
Data Mining Diagnostics and Bug MRIs for HW Bug
Localization

Monica Farkash
University of Texas
Austin, TX, USA

Monica.Farkash@utexas.edu

Bryan Hickerson
IBM

Austin, TX, USA
bhickers@us.ibm.com

Balavinayagam Samynathan

University of Texas
Austin, TX, USA

balavins@cerc.utexas.edu

Abstract—This paper addresses the challenge of minimizing
the time and resources required to localize bugs in HW dynamic
functional verification. Our diagnostics solution eliminates the
need to back trace from point of failure to its origin, decreasing
the overall debugging time. The proposed solution dynamically
analyses data extracted from sets of passing and failing tests to
identify behavior discrepancies, which it expresses as source code
lines, coverage events and timing during simulation. It also
provides a visual diagnostic support, an image of the behavior
discrepancies in time which we call a Machine Reasoning Image
(MRI). This paper describes in detail our data mining solution
based on coverage data, HDL hierarchies and time analysis of
coverage events.

Our approach brings a data mining solution to the problem of
HW bug localization. It defines new concepts, provides in-depth
analysis, presents supporting algorithms, and shows actual
results on archetypical problems from PowerPC core verification
as an industrial application.

Keywords— diagnostics; bug localization; debugging;
verification; EDA tools;

I. INTRODUCTION
Hardware development is a lengthy and resource intensive

process. It requires not only an extensive effort on the design
side, but an equivalent endeavor is presented in the functional
verification realm of which debugging is the most time
consuming activity [1].

There is an unsparing amount of tools that help identify a
discrepancy between expected and exhibited design behavior
but there is an unpredictable timespan from the origin of a
problem to its detected manifestation, therefore identifying the
origin of the exposed discrepancy is a major challenge.

While tools support stepwise inspection of the design, back
tracing the problem from its manifestation to its origin remains
manual labor intensive. Hardware designs are inherently
parallel therefore back tracing requires inspecting and vetting a
large amount of concurrent behavior which can span over an
unbounded number of cycles and all but one are false tracks.

A faster debugging approach starts with an assumption of
the bug origin and evaluating the correctness of this
assumption. This is significantly cheaper and faster than full
back tracing, requiring only forward simulation from a known

point in the test. Guessing the faulty behavior origin is a
subjective process based on experience and detailed design
knowledge. For example a data discrepancy in a memory
location can stem from a large variety of problems like
coherency, exceptions, arithmetic operations, unexpected order
of events, or address translation. Excluding them one by one as
a potential cause is more expensive than simply proving an
incorrect assumption, for example, a given exception was
wrongly triggered.

 There is a significant body of work in the area of
automatic debugging [2]. In HW a number of automatic error
localization methods have been proposed, mainly using formal
reasoning [3]. They are generally limited to identifying failures
involving a very small number of gates and may return
hundreds of candidates, which may not be helpful in manual
debug. Our solution approaches the problem from a completely
different angle. It works at a high RTL level, inexpensively
using already existing coverage data, pointing to differences of
behavior distributed in time that involve large parts of the
design, (not bound to a single-point of failure).

Data mining solutions were also successfully used previous
for related problems [4]. In SW there is a wealth of work in
using data mining approach for SW feature identification and
bug localization [5]. Our solution follows the lessons learned
from the SW analysis, with the necessary creative changes
required to apply it in HW.

This paper reveals a data mining process to identify
atypical behavior to support the HW bug localization effort,
pointing to the probable origin of the behavior discrepancy.
The described solution provides the relevant information as
functionality defined by the coverage events critical for
distinguishing the failing from the passing tests, the source
code statements relevant to the behavior difference, and the
location within the design (HDL hierarchy) of the exhibited
behavior. It also identifies tests which exhibit the faulty
behavior early during simulation and provides the exact timing
of the events for debugging windows with a visual debugging
support.

II. HW VERIFICATION PROCESS
Dynamic functional verification implies running tests on a

HW implementation of the design and comparing exhibited to
expected behavior. Monitors are implemented Boolean

79978-3-9815370-4-8/DATE15/ c©2015 EDAA

functions added to the execution. Correctness monitors identify
and flag discrepancies between the monitored behavior and the
expected one. Coverage monitors and events gather
information regarding the design areas that were exercised
during the simulation run.

Numerous tests are run daily with the majority passing. The
few tests failing due to the same monitors, like wrong cache
state or incorrect TLB invalidation are considered expressions
of the same bug. These fails are grouped together and
distributed for debugging. The debugging starts with choosing
one test from such a group, identifying the bug manifestation
event, and back tracing from there to the potential origin of the
problem.

Tests consist of both initial conditions for the environment
and instruction steams (supported ISA instructions). Instruction
streams can be specifically chosen for specific hardware
stimulation or randomly chosen. Automatic test case generators
are used to generate deliberately dissimilar tests within a given
verification plan [6].

A test can contain numerous instructions which, while
running, can interleave in time while sharing resources. They
change not only data but also the conditions in which the next
instruction finds a resource, like control registers, cache line
state, or buffer state. Due to these internal interactions the
testing conditions while running a test are not the sum of the
testing conditions for each instruction separately.

To compare with Software, each instruction could be
considered as a different SW thread that runs in parallel with
all the others, in a highly concurrent, resource sharing and
critically time sensitive SW system [7]. The number of
potential order of interleaving concurrent activities increases
with the test size and renders existing SW solutions which
require an analysis of all possible interleaving alternatives.

III. HW DYNAMIC ANALYSIS
The general idea in SW dynamic feature analysis is to

compare the code coverage of a test that exhibits the targeted
behavior to the one that does not. Then remove from the
analysis the code lines covered in the same sequence, rendering
them irrelevant, and identify the code lines that differ, the
origin of the difference, and the conditions that trigger it.

We offer a HW version of the above analysis for bug
localization and diagnostics which we call Applied HW
Dynamic Behavior Analysis (ADBA), which is based on three
creative decisions:

A. Utilizing event coverage
We replace the use of code coverage with event coverage

because we look to expose the functionality that triggered the
difference in behavior, and coverage events represent
exercised functionality.

B. Keeping irrelevant code
A SW problem can be reduced by removing irrelevant

code from its analysis. In HW a slight change in the test or in
its initial conditions can trigger an avalanche of discrepancies
due to the natural HW reaction to input (e.g. cache

instructions, bus transaction interleaving, timing of servicing
exceptions). This means that all the code up to the
manifestation of the problem is to be considered relevant or
one has to invest expensive effort into identifying an eluding
smaller sub-test. Our solution allows the tests as-is, due to the
next decision.

C. Using statistical approach
The available tests, failing or passing, being diverse by

design, challenge us with intentionally dissimilar coverage
results from which we need to select the coverage events that
best describe the behavior discrepancy. Hence we turn to using
a statistical approach to comparing tests. We can learn by
comparing the regressive components of the passing and
failing tests groups.

Thus, following the decisions above, ADBA compares the
event coverage of failing and passing tests using data mining
to identify the coverage events that define the difference in
behavior as well as to provide visual debugging support.

IV. APPLIED HW DYNAMIC BEHAVIOR ANALYSIS
Our Applied HW Dynamic Behavior Analysis approach

provides a bug origin assumption based on HW dynamic
analysis. The debugging process consists therefore of
validating the assumption, a fast and easy process compared to
back tracing all possible reasons for the exhibited faulty
behavior.

A. ADBA usage
ADBA is not meant to completely replace traditional

debugging but to be used as a supporting method alongside it.
Traditionally, the verification engineer would start with back
tracing on subjective assumptions. We replace those with
objectively extracted information based on the data mining of
the dynamically gathered data. Our approach guides the
verification engineer to the most likely origin of the difference
in behavior, the coverage events that best express the
functionality of the difference, and the exact timing within the
test. This provides a head-start in the debugging challenge with
disregard to the experience and detailed knowledge of the
design presented by the verification engineer.

For example back tracing to reach the conclusion that an
asynchronous external interrupt is not being gated properly is
very difficult, while, if suspected, vetting it is easy and fast by
comparison.

B. Deviant Behavior
We call the behavior discrepancy, the difference between

the expected and the exhibited behavior, deviant behavior.
Only if the deviant behavior is ruled as being faulty, we will
consider it as faulty behavior.

C. Coverage as Bug Indicators
Coverage events by their nature do not represent bugs, nor

do deviant behaviors. For example reaching a buffer full state
is not an indication of a bug, nor is a data storage interrupt.
They can happen in both failing and passing tests. They
become such indicators only in a given context. This is why
they can point to the most likely origin (as in functionality,

80 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

code source statement, and timing within test) of a deviant
behavior, not immediately define it.

D. ADBA Assumptions
Our problem of finding the relevant coverage events that

characterize the deviant behavior can be re-defined as the
problem of stepwise removing the coverage events which are
not relevant, to expose only the relevant functionality. We base
this process on three basic assumptions:

Origin: We assume that all failing tests have in common
the origin of the deviant behavior, the functionality that
takes all the failing tests on a different path than expected.
If there are coverage events in or very close to that
decision, we expect all failing tests to contain them.

Weight: We argue that the deviant behavior should be less
exhibited by one group of tests than the other. For example,
if the bug is related to a buffer full state, then the failing
tests will all contain the event regarding the buffer full,
while the passing might or might not contain it.

The common behavior of failing tests can be the lack of a
given behavior. For example, the failing tests are less likely
to exhibit a given flush. The lower likelihood of such a
flush is the deviant behavior. The behavior itself (the flush)
can be identified as a characteristic of the passing tests
group.

Locality: We assume that the clustering of coverage events
in time and location within the design help and support the
understanding of the deviant behavior.

Based on the above assumptions, the basic idea behind our
approach is to identify the coverage events (or lack of) which
are a characteristic of failing tests and are more preponderant
in failing than passing tests.

E. Stepwise Processing
The process based on the above assumptions reduces the

initial set of coverage events until it reaches a subset which
represents the likely origin of the deviant behavior, Fig. 1.

Step1. Remove coverage events that are not common to all
failing tests. (Assumption1)

Step2. Solve the combinatorial problem of deciding which
coverage events are more likely to be seen in a group of tests
than the other. ADBA uses an already existing algorithm,
developed to build decision trees, for the purpose of solving
our problem. While building a decision tree that is meant to

identify the data attributes that most efficiently differentiate
between failing and the passing tests we identify the critical
coverage events, which we call the distinguishing coverage
events. (Assumption2)

Step3. Provide a visual diagnostic support. Our Machine
Reasoning Image (MRI) is a visual representation of the
deviant behavior in time and location within the design.
(Assumption3)

A small number of distinguishing coverage events would
point directly to the origin of the bug. If there is a large amount
of such coverage events, it is difficult to abstract the deviant
behavior they characterize. We refine the solution by using the
clustering of coverage events in time and location within the
HDL hierarchy, and build MRIs. The MRIs exhibit the
behavior pattern and can be used to extract the exact timing
and location within the design of the deviant behavior.

V. ADBD IMPLEMENTATION
We implemented and indiscriminately used our algorithm

on nine HW bugs identified during IBM’s PowerPC pre-
silicon core verification process. The large variation in the
type and number of tests available, varying from 100 failing to
only one, reflects the real problems and data availability
conditions during the industrial verification process. The
sample results are given in the table below (table 0) for the 9
cases analyzed (B1..B9):

Group of

Tests
Table 0. Number Tests Used Per Analyzed Bug

B1 B2 B3 B4 B5 B6 B7 B8 B9

Failing Tests 100 46 43 10 6 10 12 1 9

Passing Tests 100 49 50 10 12 10 14 13 10

A. Data Processing Algorithm
The data mining problem considers each test as a record, and
each coverage event as an attribute. For each set of tests
representing a failing monitor (bug set) the algorithm consists
of:
1. Construct data mining problem
2. Add fail or pass attribute
3. Clean data
4. Keep only attributes common to failing
5. Build decision tree
6. Separate classifying attributes for failing/passing
7. Build MRI (optional)

[1] Construct Data Mining Problem. Even though the running
HW contains a very large number of coverage events (150k+),
the bug sets would have triggered only a subset, reducing the
problem space to the following set of initial attributes:

Table1. Total Number Attributes
B1 B2 B3 B4 B5 B6 B7 B8 B9

13071 25806 45645 14878 32014 13758 28932 10247 57318

Refinements

Time
cluster

Design
location

Common
Failing

Fail-Pass
Distinguishing

MRI

Figure 1. Data Mining Stepwise Process

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 81

[2] Add Pass Fail Attribute. We set the attribute for passing or
failing for each test for differentiation later
[3] Clean Data. We use basic data filters implemented in
Matlab [8, 9] to remove tests which would provide no new
information, or are outliers, hence less probable to bring value
to this problem
 [4] Keep only attributes common to failing. The number of
coverage events common to failing tests is influenced by the
number of available tests and varies among bug sets. For our
samples, we see the number of failing attributes (table 2)

Table2. Number Attributes Common to All Failing
B1 B2 B3 B4 B5 B6 B7 B8 B9

1102 10085 1456 6631 7481 4970 9676 10247 12960

[5] Build decision tree. We decided to use an already
implemented version (J48-Weka) of the C4.5 algorithm, a
statistical classifier, to identify the classifying attributes. C4.5
does the following:

For all attributes
Find the normalized information gain ratio from
splitting on one of its values
Choose the attribute providing the highest gain
Add it to the decision tree

Do it recursively on the remaining attributes
Prune the tree

C4.5 picks the set of attributes out of which to build the tree
such that for each tree node it selects those that most
effectively split the set of records into subsets based on
normalized information gain [8]. The resulting classifying
attributes best distinguish between the passing and failing
tests.

[6] Analyze failing/passing. Translate the attributes back into
coverage events, and separate them into two sets, the set of
events found in the passing tests (SetPass) along with those
failing tests (SetFail). The resulting sets are provided to the
user. Table 3 shows the large variation in the number of
distinguishing coverage events.

Table 3. Number of Distinguishing Coverage Events

B1 B2 B3 B4 B5 B6 B7 B8 B9

SetFail 1 1 21 1 1 2 33 36 1

SetPass - - - - - 527 4 - -

If SetPass is empty, the deviant behavior, which represents

the failure, can be observed only in the failing tests. If SetFail
is empty, the lack of that behavior described by SetPass is
characteristic of the failure! If none of them is empty, SetPass
shows the behavior of the passing, while the failing seem to
have replaced it with the behavior characterized by SetFail.

[7a]Building MRIs. An MRI is a visual representation of the
deviant behavior for a given test and it is built as follows:

a. The distinguishing coverage events are correlated to
representative signals we wish to trace during
simulation.

b. Extract the timing of these corresponding signals
during simulation.

c. The location of the distinguishing coverage events is
extracted from the compiled design. The coverage
events are grouped according to their location in the
design, based on hierarchical HDL structure.

d. Each such group is colored distinctly.
e. The representation is plotted with the x axis

representing the simulation cycle of when a coverage
event is being triggered. The y axis represents the
location in the compiled design.

[7b]Reading MRIs. Case B6 has the highest number of
distinguishing coverage events (Table 3.). Figure2 shows the
MRI of a passing test defined by 527 coverage events.

This is an example where the lack of behavior represents

the deviant behavior. The pattern shows a repetitive action.
Each color represents a different location in the design.
Familiarity with the data flow in the design would
immediately point to servicing an interrupt. The names of the
coverage events are by themselves explanatory. We notice an
sprg0_mtspr_access in FXU SPR (Fix Point Execution Unit -
Special Purpose Register) operation typical for entering the
exception handler and spr_msr_mux_select_rfid for a DSI (the
return from interrupt). This is the MRI of an erroneous
triggering of an exception.

Case B3, shown in Figure 3, represents the MRI of an
interrupt caused by a trap instruction. ADBD succeeds in
identifying a smaller subset of coverage events that are typical
to this type of interrupt, hence easier to recognize.

900 1900 2900 3900 4900 5900

FXU SPR operation

DSI rfid

Figure 2. MRI for B6 – DSI exception

 Figure 3. MRI of B3. Trap Interrupt

980 990 1000 1010 1020

trap debug signals

82 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

The MRI for case B7 is shown in Figure 4. A repetitive
coverage event count_ucode is shown, which is located in the
instruction fetch unit (IFU) and represents the routine which
breaks up an operation into microcode. We identify the
operation as store, which immediately points us to problems
with atomicity of a store operation.

VI. ANALYSIS AND RESULTS
We used our method of identifying the bug origin on nine

real world cases. These cases used raw data without pre-
selection to fully represent actual use cases.

A. Problem Types
We encountered a variety of bug types.

Cache coherency: Cases B4 and B5 exposed different aspects
of cache coherency problems, where B4 was a typical load hit
store to the same address sequence. Timing and the build-up
of internal conditions is very important for hitting these
problems. The ADBD distinguishing events pointed to the
exact origin of the bug without requiring any additional
information about the test instruction stream.

Memory consistency: Case B7 was a memory consistency
problem. Under certain conditions an operation, which was
supposed to be atomic, didn’t behave as expected. Atomic
operations are always tricky to verify given the interactions
with other processors/threads. ADBD was able to point to the
core of the problem, the functionality that breaks up the
instruction in multiple (microcode) segments, which needs
special handling under the constraints of an atomic operation.
The cycle at which it happened helps identify the exact
instruction at fault.

Exception related: Cases B1, B6 and B9 expose different
aspects related to exceptions, being wrongly triggered, or
serviced. Case B9 is particularly difficult because it was an
asynchronous external interrupt not being gated properly by
the HW, and asynchronous events are more difficult to
monitor.
Case B3, even though related to a synchronous interrupt,
pointed correctly to a taken trap instruction as being the
differentiating factor.

Address translation: Case B2 exposed a potential PTE (Page
Table Entry) problem in the address translation mechanism.
Address translation problems can take hours even for the most

trained expert to diagnose, due to the inherent complexity of
the address translation mechanism. Pointing directly to the
problem saves not only time to diagnose but also requires less
expertise.

Live lock: Case B8 shows a live lock problem, Instruction
Fetch related hang, which kept the system working without
advancing. Live lock problems are particularly hard, because
they keep the system busy, show a lot of activity, without
advancing, and sifting through huge amount of information to
identify the origin of the hang, then its cause, can take a very
long time.

B. Dependency on Events Distribution
Our method relies on the existence of coverage events in

the functional area of interest. For cases B1, B2, B4 and B5
and B9 the solution pointed to a very small amount of
coverage event and they pointed directly to the exact
functionality which characterized the bug. The events not only
were perfect descriptors of the bug, but, after inspecting the
available coverage events, they were also the best choices
possibly made to describe that particular behavior.

C. No Events in the Problematic Area
The main concern is when there are no events that in any

way characterize the origin of the deviation. This was the case
in B3, the trap instruction decoding. Puzzling at first sight, the
distinguishing coverage events seemed to be totally
disconnected. They pointed to two different macros with no
immediate connection. At closer investigation, those were the
events of entering and exiting the area of interest, which had
no independent events. In this situation our approach was less
effective than in the other, but was helpful by pointing out the
timing in the test, as a time window, and a further inspection
of the events in that window pointed to the origin of the bug.
These missing coverage events would be indicative of areas of
the design which need to re-assess for possibly adding extra
coverage events.

D. Too Many Events
The example cases B6, B7, B8 are representative of bugs

where the difference in behavior is significant in time and
activity. For this, the number of distinguishing coverage
events is large. If we look at the classifying ranking among
them as provided by the decisional tree, the coverage events
ranked as most important would not represent the quintessence
of the deviant behavior, but rather whatever coverage event is
mostly exercised while exhibiting it. The MRIs represent how
events are clustered together in simulation cycles and location,
which enables the interpretation of the behavior pattern.

While each coverage event by itself doesn’t present value,
the MRIs show the evolution of the exception, which,
knowing the meaning of the points, is easy to distinguish and
hence to point the debugger into questioning the reason why
the failing do not present the same exception.

MRIs can become intuitive for users that understand the
architecture, and the meaning of the events.

0 1000 2000 3000 4000 5000 6000 7000

ifu MSR

ifu d

ifu i

isu

IFU breaking an operation
into microcode

Figure 4. MRI for B7 – Atomic Operation

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 83

E. Overall Result
In our nine examples, which represent consecutive, non-

selected, industrial real world examples our solution proved to
always find the origin of the deviant behavior to the extent of
available coverage events. Most of the time it pointed directly
to the coverage event that best described the functionality
exposing the problem. When there was none, it pointed to the
entrance and exit from that functionality. In case the problem
was not punctual but rather covered an extended behavior, the
MRIs expose it, with clear indications and when and where
events happen that characterize the problem.

VII. OVERVIEW AND CONCLUSION
HW bug localization is known to be the most expensive

activity in the verification process. Our work shows a
diagnostics data mining solution based on a generic functional
verification via simulation methodology conditioned only by
coverage recording of passing and failing tests.

Automatic solutions to this problem were proposed before,
with interesting results though limited results depending on the
size of the problem or the languages used [10]. There is
extensive and successful work done in the area of localizing
features in SW [5] and post-silicon [11, 12].

Generally based on code coverage, SW dynamic analysis
compares traces of tests with and without a particular behavior
and identifies the code which is responsible for that exhibited
behavior [13, 14]. Alternatively, the frequency of execution
portions of code can be analyzed to locate the implementation
of a specific behavior [15] [16].

We re-invent the approach for HW debugging and use data
mining to extract the differences between sets of failing and
sets passing tests. We express the problem of identifying the
difference between the characteristics of failing tests and the
normal behavior as defined by passing test, as the problem of
building a decision tree. It results in deciding the number and
the ranking of coverage events that best differentiate among the
two sets hence are best descriptors of the bug.

We introduce a novel source of information, plotting the
coverage events in time, and use it together with information
regarding the physical location of the coverage event in our
design, to build the MRIs of a bug. The MRIs provide an easy
to read, visual representation of a bug.

We ran the algorithm on subsequent bugs, presenting a
large variety of problems, and available data. In spite of this
variation, our solution consistently provided us with the right
answer, adding value to the understanding of the bug. It also
helped us choose which from the failing tests to debug (as the
test which exhibited the problem earlier in time and with the
easiest to read visible pattern).

As an automatic aid to manual debugging, this solution
proves to be extremely valuable on a daily basis, and
invaluable for failures received from the lab.

VIII. FUTURE WORK
ADBD was consistently accurate on an industrial processor

core design on consecutive bug sets. It wasn’t tested on
different unit designs or on systems.

The method relies on the existence of coverage events
throughout the design. We met a single case where there was
no coverage event in the area that contained the bug. We would
need to see more such cases to understand if it is generally the
case that the results ADBD can provide continue to bring
value.

REFERENCES

[1] Wilson Research Group, "The 2012 Wilson Research Group Functional

Verification Report," 2012. [Online]. Available:
http://www.mentor.com/products/fv/multimedia/the-2012-wilson-
research-group-functional-verification-studyview. [Accessed 20 05
2014].

[2] A. G. Veneris, B. Keng and S. Safarpour, "From RTL to silicon: The
case for automated debug.," in ASP-DAC, 2011.

[3] B. Keng and A. G. Veneris, "Automated debugging of missing input
constraints in a formal verification environment.," in FMCAD, 2012.

[4] Z. Poulos and A. G. Veneris, "Clustering-based Failure Triage for," in
International Test Conference, Seatlle, Washington, 2014.

[5] B. Dit, M. Revelle, M. Gethers and D. Poshyvanyk, "Feature location in
source code: a taxonomy and survey," Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53-59, 2013.

[6] A. Adir, E. Almog, L. Fournier and M. Eitan, "Genesys-Pro: innovations
in test program generation for functional processor verification," Design
& Test of Computers, IEEE, vol. 21, no. 2, pp. 84 - 93, 2004.

[7] D. Edwards, N. Wilde, S. Simmons and E. Golden, "Instrumenting
Time-Sensitive Software for Feature Location," in International
Conference on Program Comprehension, Vancouver, 2009.

[8] I. H. Witten, E. Frank and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2011.

[9] MathWorks, "Matlab," 2014. [Online]. Available:
http://www.mathworks.com/products/matlab/. [Accessed 20 05 2014].

[10] H. M. Le, D. Grosse and R. Drechsler, "Automatic TLM Fault
Localization for SystemC," in Computer-Aided Design of Integrated
Circuits and Systems, Volume:31, Issue:8, 2012.

[11] S.-B. Park and S. Mitra, "IFRA: Instruction Footprint Recording and
Analysis for Post-Silicon Bug Localization in Processors," in Design
Automation Conference, Anheim, California, 2008.

[12] A. Tepurov, V. Tihhomirov, M. Jenihhin and J. Raik, "Localization of
Bugs in Processor Designs Using zamiaCAD Framework," in
Microprocessor Test and Verification (MTV), 2012 13th International
Workshop on, Austin, TX, 2012.

[13] T. Eisenbarth, R. Koschke and D. Simon, "Locating Features in Source
Code," IEEE Transactions on Software Engineering, pp. 210-224, March
2003.

[14] N. Wilde and M. C. Scully, "Software reconnaissance: Mapping program
features to code," Journal of Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49-62, 1995.

[15] A. D. Eisenberg and K. De Voler, "Dynamic Feature Traces: Finding
Features in Unfamiliar Code," in Proceedings of 21st IEEE International
Conference on Software Maintenance (ICSM'05), Budapest. Hungary,
2005.

[16] H. Safyallah and K. Sartipi, "Dynamic Analysis of Software," in
Proceedings of 14th IEEE International Conference on Program
Comprehension (ICPC'06), Athens, Greece, 2006.

84 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

