RTL property abstraction
for TLM assertion-based verification

Nicola Bombieri, Riccardo Filippozzi, Graziano Pravadelli and Francesco Stefanni
Department of Computer Science - University of Verona
{firstname.lastname } @univr.it

Abstract—Different techniques and commercial tools are at
the state of the art to reuse existing RTL IP implementations
to generate more abstract (i.e., TLM) IP models for system-
level design. In contrast, reusing, at TLM, an assertion-based
verification (ABV) environment originally developed for an RTL
IP is still an open problem. The lack of an effective and
efficient solution forces verification engineers to shoulder a time
consuming and error-prone manual re-definition, at TLM, of
existing assertion libraries. This paper is intended to fill in the gap
by presenting a technique to automatically abstract properties
defined for RTL IPs with the aim of creating dynamic ABV
environments for the corresponding TLM models.

I. INTRODUCTION

Electronic system-level (ESL) design, assertion-based veri-
fication (ABV), and reuse of intellectual-property (IP) models
are three key approaches often combined to address the in-
creasing complexity of todays System-on-chip (SoC) design.

The trend of ESL design and verification has led both
industry designers and third-party vendors to extend the library
of register-transfer level (RTL) IP implementations with the
corresponding transaction-level modeling (TLM) descriptions.
Even if such higher-level models are still mainly developed by
hand, both methodologies [1], [2] and commercial tools [3], [4]
for reusing the existing RTL IPs and automatically abstracting
them into TLM models are spreading.

On the other hand, several techniques and frameworks have
been developed to apply ABV to ESL design, particularly at
TLM. First, approaches have been proposed for both static and
dynamic ABV of cycle-accurate TLM models [5], [6]. Then,
general concepts [7], requirements [8], and frameworks [9],
[10] have been presented to adopt dynamic ABV in more
abstract TLM models. Alternative ABV frameworks based
on Property Specification Language (PSL) have been also
presented to support TLM 2.0 coding styles [11], [12]. Finally,
a methodology [13] and the corresponding tool [14] have
been developed to enable dynamic verification of temporal
properties for TLM specifications, where PSL is used to
express communication behaviours.

Reuse of ABV properties in TLM-based design flows has
been addressed in [15], [16], [17]. In particular, [15] and [17]
present two different methodologies to check the functional
consistency between TLM and RTL models by reusing TLM
properties at RTL through ad-hoc refinement rules. Instead,
[16] presents a technique to reuse TLM properties at RTL
through TLM/RTL transactors. All these techniques assume a
top-down design and verification flow, where properties are
defined ex-novo at TLM level, and then reused at RTL.

In contrast, reusing existing properties in an RTL-to-TLM
bottom-up design flow to check the consistency of TLM
models w.r.t. the corresponding RTL models is still an open
problem. An attempt has been proposed to reuse RTL checkers
at TLM [18]. Nevertheless, this approach suffers from appli-
cability, since it is suited for cycle-accurate TLM models only.

This work was supported by the EC co-funded SMAC (SMArt Systems
Co-Design) project Grant Agreement FP7-ICT-288827.

978-3-9815370-4-8/DATE15/€)2015 EDAA

85

IP abstraction

Existing RTL IPs are abstracted
manually or automatically to be reused at TLM

—

TLMABY |

ckers
/

Property
rewriting

Checker
generation

Proposed methodology

(S

Fig. 1.

Methodology overview.

The main intent of this work is to automatically build
a dynamic ABV environment for a TLM model, with no
restriction on the abstraction level, by starting from a set
of properties initially defined for a corresponding RTL im-
plementation!, as depicted in Fig. 1. To achieve this goal,
the proposed methodology acts in two directions. First, we
automatically rewrite cycle-accurate RTL properties into a set
of properties suited to be checked on an event-based TLM
model. This is done by applying a set of transformation
rules that reflect, on the properties, the effect of abstraction
(i) on the timing reference (abstraction of time) and (ii) on
the communication protocol (abstraction of I/O signals) of
the design under verification (DUV). Secondly, we define an
approach to synthesize TLM properties into checkers to be
adopted for dynamic ABV of the TLM model. The approach
is independent from the methods applied to generate checkers
thanks to the definition of an opportune wrapper.

The advantages of the proposed solution are the following:

e avoiding the time-consuming and error-prone manual
effort for re-defining TLM properties;

e reusing existing tools, which are at the state of the
art for RTL ABYV, to synthesize TLM properties into
checkers; and

e minimizing the overhead introduced by the generated
checkers in the TLM simulation.

The paper is organized as follows. Section II summarizes
the background related to linear temporal logic (LTL) logic and
PSL. Section III describes how RTL properties are rewritten
to be compliant with TLM verification. Section IV deals with
checker generation. Section V discusses experimental results.
Finally, conclusions are summarized in Section VI.

II. BACKGROUND

The methodology proposed in this work is intended for
abstracting LTL properties compliant with the simple subset of
PSL. This section summarizes basics concepts on LTL logics
and PSL language.

By using the PSL syntax for temporal operators, LTL is
defined as reported in Def. II.1.

'To keep the notation simple and intuitive, in the following, we use the
terms RTL properties and TLM properties to indicate properties defined for
RTL and TLM models, respectively.

Definition II.1. Given a finite set of atomic propositions AP,
the set of LTL properties over AP can be defined, in negation
normal form, as follows:

e a € AP and —a are LTL properties;

e if p; and po are LTL properties then p; V pa2, p1 A
p2, next p1, p1 until po and py release ps are LTL
properties.

Intuitively, the semantics of temporal operators next, until

and release 1is:

e next p; holds at time ¢ if p; holds at time ¢ + 1;

e p; until po holds at time ¢ if p; holds for all instants
t' >t until py holds;

e p; release po holds at time t if ps holds for all
instants ¢’ > ¢ until and including the instants where
p1 first becomes true; if p; never becomes true, po
holds forever.

In the rest of the paper, a composition of n next operators
next(next(...next(a)...)) is abbreviated in next[n](a), ac-
cording to the PSL syntax.

PSL is a property specification language that extends LTL
and CTL for enabling designers to capture their intent in
a verifiable form and verification engineer to validate that
the implementation satisfies its specification through dynamic
(i.e., simulation) or static (i.e., formal) verification techniques.
Dynamic verification is performed by synthesizing PSL prop-
erties into checkers, i.e, components that monitor the evolution
of the DUV during simulation and raise a failure when a
property violation is observed. Checker generation is easy
when the simple subset of PSL is adopted, which restricts
the composition of temporal properties to ensure that time
moves forward from left to right through a property, as it does
in a timing diagram [19]. Even if PSL has been originally
intended for RTL verification, several works have extended its
application to TLM [20], [11], [14].

III. PROPERTY REWRITING

The abstraction of a property from RTL to TLM must
reflect changes implemented during the abstraction of an
RTL DUV towards an equivalent TLM model. In particular,
two main aspects must be analyzed to map RTL properties
towards TLM properties: (i) the change of temporal ref-
erence for temporal operators, caused by moving from an
RTL cycle-accurate simulation towards a TLM transaction-
based simulation (Section III-A), and (ii) the removal of
some primary inputs/outputs, caused by the abstraction of the
I/O communication protocol (Section III-B). Designers and
abstraction tools can address such aspects in various ways
leading to the definition of different versions of TLM models
corresponding to the same RTL implementation. This diversity
makes the definition of an automatic procedure for abstracting
properties particularly challenging. The solution we propose to
overcome this problem relies on the assumption that the RTL
implementation and the corresponding TLM model are timing
equivalent according to the following definition.

Definition III.1. An RTL model Mgy, and a TLM model
My are timing equivalent if and only if for all signals
s belonging to the I/O interface of both models, when s is
assigned to a value v on Mppy, at time ¢, the same assignment
happens on My at the same time, and vice versa.

The previous definition guarantees that, whatever procedure
is applied to abstract the RTL implementation, the final TLM
model preserves both the IP functionality and the IP timing.

A. Abstraction of time

At RTL, the DUV simulation behaves according to cycle-
accurate events, generally synchronized with respect to the ris-
ing and/or falling edge of one or more clocks, when input sig-
nals are assigned and outputs signals are observed. In contrast,

Evalp Evalp Evalp Evalp Evalp Evalp

indat dk— LI L g B
indata dy rst
_inkey | — ds —
. rdy_next_next_cycle indata_
dedpher e rdy_next_cycle inkey —
ds (RTL) | LCy_next_cy decipher __|
st outdgta rdy
— rdy_next_cycle L
Ik rdy_next_next_cycle —
_ck] Sitdats
(@) Ons 10ns 20ns () 150ns 160ns 170ns
transport_primitive Initiator Target (DES56)
i . Eval
(&payload, time); N write(payload, time));’I; i
Ons
s DES56 write data and decipher|” yite(payload, time) Sae
indata (TLM) : e
= write ds, indata, inkey]|
decipher
rdy) Eval p
outdata read(payload, time)
170ns
read rdy, outdata
(c) (d)
Fig. 2. (a) A RTL DESS56 encryption/decryption model, (b) a snippet of the

1/0 waveforms, (c) a TLM timing-equivalent model, and (d) the sequence of
TLM transactions implementing the I/O data exchange corresponding to the
time frame of (b).

zalways (!(ds indata =0) v (next[17](out = 0)))@clk _ pos
ralways (!dsv(next(!ds until next(rdy))))@clk_pos

D
D,
D, always (Ids v (next[15](rdy _next _next _cycle) A

next[16](rdy _next _cycle) A next[l7](rdy))) @clk _ pos

N

RTL properties -

q

ralways (!(ds Aindata=0)v (ne)ct,'70 (out = O)))@T},

TLM properties 7 ¢.

I

s always (!ds v (nexty,(\ds) until nexr;,(rdy))))@T,,

q

ralways (!ds v next,;, (rdy))@T,,

Fig. 3. RTL properties for the DES56 models of Fig. 2 and the corresponding
TLM properties generated with the proposed methodology.

at TLM, the simulation proceeds along with asynchronous
events corresponding to transactions. According to the selected
coding style (e.g., loosely-timed, approximately-timed, cycle-
accurate), write transactions ask for a task elaboration, while
read transactions get the result back. This difference is de-
picted in Fig. 2, where, as running example, the snippet of
the RTL I/O waveforms and the corresponding sequence of
TLM transactions of a DES56 encryption/decryption model
are reported.

Temporal logics, like LTL, and property specification lan-
guages, like PSL, are suited to capture behaviours of cycle-
accurate RTL models, where temporal operators are naturally
referred to clock events. In PSL, for example, every property
has an associated clock context that specifies when the property
must be evaluated. The base clock context is true, which
means the time granularity adopted to check the consistency
between DUV and properties is defined by the verification tool.
More frequently, an explicit clock context is specified during
the definition of the property through the @ operator. In this
case, the property is evaluated when the Boolean expression
following the @ operator holds. Often, for RTL properties, the
@ expression simply specifies clock events (i.e., falling/rising
edges). For instance, the RTL property p; in Fig. 3 specifies
that out # 0 is true 17 events later than ds A indata = 0
has become true, each time ds A indata = 0 holds. In this
case, according to the @ expression, the property is evaluated
at every positive edge of the clock as reported in Fig. 2(b).

At TLM, the clock is abstracted away, consequently the
evaluation points of a property can solely be expressed in terms
of a transaction context referring to starting and/or ending
points of transactions, as shown, for example, in Fig. 2(d).
Therefore, as a first step towards RTL-to-TLM property ab-
straction, we map the RTL clock context in a TLM transaction
context according to the following definition.

Definition IIL.2. Given an RTL property p with clock context

86 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

C, a transaction context 7" for the corresponding TLM property
q is defined as follows:

e if C is either the basic clock context (i.e., true) or

it belongs to the set {@Qclk, Qclk_pos,Qclk_neg},

then C' is mapped on the basic transaction context 73,

which evaluates ¢ at the end of every TLM transaction;

o if C is expressed as clock_expr N var_expr, where
clock_expr is one of {Qclk,Qclk_pos, Qclk_neg}
and var_expr is a Boolean expression involving other
variables of the DUV different from a clock, then C'
is mapped on T} A var_expr, where Ty is the basic
transaction context.

Mapping the clock context to the transaction context is
not enough to guarantee a correct RTL-to-TLM property
abstraction. In fact, as a result of the RTL-to-TLM abstraction
of the DUV, a transaction generally merges several RTL events
in a single read or write operation, and thus it embraces an
imprecise number of clock cycles. While this does not affect
the evaluation of properties that include the until and release
operators (and all the other LTL operators that are derived from
them, i.e., always and eventually), it represents a problem
for properties that explicitly count the passing of time through
the next operator, as clarified hereafter.

The until and release operators do not refer to a precise
time instant, but to some event which must occur in an
imprecise point in the future. Given that the functionality of
the design is preserved during the RTL-to-TLM abstraction,
an until or release-based property that holds on the RTL DUV
is also true, without the need of being transformed, when
evaluated on the corresponding TLM model. This is proven
by the next Theorem.

Theorem IIL.1. Given an RTL implementation Mgy, a
timing-quivalent TLM model My s, and a property p with
clock context C' involving, among temporal operators, only
until and release, if Mpr, Ep @ C then My Ep Q T,
where the transaction context 7' is generated according to
Def. II1.2.

Proof: 2 Since My, and My are timing equivalent, a
transaction is executed by M, in all instants corresponding
to RTL clock cycles where at least one I/O signal of Mpry,
changes its value, to reflect the same I/O modification at TLM .
Otherwise, the two models would not be timing equivalent.
The only possibility for having that p @ T fails on Mpy s is
represented by the fact that the transaction context 7' excludes
from verification one or more of such instants missing the
observation of something relevant for determining the truth
value of p. However, this is impossible by construction of the
transaction context (Def II1.2). [|

Differently from wuntil and release, the next operator
explicitly counts events. Since RTL events (based on clock cy-
cles) differ from TLM events (based on transactions), proper-
ties including next operators that hold on an RTL DUV cannot
be re-used to check a corresponding abstracted TLM model by
simply replacing the clock context with a transaction context.
For example, for property p; in Fig. 3 the checking procedure
(independently from its static or dynamic nature) needs to
count 17 clock cycles before evaluating the consequence of
the implication, after the antecedent has been fired>. If the
same property was evaluated at TLM by simply substituting the
clock context with a transaction context based on Def. I11.2, the
checking procedure would wait for 17 transactions, definitely
invalidating the property.

A naive solution to such a problem would be scaling RTL
clock cycles to TLM transactions, i.e., mapping the n clock

2For lack of space, only an informal idea of the proof is reported.
3Note that =a V b = a — b, thus p can be read as an implication.

cycles analysed by a next[n] operator included in a RTL
property p on a corresponding number of m transactions, such
that, at TLM, we can substitute nezt[n] with next[m| inside
p. However, this solution is not generally applicable because
it requires to precisely know the number of clock cycles
corresponding to each transaction and the exact sequence of
transactions that will be executed by the DUV in the time
window monitored by each property. On the contrary, the
arrival of an overlapping (unexpected) transaction affecting
a part of the design not monitored by a property could
introduce an extra evaluation point for that property causing
its inopportune failure [7], [17].

To effectively address RTL-to-TLM property abstraction
without the limitations of the previous naive solution, we
propose the definition of a new operator, next], where 7 € IN
and ¢ € INT, which is specifically intended for dynamic
(i.e., simulation-based) ABV at TLM. The apex 7 represents
the position of next] in the property with respect to other
occurrences of the same operator; it is introduced for a
correct generation of checkers as reported in Section IV. The
subscript € represents the required evaluation time, i.e., the
exact simulation time when the operand must be evaluated
with respect to the firing of the property. More formally, we
define the semantics of next] as follows.

Definition III.3. Given a model M, an LTL property p, and
a dynamic ABV environment E, M = next] (p) if p is true
after e simulation instants (expressed in nanoseconds). If the
verification environment £ is unable to evaluate p at time e,
next? (p) is false; this happens when no event is observable
by E at time e.

In a simulation-based context, a next operator can be
replaced by next], with opportune values for 7 and €, without
changing the semantics of the property. For example, assuming
a clock period of 10ns, p; in Fig. 3 can be equivalently
expressed as the following p) property:

always(!(ds A indata = 0) V (next},,(out # 0)))Qclk_pos.

When evaluated at RTL with clock context clk_pos, p and p}
are equivalent. On the contrary, during TLM verification, the
clock context of p’ is substituted with a transaction context,
leading to the property ¢; reported in Fig. 3. In this way, ¢;
preserves the original intent of p, by checking, at TLM, out #
0 after 170ns from the firing of ds A indata = 0.

According to the previous observations, we propose a prop-
erty abstraction methodology based on the following sequence
of automatic steps.

Methodology III.1. Given an RTL implementation M rry, and
a timing-equivalent TLM model My s, the following steps
are executed to transform an RTL property p with clock context
C into a TLM property ¢ with transaction context 7', such that
if Mrrr = p @ C then MLy = g @ T, in the context of
dynamic ABV:

1) transform p such that it is expressed in the negation
normal form according to Def. II.1;

2) leave unchanged until and release operators and
remap the next operators of p with a sequence of
next. operators in q;

3) remap the RTL clock context C' with a TLM trans-
action context 7" according to Def. IIL.2.

Steps 1 and 3 are straightforward. Step 1 follows from
well-know transformation rules, while step 3 is implemented
according to Def. III.2. Step 2 requires, instead, a two-phase
elaboration. The first phase, called push_ahead_procedure,
pushes ahead the next operators in p such that their operands
can be exclusively atomic propositions, negation of atomic
propositions, or next operators. This is obtained by applying
the following transformation rules:

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 87

next(a V b) = next(a) V next(b);
next(a Ab) = next(a) A next(b);
next(a until b) = next(a) until next(b);
next(a release b) = next(a) release next(b).
Pushing ahead the mext operators is preparatory to the
second phase, where a composition of next operators is
substituted with a single next], by setting 7 and e according
to Algorithm III.1. Given a property p obtained from the
application of the push_ahead_next procedure, Algorithm III.1
gets, as inputs, the clock period ¢ of the original RTL DUV
where p holds, and the sequence of sub-formulas S =
s1(a1), ..., sm(am) of p, where each s;(a;) is the composition
of an arbitrary number n; of next operators applied to the
atomic proposition a; (or to its negation), i.e., in PSL notation
next[niﬁ)(ai).

Algorithm IIL.1 Substitution of next[n;] with next?
1: procedure NEXT_SUBSTITUTION(c, .S)

2: for all s;(a;) = next[n;](a;) € S do
3: eE=n_ixc

4: T=1

5: substitute s;(a;) with next? (a;)
6 end for

7: end procedure

According to the semantics of the next] operator, Algo-
rithm III.1 guarantees that the resulting property can be verified
on a TLM DUV by using a verification environment based
on a transaction context, without the risk of failures due to
evaluation of the property at incorrect time instants. In other
words, if a failure occurs by evaluating the property at TLM,
it is only due to a wrong abstraction of the TLM design with
respect to the original RTL implementation. This is formally
proven by Theorem II1.2.

Theorem IIL2. Given an RTL implementation Mgy, a
timing-equivalent TLM model My, s, a property p with clock
context C' and a property ¢ with transaction context 7', derived
from p by following Methodology IIL.1, if Mgy Ep @ C
then My s 'Z qQT.

Proof: * When p = ¢ we reduce to the case of
Theorem II.1. When p # ¢ it means p involves at least
one instance of the operator next. We observe, first, that
Mpr, Ep@QC = Mpgr =q @ C. In fact, Steps 1 and the
push_ahead_procedure of step 2 of Methodology III.1 are
only syntactic transformations that do not affect the semantics
of p. Algorithm III.1 replaces occurrence of next[n;](a;) with
next? (a;) where € = n;*c and ¢ is the clock period of Mpry,.
But, according to the semantics of next[n;](a;), a; must be
true after n; clock cycles, i.e., after n; * ¢ nanoseconds, which
exactly corresponds to the semantics of next? (a;) reported in
Def. IIL.3. This proves Mgy Ep @ C = Mgy Eq @ C.
At this point, with considerations similar to the proof of
Theorem III.1 and on the basis of the timing equivalence
between Mpry and Mppy we can derive that Mprp |
qQ C = My E qQT, which finally leads, by tran51t1v1ty,
to Mgty 'Zp@C:>MTL]\4'=q@T

To clarify the proposed methodology on the DES56 exam-
ple, let us consider property po in Fig. 3. Being already in
negation normal form, step 1 is skipped. Then, by applying
the push_ahead_procedure included in step 2, we obtain:

always(!ds V (next(lds) until next[2](rdy)))Qclk_pos.

Step 2 is completed by applying Algorithm III.1 that, suppos-
ing an RTL clock period of 10ns, produces:

always(!ds V (nextly(!ds) until nextsy(rdy)))Qclk_pos.

Finally, the substitution of the clock context by following
Def. II1.3 provides the final TLM property g2 showed in Fig. 3.

4For lack of space, only an informal idea of the proof is reported.

Qs ~ 0 next(as) ~ 0
pV 0 ~ Dvop ~ o p
pAD ~ D OAp ~ P
p until) ~ P Duntilp ~ 0
p release § ~ 0 D untilp ~ p

Fig. 4. Transformation rules for signal abstraction.
B. Abstraction of signals

At RTL, the I/O protocol is accurately described. Control
signals, in addition to data signals, are used to implement the
handshaking mechanism between components. At TLM, when
coding styles higher than cycle-accurate TLM are adopted, the
I/0 protocol may be abstracted by removing control signals to
focus on the pure functionality and to speed-up the simulation.
This means that RTL properties including abstracted signals
need to be reformulated to exclude such signals at TLM.

The removal of a signal implies that its role is no longer ex-
pressed in the TLM model. Hence, subformulas involving the
abstracted signals become irrelevant and cannot be evaluated
at TLM. For this reason, such subformulas must be removed
as well. The impact of their removal on the semantics of the
remaining formula must be accurately analysed. According to
the timing equivalence definition (Def. III.1), we consider only
the case in which the timing of TLM events on the preserved
1/O signals is equivalent to the timing of corresponding /O
signals at RTL. On the base of this assumption, the solution we
propose consists in defining a set of transformation rules that
delete subformulas including abstracted signals and preserve,
when possible, the intent of the original property. The proposed
transformation rules are reported in Fig. 4, where a, repre-
sents an atomic proposition involving abstracted signals to be
deleted, p is a generic LTL formula, () is used to represent that
the subformula has been removed as effect of the application
of a transformation rule.

In some cases, the application of rules in Fig. 4 leads
to the deletion of the whole property. This happens when
the semantics of the property is completely dependent on
the RTL handshaking mechanism rather than on the pure IP
functionality, and thus the property becomes meaningless on
a model that definitely abstracts the protocol. On the other
cases, different considerations apply. Let us consider that
p and p’ represent, respectively, an RTL property including
subformulas that operate on abstracted signals, and the corre-
sponding property after the application of the rules in Fig.4.
On the assumption that p holds on the RTL implementation,
transformation rules may lead p’ to be a logical consequence of
p or not. On the first case, p’ is still true at RTL, and thus, after
the application of Methodology III.1, it must holds also on the
TLM model. On the contrary, the TLM model would not be
timing-equivalent to the RTL implementation. When p’ is not
a logical consequence of p, human investigation is required
to analyse the result of checking p’ on the TLM model. A
failure at TLM could depend either on a wrong implementation
of the TLM model or on a modification of the semantics of
the property that, due to the application of the transformation
rules, does not reflect the change occurred in the RTL-to-
TLM abstraction of the communication protocol. In this second
case, p’ requires to be manually refined for restoring the
compliance with the designer intent. A completely automatic
procedure would be applicable only in presence of strict and
well-defined rules the designer should apply for abstracting the
communication protocol, which is generally not the case.

For example, property ¢3 in Fig. 3 has been obtained
from property ps by applying Methodology III.1 and rules
in Fig. 4, on the assumption that signals ready_next_cycle
and ready_next_next_cycle have been removed during the
RTL-to-TLM abstraction of DES56 (Fig. 2).

IV. CHECKER GENERATION
Properties abstracted according to the methodology pro-
posed in the previous section are intended to be synthesized

88 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

into checkers to set up the dynamic ABV environment for TLM
models depicted in Fig. 1. The approach is independent from
the way checkers are generated; for example, techniques and
tools described in [21], [22], [23] for the PSL language can be
adopted. To take care of the presence of next] operators, for
each property we defined a wrapper that executes checkers
at the correct simulation instants. From the point of view
of the checker generator, next? (a) is synthesized as it was
next[r](a), i.e., without the wrapper, a would be evaluated
after 7 events according to the defined transaction context. The
wrapper restricts the set of events where a can be evaluated
according to the value of €. In practice, when 7—1 events have
been consumed by the verification environment, a is evaluated
only when and if a transaction at time e occurs, which finally
is identified as event 7. If a transaction arrives at time ¢ < ¢,
it is not considered for the evaluation of next? (a) and the last
consumed event remains 7 — 1 waiting for the next transaction.
If a transaction arrives at time ¢ > ¢ and the event 7 has not
been processed yet, a failure is raised.

To clarify the approach and describe the structure of the
wrapper, let us consider the properties p3 and g3 in Fig. 3,
where g3 has been generated from ps according to the abstrac-
tion methodology presented in Section III and by assuming, at
RTL, a clock period of 10ns.

At RTL, the checker of p3 is called at each rising edge of
the clock. If ds becomes true, for example, at clock cycle ¢;,
the checker monitors clock cycle c; 179 to see if rdy becomes
true. In case of a violation, it raises a failure signal. According
to the presence of the always operator, the checker repeats this
sequence of evaluations by starting a new verification session
at each clock cycle with fresh values for the involved variables.

At TLM, the wrapper for the checker of the property g3
takes role. It generally behaves as follows.

1- Allocation of checker instances. At the beginning, the
wrapper allocates in memory an array C' of checker instances
for the corresponding property. The size of the array depends
on the lifetime of a checker instance. The lifetime is the
maximum number of instants where transactions can occur in
the interval (¢ fipe, tend], where ¢ e and te,q are, respectively,
the firing time and the completion time of the property. The
firing time corresponds to the instant where the first subformula
of the property is evaluated. The completion time corresponds
to the expected verification instant for the last subformula. For
example, concerning ¢3, tfire and te,q correspond, respec-
tively, to the instants in which ds and rdy become true. Then,
the size of the array for g3 is 17, because, being the reference
RTL clock period 10ns, we have at maximum 17 instants
where transactions can occurs in (¢ fire, tena) (.€., t pire+10ns,
Liire +20ns, ..., trire + 170n8 = tcnq). It was not possible
having a transaction at a different time from those, because, in
that case, it would mean that the RTL implementation and the
TLM model would not be equivalent with respect to Def. III.1.

2- Evaluation of active checker instances. To execute checker
instances (see Fig. 5), the wrapper maintains and consults
an evaluation table where the next evaluation points of each
checker instance is annotated (see the following point 4). On
the occurrence of a transaction 7" at time ¢, the wrapper extracts
from the table and calls all checker instances whose next
evaluation point is expected at time ¢, if any. Instances still
pending on subformulas that were supposed to be evaluated
at time ¢’ < ¢, if any, raise a failure. For example, in Fig. 5,
the wrapper raises a failure at time 350ns because checker
instances C[3] was not executed when expected at time 340ns.

3- Reset and reuse of checker instances. When a checker
instance arrives at its completion time .4, the wrapper resets
the checker instance such that it can be reused for a new
verification session going on with the simulation. For example,

Evolution of the TLM Evaluation of
DES56 during simulation subformulas of g,

Eval

Initiator Target | ds | rdy Wrapper activities table

The transaction starts a new encryption session by
Ons | write(payload, local_time) false setting ds and dechiper. C[0] is activated and
registered for a new evaluation point at time 170ns.

o - The transaction assign 0 to ds and provides valid
false | false valués for.indata and inkey. C[1] is activated but it is
trivially true sirfce.ds is false.

10ns | write(payload, local_time)

Between 20ns and 160 ns’r{aehqc.ker instance is
? ? executed/activated because no traﬁsactipp occurs.
Subformulas cannot be evaluated. T

C[0] is executed and reaches its completion time
170ns | read(payload, local_time) false without failure, thus it is reset to be reused. C[2] is
* | dctivated but'it is tfivially frue’since ds’s falsel " " T T

The transaction starts a new encryption session by
180ns | write(payload, local_time) true | false setting ds and dechiper. C[3] is activated and
O registered for a new evaluation point at time 340ns.

no transaction

°|* +|. The transaction assign 0 to ds and provides valid
false | false values for indata and inkey. C[4] is activated but it is
trivially tru'e'sinc,e.ds is false.

190ns | write(payload, local_time)

Between 200ns and 3‘30'ns.n0. checker instance is
? ? executed/activated because no transaction occurs.
Subformulas cannot be evaluated. e

no transaction

At 340ns no checker instance is executed/activated * - -
340 missing read 5 5 because no transaction occurs, but C[3] is in the
ns | _ M g_ _____) : evaluation table, thus a transaction was expected. A

+ |- failuié s raised .because C[3] was not executed at
3 false time 340ns. Read transaction arrived too late. The
350ns | read(payload, local_time) property is false.

Fig. 5. Evolution of the wrapper for property g.

N
C[3]
e

in Fig. 5, C[0] is reset at 170ns. It will be reused with fresh
values after instance C[16].

4- Activation of a new instance. A new instance C[i] of
the checker is activated at each transaction that respects the
transaction context modelled by the @ expression of the prop-
erty. Then, the wrapper registers C[i] on the evaluation table
according to the evaluation points required by the property
after its firing, except when the it is trivially true. In Fig. 5, a
new checker instance is activated at each transaction, according
to the basic transaction context 7. When ds is false, gs is
trivially true and no further evaluation is necessary for that
instance. On the other side, when ds is true, next the evaluation
point of g3 is registered in the evaluation table 170ns later than
trire to remember at what instants rdy should be evaluated.

V. EXPERIMENTAL RESULTS

The proposed methodology has been applied to two test
cases: DES56 and ColorConv, whose VHDL (RTL) descrip-
tions and the corresponding set of PSL properties (9, and 12,
respectively) have been provided as a starting point. DES56
implements a reconfigurable (encrypt/decrypt) 64-bit crypto-
graphic algorithm with a latency of 17 clock cycles. ColorConv
is a is pipelined IP (8 stages) with a latency of 8 clock cycles.
All properties were preserved during the abstraction process.
IBM FoCs [21] has been applied to generate the checkers.

To measure the approach applicability and correctness,
each test case has been implemented in three different SystemC
models (i.e., at three levels of abstraction): at RTL, TLM cycle-
accurate (TLM-CA) and TLM approximately-timed (TLM-
AT). The TLM-CA model simulation allows us to evaluate
the impact of checkers synthesized from the RTL proper-
ties without abstraction (i.e., without applying the proposed
methodology). The TLM-AT model simulation allows us to
evaluate the actual effect of the property abstraction. SystemC
RTL has been automatically generated from the VHDL models,
and then abstracted towards TLM-CA by using H I F'Suite [4]
preserving the I/O communication protocol. The TLM-AT
versions have been manually implemented by abstracting the
I/O interfaces and implementing the IP algorithms with only
one write transaction (for receiving input data) and one read
transaction (to return results).

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 89

TABLE L. SIMULATION RESULTS

DES56 ColorConv
Abstrlevel Sim. time (s) Overhead Sim. time (s) Overhead

o w/out c. with c. (%) w/out c. with c. (%)
RTL I C 4.25 6.93 63.0 11.36 12.46 9.7
RTL 5 C 4.25 9.99 135.1 11.36 13.18 16.0
RTL All C 4.25 16.83 296.2 11.36 15.74 38.6
TLM-CA T C 2.03 4.4 116.7 538 6.76 25.7
TLM-CA 5 C 2.03 7.77 282.8 5.38 6.99 29.9
TLM-CA All C 2.03 12.58 519.7 5.38 7.11 322
TLM-AT I C 2.01 2.09 4.0 1.86 1.90 23
TLM-AT 5 C 2.01 2.33 159 1.86 1.97 59
TLM-AT All C 2.01 2.95 46.7 1.86 2.01 8.1

The efficiency of the proposed methodology has been eval-
uated in terms of overhead introduced by the checkers on the
overall model simulation. Table I reports the simulation results.
For each abstraction level, the test cases have been simulated
without checkers (w/out c.) and with different amounts of
checkers (with c.: 1 C, 5 C, All C). Fig. 6 shows the average
speedup of the different TLM implementations w.r.t. RTL, both
with checkers and without checkers.

In general, the overhead of checkers synthesized from
properties abstracted with the proposed methodology and
applied to the TLM implementations is one order of magni-
tude lower than the overhead caused by the checkers of the
original properties at RTL (RTL vs. TLM-AT rows in Table
I). The overhead of checkers synthesized from the original
RTL properties without abstraction and applied to the TLM-
CA implementations doubles w.r.t. the overhead of the same
checkers in the RTL implementations (RTL vs. TLM-CA rows
in Table I). This is due to the fact that the event-driven
simulation of the cycle-accurate checkers, which is comparable
more to the RTL than to the cycle-accurate TLM simulation,
influences most the latter. The number of activated checkers
linearly affects the overhead in the overall simulation, in both
testcases and at each abstraction level.

We observed the main advantage of the proposed method-
ology in the RTL vs. TLM speedup before and after the
checker integration (see Fig. 6). The original speedup of the
two testcases (i.e., without checkers) over the abstraction levels
is different. This is due to the different characteristics of the
RTL implementations. Without property abstraction, the reuse
of RTL properties is possible in the TLM-CA implementations
only. In these cases, the checker simulation leads to a decrease
of the (even low) speedup between RTL and TLM-CA models
(TLM-CA in Fig. 6). In contrast, the property abstraction
prosed in this work is intended for TLM-AT models, leading to
an increase of the speedup, up to double in the DES56 test case
(TLM-AT in Fig. 6). This is due to the fact that the TLM-AT
checkers marginally affect the overall event-driven simulation
while, in the cycle accurate models, they sensibly increase the
number of simulation events at each clock cycle.

We expect that the speedup may be even better by applying
checkers synthesized from manually defined TLM properties.
However, the results obtained with the proposed methodol-
ogy have been achieved by automatically reusing the already
existing verification environment, without relying on any time-
consuming manual transformation.

VI. CONCLUSIONS

This paper presented a methodology to reuse properties,
originally defined for an RTL IP model, to verify the corre-
sponding abstracted TLM implementation. The methodology
consists of transformation rules that reflect, on properties, the
effect of the RTL-to-TLM abstraction and on an approach to
synthesize TLM properties into checkers for dynamic simula-
tion of the TLM model. The experimental results, which have
been conducted on two representative test cases with different
characteristics and complexity, show the applicability and the
efficiency of the proposed methodology.

90

7 T
E 6 — Ww/outc.
f 5+ DOwithc
z 4
o 3
=
B 2
g
o 1
0
DES56 DES56 ColorConv ColorConv
TLM-CA TLM-AT TLM-CA TLM-AT
(Prop. reuse) (Prop. abstr.) (Prop. reuse) (Prop. abstr.)

Fig. 6. RTL/TLM simulation average speedup.

[1]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of
RTL IPs into equivalent TLM descriptions,” IEEE Trans. on Computers,
vol. 60, no. 12, pp. 1730-1743, 2011.

S. Syed, M. Jenihhin, and J. Raik, “Extensible open-source framework
for translating RTL VHDL IP cores to SystemC,” in Proc. of IEEE
DDECS, 2013, pp. 112-115.

Carbon Design Systems.
http://carbondesignsystems.com/.

EDALab. HIFSuite. "http://www.hifsuite.com/”.

A. Habibi and S. Tahar, “Design and verification of SystemC
transaction-level models,” IEEE Trans. on VLSI Systems, vol. 14, no. 1,
pp. 57-67, 2006.

Y. Lahbib, R. Kamdem, M.-1. Benalycherif, and R. Tourki, “An auto-
matic ABV methodology enabling PSL assertions across SLD flow for
SOCs modeled in SystemC,” Comput. Electr. Eng., vol. 31, no. 4-5, pp.
282-302, 2005.

W. Ecker, V. Esen, and M. Hull, “Execution semantics and formalisms
for multi-abstraction TLM assertions,” in Proc. of ACM/IEEE MEM-
OCODE, 2006, pp. 93-102.

, “Requirements and concepts for transaction level assertions,” in
Proc. of IEEE ICCD, 2006, pp. 286-293.

, “Implementation of a transaction level assertion framework in
SystemC,” in Proc. of IEEE/ACM DATE, 2007, pp. 894-899.

D. Grosse, H. Le, and R. Drechsler, “Proving transaction and system-
level properties of untimed SystemC TLM designs,” in Proc. of
IEEE/ACM MEMOCODE, 2010, pp. 113-122.

Z. Xiong, J. Bian, and Y. Zhao, “An assertion-based verification method
for SystemC TLM.,” in Proc of IEEE ICCCAS, 2010, pp. 842-846.

L. Pierre and L. Ferro, “A tractable and fast method for monitoring
SystemC TLM specifications,” IEEE Trans. Computers, vol. 57, no. 10,
pp. 1346-1356, 2008.

L. Ferro and L. Pierre, “ISIS: runtime verification of TLM platforms,”
in Proc. of FDL, 2009, pp. 1-6.

, “Formal semantics for PSL modeling layer and application to
the verification of transactional models,” in Proc. of ACM/IEEE DATE,
2010, pp. 1207-1212.

M. Chen and P. Mishra, “Assertion-based functional consistency check-
ing between TLM and RTL models,” in Proc. of IEEE VLSID, 2013,
pp. 320-325.

N. Bombieri, F. Fummi, and G. Pravadelli, “Incremental ABV for
Functional Validation of TL-to-RTL Design Refinement,” in Proc. of
ACM/IEEE DATE, 2007, pp. 882-887.

L. Pierre and Z. B. H. Amor, “Automatic refinement of requirements
for verification throughout the SoC design flow,” in Proc. of ACM/IEEE
CODES+ISSS, 2013, pp. 1-10.

N. Bombieri, F. Fummi, V. Guarnieri, G. Pravadelli, F. Stefanni,
T. Ghasempouri, M. Lora, G. Auditore, and M. Marcigaglia, “On the
reuse of RTL assertions in SystemC TLM verification,” in Proc. of
LATW, 2014, pp. 1-6.

“Standard for property specification language
62531:2012(E) (IEEE Std 1850-2010), pp. 1-184, 2012.

Y.Lahbib, M.-A. Ghrab, M. Hechkel, F. Ghenassia, and R. Tourki, “A
new synchronization policy between PSL checkers and SystemC designs
at transaction level,” in Proc. of IEEE DTIS, 2006, pp. 85-90.

Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic generation of simulation checkers from formal spec-
ifications,” in Proc. of CAV, 2000, pp. 538-542.

M. Boulé and Z. Zilic, “Automata-based assertion-checker synthesis of
PSL properties,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 1,
pp. 4:1-4:21, 2008.

G. Di Guglielmo, L. Di Guglielmo, A. Foltinek, M. Fujita, F. Fummi,
C. Marconcini, and G. Pravadelli, “On the integration of model-

driven design and dynamic assertion-based verification for embedded
software,” J. Syst. Softw., vol. 86, no. 8, pp. 2013-2033, 2013.

Carbon Model Studio.

(PSL)” IEC

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

