition are state-of-
practice mechanisms and considered in certification standards
(e.g., in ISO26262 [15]). These reasons make checkpointing
and rollback recovery (CRR) schemes convenient for safety-
relevant systems. CRR schemes are widely used in the high-
performance arena as a way to improve reliability at low cost.
Traditional CRR schemes store the processor’s state and data
memory into a safe storage to build a recovery point. A safe
recovery point is ensured as checkpointed data is compared by
means of redundant execution. However, regular checkpointing
mechanisms as those used in the high-performance community
cannot be directly used in the context of safety-relevant systems.

CRR schemes increase the likelihood of a task completing on
time with the correct result despite the presence of faults. As a
drawback, checkpointing increases task’s execution time and the
time overhead due to checkpointing must be considered in the
task scheduling feasability analysis. Furthermore, checkpointing
mechanisms designed for embedded systems require low and
bounded memory overhead. The straightforward approach to re-
duce memory overhead is to let the user control the points where

to inject checkpoints selecting those points where data require-
ments are minimum. For example, in the automotive domain
applications are developed according to the principles defined
in the AUTOSAR standard [2]. AUTOSAR divides applications
into atomic units called runnables, which are the smallest unit of
execution. Runnables communicate through shared memory and
message passing, and have clear input/output interfaces. Those
runnables are grouped into tasks and/or software components.
In the case of software components, they communicate only
through message passing. Thus, runnable, task and software
component boundaries are suitable points to checkpoint exe-
cution due to the clear interface among them, which limits
the amount of data that needs to be checkpointed. On the
other hand, the size of application components (runnables, tasks
and software components) can be arbitrarily large, thus not
allowing to find acceptable bounds for the time elapsed between
checkpoints, and so not having bounds for the time-to-error-
detection. In the extreme case we can find traditional retry-based
recovery schemes that do not save any checkpoint and thus, need
restarting the complete application on an error detection.

In this paper we (1) review appropriate CRR mechanisms
from the perspective of safety-relevant systems, (2) charac-
terize their impact in the timing of tasks, and (3) propose a
cost-effective error recovery mechanism suitable for systems
deploying light-lockstep architectures. The proposed recovery
mechanism combines coarse-grain full checkpointing (memory
and registers) with fine-grain light checkpointing (registers only)
for fast error detection and recovery with limited timing and
memory overheads. Results show that coarse-grain full check-
pointing scheduling guarantees are only slightly worse than
an ideal checkpointing scheme under very severe failure rates
while achieving outstanding reliability values for the failure
rates targeted by ISO26262 [15]. Additionally, low detection
latency bounds are also attained at very low cost with the use
of light fine-grain checkpointing.

II. COST-EFFECTIVE COARSE-GRAIN ERROR RECOVERY IN

AUTOMOTIVE SAFETY-RELEVANT SYSTEMS

A large number of mechanisms for error recovery exists in
the literature. Next we introduce CRR mechanisms for error
recovery in the context of automotive systems, and how they
relate to error detection by means of lockstep execution, which
is the main error detection mechanism for critical automotive
systems [9], [13], [14].

A. Checkpointing and Rollback Recovery

The most trivial recovery mechanism is the one that, on the
occurrence of an error, sets the system to a fail-safe state, resets
the system to reach an error-free processor state and retries
the execution of the application from the beginning. However,
this trivial approach that perfectly fits with ISO26262 recovery
mechanism requirements [15] has several limitations. On one
hand, error detection may occur long after error occurrence, thus
leading to long time wasted performing useless computation.

91978-3-9815370-4-8/DATE15/ c©2015 EDAA

While this is not a challenge for functional correctness, it
is detrimental for timing correctness since processor usage
increases, leading to missing the scheduled deadlines so that the
transfer to a fail-safe state occurs too late or the unavailability
of the system lasts too long. On the other hand, to cope with
the demand for increased functionality, it is desirable to allow
multiple safety-relevant applications execute in the same system
(e.g., on a multicore processor). If multiple such applications
with mixed criticalities run concurrently, resetting the system
may not be acceptable. For instance, an ASIL B1 or ASIL C
application must not be allowed to trigger a system reset if
an ASIL D application is also being run, as this would violate
the required isolation across different integrity levels making an
ASIL D application depend on lower integrity ones.

Therefore, fine-grain mechanisms are needed to recover from
errors selectively for each application, and to perform such
recovery short after the error occurs. CRR has been shown to be
a very popular solution in the high-performance domain [22],
[27]. CRR requires saving snapshots of the state of the appli-
cation periodically and, on an error, rollback the state to the
latest error-free snapshot. To perform a checkpoint at a given
point in the execution of a program the state of the processor
has to be saved in a memory component with enough storage
capacity. The straightforward approach to perform a checkpoint
is to suspend the execution of the application while the contents
of processor’s memory and registers (so its architectural state)
are written in memory. Recovery is carried out by reloading the
original application binary file and restoring the processor state
that was checkpointed.

The size of a checkpoint depends on the approach used. There
are two main different checkpointing approaches: full and in-
cremental checkpointing. Full checkpointing requires saving all
application’s architectural state (its memory space and registers
contents), so it is very costly in the general case as the data
used at a given point in time can be huge. On the contrary,
incremental checkpointing, like the undo log based checkpoint-
ing technique [7], log all the memory writes performed by
the program after the last checkpoint. Memory transactions
are intercepted by code instrumentation strategies that allow to
populate the log buffer. To avoid an unacceptable overhead of
searching for duplicate entries every write transaction generates
a new entry in the log. This makes undo log checkpointing
techniques to offer very poor memory guarantees as the size of
the log cannot be upperbounded.

Although more efficient techniques have been devised to
identify the faulty module so that rollback is not needed, they
have been proven only on some particular blocks smaller than
full cores [26] and so, they cannot be straightforwardly adopted
in the context of safety-related lockstep-based systems.

B. Reducing Memory Overhead

The best way to limit the memory overhead required to save
applications’s data is to control the exact point where check-
points are performed so that they occur when the data volume to
be checkpointed is known and low. We propose to do this by tak-
ing into account the mechanisms used for communication across
components in the context of automotive systems. For example,
in the context of AUTOSAR, applications are divided into
atomic units called runnables. Runnables communicate among
them through shared memory and message passing. Runnables

1ISO26262 standard defines four different Automotive Safety Integrity Levels
(ASIL), from A to D, being D the highest one, and so the one where the strictest
validation and verification means are required.

Fig. 1. Example of an AUTOSAR application divided into software compo-
nents, tasks and runnables. A potential schedule is shown at the bottom.

can be grouped in two different ways: (1) runnables running
with the same period (e.g., every 10ms) can be grouped in
tasks. Also, runnables performing a particular functionality can
be grouped into software components. Therefore, each runnable
belongs to a task and to a software component simultaneously.
Tasks, like runnables, communicate among them through shared
memory and message passing. Software components, instead,
only communicate among them through message passing. Thus,
the user can identify the data shared across runnables, tasks and
software components and, based on their respective execution
periods determine when checkpoints need to occur so that the
amount of data checkpointed is affordable.

We illustrate this with the example in Figure 1. In this figure
we see 6 runnables (from R1 to R6), organized into 3 software
components (SC1, SC2 and SC3) and 3 tasks (T1, T2 and T3).
Next to each runnable it is indicated its execution frequency.
Straight lines indicate communication through shared memory
whereas dashed lines indicate communication through message
passing. We also show a potential schedule of the runnables
in time. In this example, the user could set up a checkpoint
every 20ms right after R6, thus saving R2 output data sent to
R4 and, once every two checkpoints, R5 output data sent to R6.
An analogous analysis can be done for the avionics domain for
the functions in a software partition as defined in IMA [1].

C. CRR Schemes in the Context of Light-Lockstep Architectures

The main principle behind lockstep execution is the replica-
tion of computation in different pieces of hardware comparing
their outputs for error detection. Although comparison can occur
at different granularities (pipeline stage, instruction, off-core
activity, system level, etc.), light-lockstep systems where error
detection occurs at off-core level has been shown to be a very
convenient solution [11].

In light-lockstep architectures, error detection is performed
by comparing the transactions that are propagated to the on-
chip bus to find any possible mismatch. If a CRR mechanism
is used, whenever an error is detected by means of the parallel
redundant execution, the system is rollback to a previous safe
checkpoint. The lockstep architecture ensures stored data to be
safe as all data is exposed to the on-chip bus when stored
in memory. In a lockstep system, whenever a checkpoint is
performed the possible errors latent in the processor that may be

92 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

stored in the architectural registers or operative system kernel
registers, are automatically exposed and therefore, detected by
the lockstep architecture. Hence, CRR schemes running in
a lockstep architecture have an upperbounded error detection
latency determined by the checkpoint interval, as this is the
maximum latency needed to detect latent errors in the processor.
In this context, having frequent checkpoints is desirable to
maintain error detection latency low. Note that having a low
error detection latency is crucial to increase the reliability of
the system. On one hand, assuming a given fault probability, a
deadline will be satisfactorily reached with a given probability
as well. On the other hand, when errors are caused by permanent
faults the system needs to transition to a fail-safe state. To
allow the system distinguish between transient and permanent
faults, fault diagnosis is required. Fault diagnosis is performed
according to error persistence [8].

III. ERROR DETECTION AND RECOVERY LATENCY

ANALYSIS

In this section we show that a relevant number of errors
remain dormant in the processor for a long time. This makes
error detection latency to be determined by the checkpointing
frequency. Given that low-cost checkpoints are only possible
at certain points in the execution of an application, error
detection latency bounds may be too high to guarantee the
timing correctness of the system. Therefore, if low-cost light
lockstep is delivered for error detection, further means must be
provided to timely detect errors.

A. Fault Injection Experiments

We have characterized the timing behaviour of errors in the
processor by injecting both single bit upsets (SBU) and per-
manent faults2. Transient and permanent faults can be injected
in any processor component. However, in our experiments we
have injected faults only in the register file as faults in other
components are usually quickly exposed to the shared bus and
thus, effectively detected by the lockstep core, or reach a register
in few cycles. For instance, the instruction cache (IL1) is only
written with data received through the bus, so the core can only
corrupt the IL1 requesting wrong addresses, which would be
detected by the lockstep core. Similarly, the data cache can
be written with new data fetched from the bus, where errors
would be detected analogously to those of the IL1, or by store
operations. In our particular architecture we consider write-
through caches, as in many processors used in safety-relevant
applications, so write operations are immediately propagated to
the shared bus, thus allowing again the lockstep to immediately
detect errors.

We use the EEMBC Autobench benchmark suite [24], which
is a well-known suite reflecting the current real-world demand
of some automotive embedded systems. Benchmarks are ex-
ecuted on a SystemC processor model resembling the AURIX
processor [14]. The simulation tool used is an enhanced version
of the Soclib simulator which is a widely known open-source
tool for virtual prototyping [19].

Given Nreg registers, each benchmark is executed Nreg ·100
times, so 100 times per register. On an execution the value of the
particular register under consideration is poisoned with a fault
at a cycle chosen randomly across the number of cycles of a
fault-free execution. Permanent faults remain in the register after

2Although multiple-bit upsets (MBU) have been regarded as frequent enough
not to be dismissed [21], they would also be detected by lockstep processors
analogously to SBU.

rspeed cacheb canrdr iirflt pntrch puwmod tblook ttsprk a2time
10000 100000

1

10

100

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

tra
ns

pe
rm

rspeed cacheb canrdr iirflt pntrch puwmod tblook ttsprk a2time aifirf basefp Average

Lo
ng

 La
g E

rro
rs

(%
)

10000 100000

Fig. 2. Percentage of Long Lag Errors due to permanent and transient faults.

they show up in a given cycle while transient faults disappear
after the erroneus bit register is overwritten. To compute error
detection latency we measure the number of cycles elapsed
since the fault is injected until it is detected in the shared bus.
Faults undetected by the end of the execution are ignored since
the program finishes execution and they have not reached any
observable device (memory or I/O). Analogously, faults that
disappear without propagating [12], [18] become also irrelevant
(e.g., because the register holding the fault is overwritten before
the fault propagates).

Figure 2 shows the fraction of permanent and transient errors
with detection latencies above 10,000 and 100,000 cycles.
A significant fraction of the total faults for the majority of
applications has very long detection latencies. On average,
around 5% and 1% of the faults have detection latencies above
100,000 cycles for permanent and transient faults, respectively.
This confirms that the presence of long-lag errors cannot be
neglected.

B. Lightly Verbose Lockstep Operation

Light lockstep architectures can also provide error detection
timing guarantees if they operate in LIght VErbose (LiVe) mode
as proposed in [11]. LiVe operation relies on sending register file
contents through the network periodically so that error detection
features of lockstep can detect any discrepancy across values in
the different cores.

LiVe defines a Maximum Detection Interval (or MDI for
short). Such MDI is the maximum time it can elapse since a
register holds wrong data until such value is sent to the network.
Enforcing the MDI not to be exceeded requires each register to
be sent to the network every MDI cycles at most.

Register communications are performed by means of non-
blocking write operations to a non-cacheable destination address
not mapped into any device. By doing so, the register value
is exposed into the network and when the core executing
the trailing thread sends this register, the checker component
attached to the on-chip bus snoops the value for error detection.
Note that LiVe has no functional impact due to the extra write
operations.

Overall, the maximum latency elapsed since an error occurs
until it is detected is determined by (i) how long an error takes
to reach a register (typically very few cycles), how much time
is elapsed since a register holds a wrong value until it is sent
through the network (MDI cycles at most), and how long it
takes since a value is sent through the network until it reaches
the trailing core and the error is eventually notified (again,
typically few cycles). Thus, maximum error detection latency
mostly depends on MDI [11].

IV. COST-EFFECTIVE FINE-GRAIN CHECKPOINTING IN

LIGHT-LOCKSTEP ARCHITECTURES

The low-cost checkpointing (LC) mechanism proposed in this
paper is based on the fact that increasing checkpoints frequency

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 93

is not a valid mean to improve error detection latency. On
the contrary, in this paper we consider that checkpoints are
generally only doable at certain points during the execution of
a task in order to avoid the need for storing the whole shared
memory space (or at least a non-negligible fraction of it). The
exact point when checkpoints are cheap depends on the concrete
application. For instance applications with reduced intertask
dependences may allow checkpointing at several points. How-
ever, as a rule of thumb, checkpointing costs are minimized at
entity (task, runnable, software component) boundaries. At those
points only the messages or shared variables containing the data
to be exchanged amongst entities have to be stored in memory.
In any case, checkpointing frequency cannot be unlimitedly
increased as checkpointing timing overheads also increase with
checkpointing frequency. For the sake of commodity, we abuse
the term task and use it to refer to entities in the rest of the
paper.

The proposed LC scheme combines the use of both coarse-
grain Full and fine-grain Light checkpoints. Light checkpoints
(only registers) are performed using the light lockstep system
operating in LiVe mode as explained in Section III-B. This
allows us to reduce error detection latency bounds of those
errors that remain dormant in the cores for a long period. By
triggering LiVe within a Full checkpointing interval (IF) the
maximum detection interval is set to the Light checkpointing
interval (IL) without incurring in any memory overhead. Note
that LiVe does not store any data in memory. Triggering LiVe
several times within IF incurs in the overhead of periodically
sending the contents of the registers to a given memory address.
However, the time overhead of Light checkpointing is much
smaller than the overhead of performing a task Full checkpoint,
and upperbounded [11].

While Light checkpointing provides nearly-immediate error
detection, Full checkpointing is still needed given that, on
an error detection, the snapshot of the memory and registers
captured by Full checkpointing needs to be restored.

Figure 3 shows timing diagrams of a regular checkpointing
mechanism and the proposed LC scheme. In a regular check-
pointing mechanism (Fig 3 left) the maximum error detection
latency (Δe) is set by the checkpointing interval (IF). On the
contrary, with our LC proposal Δe is reduced by inserting
Light checkpoints between two consecutive Full checkpoints.
The number of Light checkpoints in a given IF reduces average
and maximum detection latency.

Regular CRR mechanisms have an overhead that depends on
the cost of saving the checkpoint (CF), the time required for
recovery (R), and the number of faults in a given time window.
In our case we also have to include in the equation the cost
of performing LiVe checkpoints (CL) in a period T3. Assuming
that faults follow a Poisson distribution with a fault rate λ, the
average number of faults in a period T is equal to λT . The total
overhead of our LC proposal in a period T is as follows:

O(T) = CF + λT (R+ T) + CL (1)

The overhead is, therefore, the cost of a Full checkpoint (CF),
of all Light checkpoints (CL), and the time required to recover
and reexecute (R + T) multiplied by the expected number of
errors in the period (λT).

In a regular CRR scheme, the total cost of recovery in case
of a dormant error is equal to R+T . When combining Full and

3Note that CL stands for the cost of all LiVe checkpoints between consecutive
Full checkpoints.

Light checkpoints the cost of recovery is reduced as, on average,
errors are detected in T/2. The overhead per unit time is a con-
vex function that can be computed dividing the overhead, shown
in Equation 1, by T. The minimum of this function represents
the checkpointing interval [5] that minimizes the overhead of
the checkpointing mechanism for a given λ. In a regular CRR
mechanism the optimal checkpointing interval is IF =

√
C/λ

while when using Full + Light, assuming the overhead of Light
checkpoints is negligible, the optimal checkpointing is given
by IF =

√
2C/λ. In other words, when our checkpointing

mechanism is deployed a given target reliability can be achieved
with a reduced checkpointing frequency.

However, in a realistic scenario memory overhead costs
cannot be neglected. Under this premise the checkpointing
frequency is determined by the timing characteristics of the
application. We define the following procedure to determine the
intervals for Full and Light checkpoints.

• Given an application we identify the point at which the
cost of Full checkpointing is low. Once these points are
identified the interval for Full checkpointing IF is known.

• With the given IF we compute the actual Pτi and the error
detection latency bounds. If these values are acceptable the
process finishes. If Pτi is below the target probability or
the detection latency is above the acceptability threshold
we insert Light checkpoints until the target probability is
reached and/or the detection latency is below the accept-
ability threshold . The resulting IL is the interval we use
for Light checkpoints.

V. LIGHT-CHECKPOINTING TIMING ANALYSIS

In this section we characterize the timing behaviour of entities
in the presence of faults with the proposed LC mechanism to
derive expressions to compute Pτi . In particular we show the
expressions for one task running in lockstep and several tasks
in the lockstep. Expressions in this section are given for faults
following a Poisson distribution. Analogous expressions can be
derived for other fault models like those in [17].

A. One task in Lockstep

With the proposed checkpointing scheme the worst-case
overhead recovery of a task running in lockstep in isolation
is determined by the cost of placing Full checkpoints (CF),
the costs of setting Light checkpoints (CL), the time to log
shared data (CS), and the time to recover the system (R). Let
us define Wi to be the worst-case execution time of a task τi.
In the presence of k fault ocurrences the worst-case execution
time can computed as:

Wki = Wi + CF + CL + k ·R (2)

Given a deadline (D) for task completion we have to guaran-
tee that Wki ≤ D. Provided that the number of Full checkpoints
is computed according to the procedure explained in Section IV,
we can solve Equation 2 to compute the maximum number of
faults (kmax) that can be tolerated within the provided deadline
[7]. Finally, the probability of a task completing on time is equal
to the probability (P) that no more than kmax faults occur within
a time window D. As faults are assumed to follow a Poisson
distribution P (k < (kmax + 1)) is given by:

Pτi =

kmax∑

0

e−λD(λD)n

n!
(3)

94 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 3. Comparing traditional CRR schemes and the proposed LC.

B. Multiple tasks in Lockstep

For the case of several tasks running concurrently in lockstep
we consider a standard fixed priority scheme with a finite num-
ber (N) of tasks with minimum interarrival rate T , a worst-case
execution time Wc, deadline D, and priority P . We consider
that tasks with shorter deadlines have higher priority, although
our analysis can be easily extended to different hypotheses.
All tasks are deemed to start at T = 0. The overhead of the
operating system (OS) to schedule tasks is neglected for the sake
of clarity. Let Fx be the extra computation required by task x
if an error is detected during its execution. The value of Fx is
the time required for the task full re-execution or for the partial
re-execution of tasks in case checkpoints are inserted within
task boundaries. When considering multiple fault ocurrences
characterized by their maximum interarrival rate Tf , the worst-
case response time Ri for a task i can be computed as [4]:

Ri =Wci +Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Wcj +

⌈
Ri +Δe

Tf

⌉
max

x∈hep(i)
Fx (4)

Δe stands for the time an error remains dormant in the system
(from occurrence until detection). As explained before, for those
errors that remain long in the processor, the detection latency
Δe is determined by the CRR scheme, i.e. errors only show
up when the appropriate mechanism is triggered. In a coarse-
grain checkpointing scheme Δe = IF while when using a
combination of coarse-grain and fine grain checkpointing we
have Δe = IL = IF /l = being l the number of intermediate
Light checkpoints within the Full checkpointing interval. Note
that Δe cannot be arbitrarily reduced as the cost of Light
checkpoints must be considered as well.

The immediate benefit of using the proposed checkpointing
mechanism is the improvement on the schedulability of the
system for a given fault arrival interval. Sensitivity analysis can
be applied to Equation 4 to find the minimum fault interarrival
interval (TF) under which the system remains to be schedulable.
Once TF is known, the probability that during lifetime (L) no
two faults arrive within a given time window (w) lower than
TF is computed using the following Equation [4]:

P (w ≥ TF) = e−λL{1 + λL+
∞∑

n=2

(λL− (n− 1)λTF)
n

n!
} (5)

VI. EVALUATION

In this section we evaluate the proposed LC checkpointing
mechanism using a real automotive application. The application
we use is an Engine Management System (EMS). An EMS
is a typical automotive embedded real-time system devoted to
control the amount of fuel and the injection time to achieve
smooth revolutions of the engine. The EMS application consists
of eleven cyclic tasks with periods of 1, 4, 5, 8, 16, 20, 32, 64,
96, 128 and 1024 ms. As the amount of data shared across
tasks is very low, we identify task boundaries as suitable points
to introduce Full checkpoints. Further details on the application

1

0

0,2

0,4

0,6

0,8

1

Ideal 16 32 64 128

Sc
he

du
lin

 g
Pr

ob
ab

ilit
y

= 1,00E-03 = 1,00E-04

Fig. 4. Probabilistic scheduling guarantees for different failure rates and
checkpointing intervals (L=3600s).

Fig. 5. Scheduling guarantees achieved with Coarse-grain (CG) and Coarse-
grain plus Fine-grain (CG+FG) checkpointing (λ = 10−7).

can be found in [23]. For fault injection, which is performed
analytically (not through Monte-Carlo experiments), faults are
considered to follow a Poisson distribution with rate λ. Figure
4 shows the probability of the system to remain schedulable at
different failure rates when coarse-grain checkpoints are placed
at 16, 32 and 128 ms. Obviously, shorter checkpointing intervals
increase the probability of the system to remain schedulable.
However, even for high failure rates the probability of schedul-
ing with coarse-grain checkpointing is only 9% worse than an
ideal checkpointing scheme4. For the hardware failure rates
targeted by ISO26262, that are in the order of 10−11s−1 for
ASIL-D applications, the reliability achieved using the coarse-
grain checkpointing scheme suffices.

As stated before the main drawback of using a coarse-
grain checkpointing scheme is the side effect this has on the
maximum detection latency. In this regard, our proposal makes
use of a low-cost fine-grain checkpointing scheme on top of
the coarse-grain checkpointing mechanism to allow reduced
detection latencies. Figure 5 shows how the improvement in
the detection latency bounds increases the reliability of the
checkpointing algorithm. In particular, it shows the probability
of a catastrophic scenario where an ASIL-D function does
not complete in time, thus jeopardizing safety. As shown, our
approach reduces such probability by one order of magnitude.

4We consider as ideal checkpointing scheme the one having infinite frequency
and zero overhead costs

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 95

Further, note that, although λ = 10−7, so 4 orders of magnitude
higher than for ASIL-D, it resembles the case of having 10,000
cars running such an application. Moreover, another important
benefit of having reduced latency bounds is the improvement
on the worst-case detection time that allows the system to
transition to a fail-safe state in the presence of permanent faults
as checkpointing cannot recover from those faults.

VII. RELATED WORK

Safety-relevant systems pose a number of constraints in
terms of coverage, certifiability and cost that limit the error
detection and correction solutions that can be adopted in these
domains. Typically, industry in these domains relies parity and
error correction codes for memory devices [6] and lockstep
for cores as this allows to deal with transient and permanent
faults simultaneously [20], [13], [9], [14]. In this context, safety
implications of faults with triple modular redundancy (TMR)
have been investigated [25]. However, TMR is more expensive
than dual modular redundancy needed for lockstep execution,
and thus to the best of our knowledge it has not been used in
the automotive domain.

Lockstep mechanisms have been regarded as effective to
attain functional correctness and light versions have been de-
ployed in processors used for safety-relevant systems [14], [9],
[28]. Light lockstep, however, fails to attain any kind of timing
guarantees, which are mandatory for those systems. Recently,
LiVe has been proposed to close the gap by performing frequent
checks of the processor state at low cost to expose any error
with a low and upperbounded latency [11]. However, recovery
mechanisms matching those error detection ones have been
neglected so far for multicores, as multicores have not been
widely deployed in safety-relevant systems yet and have been
considered only from a general-purpose perspective [10]. Only
some approaches perform fault-tolerant scheduling of tasks in
non-lockstep systems for error detection and recovery [16],
[29]. In this paper we review the use of some error recovery
mechanisms in the context of safety-relevant multicores and
show how they fail the intent. Instead, we show how by smartly
combining light lockstep processors implementing LiVe and
conventional error recovery mechanisms, timing guarantees can
be attained also for error recovery.

VIII. CONCLUSIONS

The need for increased performance for safety-related sys-
tems leads to the use of multicore processors running mixed-
criticality workloads simultaneously, where each application, if
critical, can be run in lockstep mode. While recovery in single-
core systems can be performed by means of resetting the system
in the context of the automotive domain, this solution is no
longer valid with mixed-criticality workloads as other critical
functions may be running in the system. Moreover, restarting
tasks also incurs a significant performance loss that may lead
to deadline misses. In this paper we propose a cost-effective
combination of coarse-grain and fine-grain checkpointing that
enables the scheduling of several applications by guaranteeing
quick task’s recovery on an error for those hardware failure rates
targeted in the ISO26262 automotive safety standard.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the ARTEMIS Joint Undertaking VeTeSS project under
grant agreement number 295311. This work has also been
funded by the Ministry of Science and Technology of Spain

under contract TIN2012-34557 and HiPEAC. Jaume Abella is
partially supported by the Ministry of Economy and Competi-
tiveness under Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.

REFERENCES

[1] Guidelines and methods for conducting the safety assessment process on
civil airborne systems and equipment. ARP4761, 2001.

[2] AUTOSAR. AUTomotive Open System ARchitecture, 2012. http://www.
autosar.org.

[3] C. Bolchini et al. High-reliability fault tolerant digital systems in
nanometric technologies: Characterization and design methodologies. In
DFT, 2012.

[4] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. Probabilistic
scheduling guarantees for fault-tolerant real-time systems. In Dependable
Computing for Critical Applications 7, 1999, pages 361–378, Nov 1999.

[5] K. M. Chandy. A survey of analytic models of rollback and recovery
strategies. IEEE Transactions on Software Engineering, 1975.

[6] C.L. Chen and M.Y. Hsiao. Error-correcting codes for semiconductor
memory applications: A state of the art review. IBM Journal of R&D,
28(2):124–134, 1984.

[7] N. Chen, Y. Yu, and S. Ren. Checkpoint interval and system’s overall
quality for message logging-based rollback and recovery in distributed
and embedded computing. In ICESS, 2009.

[8] J. Espinosa, D. de Andres, J.C. Ruiz, and P. Gil. The challenge of
detection and diagnosis of fugacious hardware faults in VLSI designs.
In Dependable Computing, volume 7869 of Lecture Notes in Computer
Science, pages 76–87. Springer Berlin Heidelberg, 2013.

[9] Freescale Semiconductor. Qorivva MPC5643L Microcontroller Data
Sheet, 2013.

[10] D. Gizopoulos, M. Psarakis, S.V. Adve, P. Ramachandran, S.K.S. Hari,
D. Sorin, A Meixner, A Biswas, and X. Vera. Architectures for online
error detection and recovery in multicore processors. In DATE, 2011.

[11] C. Hernandez and J. Abella. Live: Timely error detection in light-lockstep
safety critical systems. In DAC, 2014.

[12] D. Holcomb, W. Li, and S.A. Seshia. Design as you see FIT: System-level
soft error analysis of sequential circuits. In DATE, 2009.

[13] IBM. PowerPC 750GX Lockstep Facility. Application note, 2008.
[14] Infineon. AURIX - TriCore datasheet. highly integrated and performance

optimized 32-bit microcontrollers for automotive and industrial applica-
tions.

[15] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[16] V. Izosimov. Scheduling and Optimization of Fault-Tolerant Distributed
Embedded Systems. PhD thesis, Linkoping University, 2006.

[17] S.-W. Kwak, B.-J. Choi, and B.-K. Kim. An optimal checkpointing-
strategy for real-time control systems under transient faults. IEEE
Transactions on Reliability, 50(3):293–301, Sep 2001.

[18] J. Liang, J. Han, and F. Lombardi. Analysis of error masking and restoring
properties of sequential circuits. IEEE Trans. Comput., 62(9), 2013.

[19] LiP6. SoCLib. www.soclib.fr/trac/dev.
[20] R.E. Lyons and W. Vanderkulk. The use of triple modular redundancy to

improve computer reliability. IBM Journal of R&D, 6(2):200–209, 1962.
[21] M. Maniatakos, M.K. Michael, and Y. Makris. Investigating the limits of

AVF analysis in the presence of multiple bit errors. In IOLTS, 2013.
[22] P.J. Meaney, S.B. Swaney, P.N. Sanda, and L. Spainhower. IBM z990

soft error detection and recovery. Device and Materials Reliability, IEEE
Transactions on, 5(3), 2005.

[23] M. Panic, S. Kehr E. Quinones, B. Boeddeker, J. Abella, and F.J. Cazorla.
Runpar: An allocation algorithm for automotive applications exploiting
runnable parallelism in multicores. In CODES+ISSS, 2014.

[24] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[25] S. Resch, A. Steininger, and C. Scherrer. Software composability and
mixed criticality for triple modular redundant architectures. In SAFE-
COMP, 2013.

[26] P. Reviriego, C.J. Bleakley, and J.A Maestro. Diverse double modular
redundancy: A new direction for soft-error detection and correction.
Design Test, IEEE, 30(2), 2013.

[27] C. Rusu, C. Grecu, and L. Anghel. Coordinated versus uncoordinated
checkpoint recovery for network-on-chip based systems. In Workshop on
Electronic Design, Test and Applications, 2008.

[28] STMicroelectronics. 32-bit power architecture microcontroller for auto-
motive SIL3/ASILD chassis and safety applications.

[29] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in
embedded real-time systems. In DATE, 2003.

96 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

