
Automatic extraction of assertions from execution
traces of behavioural models

Alessandro Danese∗, Tara Ghasempouri∗ and Graziano Pravadelli∗†
∗ Department of Computer Science, University of Verona, Italy. Email: {name.surname}@univr.it

†EDALab s.r.l., Italy. Email: graziano.pravadelli@edalab.it

Abstract—Several approaches exist for specification mining of
hardware designs. Most of them work at RTL and they extract
assertions in the form of temporal relations between Boolean
variables. Other approaches work at system level (e.g., TLM) to
mine assertions that specify the behaviour of the communication
protocol. However, these techniques do not generate assertions
addressing the design functionality. Thus, there is a lack of
studies related to the automatic mining of assertions for capturing
the functionality of behavioural models, where logic expressions
among more abstracted (e.g., numeric) variables than bits and bit
vectors are necessary. This paper is intended to fill in the gap, by
proposing a tool for automatic extraction of temporal assertions
from execution traces of behavioural models by adopting a mix
of static and dynamic techniques.

I. INTRODUCTION

Specification mining is an automatic approach for ex-
tracting assertions from the implementation of the design
under verification (DUV). Mined assertions are, generally, not
intended as an alternative for their (manual) definition. Indeed,
the primary goal is to improve the verification and documen-
tation process by helping verification engineers with a way
for evaluating and extending the basic manually-defined set of
assertions. While both static (e.g., in [1]) and dynamic (e.g.,
in [2]) approaches have been proposed, dynamic specification
mining (DSM) provides better scalability, and relying on the
analysis of execution traces, it can be applied also when the
source code of the DUV is not available. Figure 1 describes the
general idea about DSM. The DUV model can be described
at different abstraction levels targeting, for example, register
transfer level (RTL) or transaction level model (TLM) hard-
ware descriptions as well as software protocols and embedded
software. Execution traces, generated by simulating the DUV,
pass through an assertion miner tool, whose output is a set
of candidate assertions that capture the behaviours exercised
during simulation, according to a set of temporal patterns. At
the end, the quality of the obtained candidate assertions can
be evaluated to estimate how good they are in describing the
behaviours of the DUV.

Overall, specification mining can be classified in two
different domains i.e, Boolean and Non-Boolean. Boolean-
domain approaches are referred to specifications for low level
HW descriptions [2], [3] or SW protocols [4]. They can only
deal with bits and bit vectors (for HW) or they can capture
the sequence of function calls (for SW protocols), but they
are not able to mine relations through arithmetic expressions
on numeric data types such as, for example, a > b + c. On
the other hand, non-Boolean techniques like [5], are able to
infer arithmetic invariants on data types such as string, float
and integer. However, they generally do not have the ability to
mine specifications which define temporal behaviours of the
design, such as “x happens until y occurs”. First approaches
that automatically generate temporal assertions involving arith-
metic/logic expressions for behavioural descriptions have been
proposed in [6] and [7]. These techniques have contrasting

This work has been partially supported by the EU large-scale integrating
project CONTREX (FP7-2013-ICT-10-611146).

•
•
•
•
•

•

•

•

•
•

Fig. 1. Dynamic specification mining.

drawbacks. The approach in [6] tends to generate too com-
plex assertions (i.e., composed by large expressions involving
several variables together in the same formula). For example,
mined assertions may overlap two or more behaviours in the
same formula or they can capture too specific situations. In
the first case, assertions are difficult to understand by humans.
In the second, assertions capture several conditions happening
consequently in the considered execution trace, which are
strictly related to the peculiarity of the actual values stressed
by the testbench rather than to the real symbolic behaviour
implemented in the DUV. On the contrary, in [7] compact
assertions are extracted in the form of implications where the
antecedent is represented by a proposition composed only of
two simple operands (e.g, variables or constants) and one logic
operator. In this case, only simple assertions are extracted,
which could fail to capture interesting implications whose
antecedent is composed by more complex formulas.

This paper proposes a new approach for temporal spec-
ification mining of behavioural descriptions with the intent
of overcoming limitations of existing works. The proposed
approach implements a new assertion miner that exploits both
static and dynamic techniques to capture in a more effective
way the behaviours implemented in the DUV in the form of
PSL assertions [8]. In particular, main characteristics of the
proposed approach with respect to similar existing techniques
are:

• implementation of techniques to improve the quality
of the mined assertions relying on (i) analysis of the
cones of influence of the DUV, (ii) more efficient and
accurate extraction and composition of atomic propo-
sitions, and (iii) classification of candidate proposi-
tions All these techniques pursue the goal of mining
neither “too simple” nor “too complex” assertions to
avoid drawbacks suffered by [6], [7];

• extension of the temporal patterns considered for
assertion mining;

• optimization of the overall execution time.

The rest of the paper is organized as follows. Section II
provides further details on the state of the art. Section III
introduces some preliminary definitions and shows an overview
of the methodology, which is then detailed in Sections IV, V,
and VI. Section VII reports experimental results. Finally,
Section VIII is devoted to conclusions.

67978-3-9815370-4-8/DATE15/ c©2015 EDAA

II. RELATED WORKS

Different strategies have been proposed for assertion min-
ing. Among the first works in the software domain, scenario-
based specification mining approaches proposed in [9], [10]
instrument the source code to mine linear sequence charts.
However, these approaches are not aimed at discovering the
complete behaviour of the DUV, but only the collaboration
among its components. Other works mine the specifications
of the DUV in form of algebraic equation [11] or Hoare-style
equations of pre and post-conditions [12], but the temporal
behaviours are not considered. Temporal assertion mining is
described in [3], [13], [14], where a mining tool, Goldmine,
is proposed for extracting respectively, Boolean-level, word-
level and system-level assertions. Recently, Goldmine has been
further improved to extract more succinct assertions [15]. In
general, Goldmine extracts PSL assertions that involve only the
next temporal operator. The only two approaches that generate
temporal assertions considering arithmetic/logic expressions
among the variables of the DUV are ODEN [6] and the work
described in [7]. However, the drawbacks summarized in the
previous section limit their effectiveness. Commercial tools
are also available for automatic assertion generation at RTL,
e.g., Atrenta BugScope [16] and Jasper ActiveProp [17]. The
first generates SVA or PSL assertions where only the next
temporal operator is considered. The second generates both
structural and behavioural SVA next-based assertions, but no
arithmetic/logic expressions are considered.

III. PRELIMINARIES AND OVERVIEW

Before showing an overview of the proposed strategy, some
definitions are reported to create the necessary background.
Definition 1. (Atomic proposition) An atomic proposition is
a formula that does not contain logical connectives.

In this paper, we consider atomic propositions of the
form: num_var_1 op num_var_2; bool_var = True; bool_var
= False; where num_var_1 and num_var_2 are numeric data
type variables or constants (e.g., natural, integer, float, etc.),
bool_var is a Boolean variable, and op is one of the following
operators: =, <,>,≤,≥, �=.
Definition 2. (Proposition) A proposition is a composition
of atomic propositions through logic connectives. An atomic
proposition itself is a proposition.

In this paper, we consider the connectives ∨ and ∧ to
compose propositions.
Definition 3. (Temporal assertion) A temporal assertion is a
composition of propositions through temporal operators.

In this paper, we consider always, next, until and before
operators of PSL language to compose temporal assertions.

The proposed approach consists of three main steps: (i)
identification of cones of influence (Section IV), (ii) mining of
propositions (Section V), and (iii) mining of temporal asser-
tions (Section VI). Initially, the source code of the DUV and
execution traces are analysed to extract the cone of influence
for each primary outputs of the DUV. This step is necessary
to prevent the assertion miner from generating assertions that
mix variables belonging to different cones of influence. On
the contrary, longer assertions could be generated that overlap
unrelated behaviours, degrading both the readability and the
quality of the mined assertions. Then, execution traces are
partitioned according to the cones of influence and provided
to the proposition miner. Each execution trace describes the
values assigned to primary inputs (PIs) and primary outputs
(POs) of the DUV at each simulation instant. For every cone
of influence, the proposition miner is in charge of extracting
propositions representing interesting relations between PIs and
POs that appear frequently in the analysed execution traces.
Finally, such propositions are combined to create temporal

assertions by the assertion miner. Mined assertions are in
the form antecedent → consequent, where antecedent
and consequent are temporal assertions reflecting temporal
patterns described in Section VI. Considered variables are PIs
and POs of the DUV, since we are interested in capturing
system behaviours at the boundary of the DUV. However, the
methodology could be applied without changes to consider
internal variables too. Details on the three steps of the proposed
methodology are reported in the next sections.

IV. IDENTIFICATION OF CONES OF INFLUENCE

The first step of the methodology consists in the identi-
fication of PIs that belong to the cone of influence of each
DUV’s PO. Given a target variable v, its cone of influence
is represented by the set of variables that affect the value
of v. This task is fundamental to better characterize the be-
haviours of the DUV avoiding the risk of generating assertions
that capture unrelated behaviours in the same formula. We
apply two complementary modalities to extract the cones of
influence. When the DUV source code is available, tools
based on static approaches can be adopted like, for example,
CodeSurfer [18]. Currently, we have interfaced our methodol-
ogy with CodeSurfer, since it provides a better support for the
C++ language, which can be automatically generated starting
from popular hardware description languages like, VHDL,
Verilog and SystemC by means of HIFSuite [19]. When the
DUV source code is not available, the extraction of cones
of influence can rely only on the analysis of the execution
traces by adopting heuristics techniques like, for example,
the solution proposed in Tane [20], which has the ability of
producing a list of likely correlations among two or more
columns of a table of values. When the DUV source code
is not available, our methodology provides Tane with tables
representing execution traces to extract functional dependences
among PIs and POs. Independently from the adopted strategy,
at the end of this phase, each execution trace is partitioned in
different slices according to the extracted cones of influence.

V. PROPOSITION MINER

The purpose of the proposition miner is to generate for-
mulas according to Def. 2, that will be used as antecedents
and consequents by the assertion miner. The proposition miner
takes the slices of the execution traces1 as input, and it
works in two steps. It first analyses each slice to extract
atomic propositions (Section V-A) that describe simple rela-
tions between DUV variables, like, for example, var1 > var2,
var3 = True, etc. Then, it composes atomic propositions
(Section V-B) to create more complex propositions that could
represent antecedents or consequents of the final assertions,
like, for example, (var1 > var2) ∧ (var3 = True).

A. Mining of atomic propositions

Mining of atomic propositions is performed by calling an
external tool, i.e., Daikon [5], which is able to dynamically
extract arithmetic/logic expressions among variables of the
DUV by analysing execution traces. In Daikon’s terminology,
atomic propositions are called invariants, since they hold
throughout the analysed trace. However, no temporal behaviour
can be observed by composing such invariants. Thus, execution
traces are tokenized in sub-traces. Then, Daikon is called to
extract invariants of such sub-traces. These invariants, being
true only on some parts of the original execution traces,
represent atomic proposition candidates for creation of tem-
poral assertions, as described in the following steps of the
methodology (Section V-B and Section VI). Invariants that are
true for all sub-traces are instead discarded.

1In the following of the paper, to not overload the writing, we use the term
execution trace instead of explicitly referring to its slices. Indeed, each of the
next steps is executed on the slices derived from the extraction of DUV cones
of influence.

68 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Despite of the fact that the next steps of the proposed
methodology are independent from the way atomic proposition
candidates are extracted, we have chosen Daikon to this
purpose since it is one of the most powerful tools for such kind
of inference. However, since Daikon execution represented the
major bottleneck for the approach described in [6], in this
proposal the use of Daikon inside the proposition miner has
been optimized as follows.

Invocation on a reduced set of short sub-traces. In order to
extract the most complete set of atomic proposition candidates,
execution traces have to be tokenized in an exhaustive way by
creating all sub-traces of length 2, 3, 4, etc.. This means we
should generate

∑n−1
i=2 i sub-traces from an n-length execution

trace. In order to avoid the generation of this huge quantity
of sub-traces, we studied how many invariants are generally
mined changing the sub-trace sizes. After an empirical analysis
on a large set of case studies, we indeed observed that sub-
traces longer than 6 simulation instants very rarely provide
new candidates w.r.t. shorter sub-traces. Thus, in the current
methodology only sub-traces whose length is between 2 and
6 simulation instants are considered. This way, given an
execution trace composed of n instants, the total number of

sub-traces provided to Daikon is
∑min(n−2,5)

i=1 (n− i).

Analysis of a reduced set of invariant patterns. The list
of invariant patterns considered by the Daikon’s inference
engine is very rich [21]. However, most of them are not
interesting to mine temporal assertions for behavioural descrip-
tions of hardware components or embedded SW and they can
be removed to save execution time. For example, invariants
typically occurring in software programs like x.field is null,
array A is sorted, etc., are irrelevant in our context. Thus, we
restricted Daikon to search only for arithmetic/logic expres-
sions involving the most common relational (e.g., =, �=, ≤, ≥,
<, >) and arithmetic (e.g., +, −,*, ÷) operators. Moreover,
we imposed also that constants are not allowed as operands
of relational operators, with the only exception represented by
the Boolean constants True and False. In most of cases, it is
unlikely that atomic propositions like variable = constant
play a decisive role for the functionalities of the design.
Instead, it is generally more important to capture relations
between variables.

More efficient invocation on sub-traces. Daikon’s execution
flow is composed of three steps: (i) initialization of internal
data structures according to the selected invariant patterns and
the data types of considered variables, (ii) mining of invariants,
and (iii) printing of results. By profiling the three phases on
several case studies and different lengths of execution sub-
traces, we derived interesting observations. In particular, we
observed that the third phase is independent from the length
of the sub-traces analysed by Daikon and definitely negligible
from the execution time point of view. On the contrary, the
second phase strictly depends on sub-trace length. However,
execution time related to the second phase is almost irrelevant
(few milliseconds) for the very short sub-traces extracted by
the tokenization procedure. The real bottleneck is represented
by the first phase, which costs, in average, almost one second
for each analysed sub-trace independently from its length. To
reduce this cost, we modified the workflow of Daikon to allow
a more efficient integration with the proposition miner. In
particular, a single Daikon process is call for each execution
trace, and, consequently, the initialization step is performed
once per execution trace instead of once per sub-trace, as done
in the original workflow. Given the sub- traces set provided
by the tokenizer for each execution trace, data structures are
initialized for the first sub-trace, then they are saved by deep
copy and refreshed before moving to the next sub-trace. The
time saved with this optimization is significant and it greatly
reduces the impact of Daikon on the overall mining flow, as

Fig. 2. Generation of candidate propositions.

reported in the experimental results.

B. Generation of candidate propositions
The goal of this phase is to compose atomic propositions

in a set of candidate propositions according to Def 2 (Fig. 2).
Such propositions will represent candidate antecedents and
consequents for the final phase of the methodology. The
set of atomic propositions is evaluated with respect to the
execution traces. A checking procedure (atomic proposition
checking) is executed to identify which atomic propositions
are true in each instant of each execution trace. The output
of this phase is represented by a table (atomic proposition
trace) for each execution trace whose format is as follows.
The first column refers to the time instants. Then, there is a
column for each atomic proposition reporting its truth value
for each time instant of the execution trace. Subsequently, a
composition procedure generates a candidate proposition from
each row of the atomic proposition trace by composing in
an AND formula all atomic propositions that are marked as
true. For example, in Figure 2, the first and the second atomic
propositions (i.e., ap1 and ap2) are true at time instant 1, then
a candidate proposition is created by composing ap1 and ap2
in the formula p1 := ap1 ∧ ap2.

The next step (proposition checking) creates a new table
(proposition trace) for each execution trace to identify which
candidate propositions are true in each instant. The utility of
this tables will be clear in Section VI.

Finally, candidate propositions are classified according to
the kind of variables (primary inputs, primary outputs or both)
they involve. Such a classification is used to restrict the work
space of the assertion mining algorithm and generate high-
quality assertions. In particular, we can distinguish among:

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 69

PI propositions: they involve only primary inputs of the
DUV. They capture the behaviours of the testbenches used to
simulate the DUV, while they cannot express anything about
the behaviour of the DUV. They are good candidates to be
antecedents of temporal assertions.

PO propositions: they involve only primary outputs of the
DUV. They observe conditions occurring as a consequence of
the DUV execution. They are definitely good candidates to
be consequents of temporal assertions. However, they can be
used also as antecedents when we are interested in capturing
temporal implications between expected results of a DUV.

PIPO propositions: they involve both PIs and POs of the
DUV. They can be considered good candidates for both an-
tecedents and consequents. However, when a PIPO proposition
is used as a consequent, it could be appropriate to prune its
atomic propositions that predicate only on PIs.

VI. ASSERTION MINER

In the last phase of the methodology, the candidate propo-
sitions are combined according to a set of temporal patterns
to create candidate temporal assertions. Given a candidate
proposition pa of type PI, PO or PIPO that acts as antecedent,
and a set of candidate propositions P = (p1c , ..., p

k
c) of type

PO or PIPO that act as consequences, the considered patterns
are the following:

1) Next: always(pa → next pic);
2) N-next: always(pa → next[N] pic);
3) Until: always(pa → pa until pic);
4) Alternating: always(pa → next (pic before pa)).
5) Next_or: always(pa → next (p1c ∨ p2c ∨ ... ∨ pkc));
6) N-next_or: always(pa → next[N] (p1c∨p2c∨...∨pkc));
7) Until_or: always(pa → pa until (p1c∨p2c∨ ...∨pkc)).

These patterns allow to capture interesting behaviours be-
tween PIs and POs of the DUV according to the classification
proposed in [22] that describes frequently used assertions for
representing design specification. Patterns similar to number 1,
3, and 4 have been considered also in [2], [6], [7]. On the con-
trary, patterns 2, 5, 6 and 7 have never been considered by other
temporal mining tools. Approaches based on Goldmine [3],
[13], [14], [15] are instead oriented to capture chain of next
events, like p1 ∧ next p2 ∧ ... ∧ next[i]pi−1 → next[i+ 1]pi.
Such a kind of pattern is not considered in this work. We think
it is more suited to predicate over internal variables of the DUV
rather than PIs and POs, which are, instead, our target.

The assertion mining algorithm works as shown in Fig-
ure 3. For each of the considered patterns, a corresponding
accepting automaton has been implemented. Given one of the
automata and given a couple of candidate propositions, the
automaton is traversed by following each proposition trace
generated by the proposition miner. If the error state is never
reached for all the proposition traces, a candidate assertion
is generated and stored by composing the two candidate
propositions according to the considered temporal pattern. On
the contrary, reaching the error state for at least one proposition
trace is a sufficient condition to discard the candidate assertion.
The proposed approach can be easily extended to support fur-
ther temporal patterns by defining the corresponding automata
and composing propositions accordingly.

The collected candidate assertions are then converted in
checkers, by using, for example, IBM FoCs[23], and connected
to the DUV. A different and very larger set of testbenches, with
respect to the set initially used to generate the execution traces,
is applied to stress the DUV and the candidate assertions
searching for counterexamples. Each time a checker fails, the
corresponding candidate assertion is discarded. Only assertions

Fig. 3. Generation of temporal assertions.

that survive to this stressing phase are definitely collected. The
stressing phase is applied to increase the likelihood that the
surviving assertions are satisfied by the DUV independently
from the execution traces adopted for their extraction. Being a
dynamic, not exhaustive, approach, we cannot be completely
guaranteed, but larger is the testbench set higher is the prob-
ability of collecting assertions that are satisfied by the DUV
without the risk of escaping counterexamples. Since the mining
procedure is much more expensive than simulating the DUV
connected with checkers, it makes sense to use a reduced set of
testbenches for the mining phase and a larger set of testbenches
for the stressing phase.

To clarify how automata work, let us consider the next-
based patterns. Details on the other temporal patterns are
omitted for lack of space. Next-based patterns number 1 and
2 rely on the automata shown in Fig. 4. The only difference
is represented by the number of states to be traversed before
reaching the accepting state (ant) after the activation of the
antecedent. In case the error state is reached the candidate
assertion is discarded and a different couple of antecedent/-
consequent candidates is analysed. The automata for patterns
number 5 and 6 are similar, but in case the error state is
reached at simulation instant t, on the assumption that pa
and pc have been activated at least once before reaching t,
an alternative searching procedure is activated. This procedure
analyses the proposition trace to see if a different candidate
proposition pj is true at time t instead of pc. If pj is found, it
is collected and the automaton restarts from the initial state
searching for a new activation of the antecedent pa in the
rest of the proposition trace. When all proposition traces are
completely traversed, collected propositions are composed in
an OR formula together with pc. Such a formula becomes the
consequent of a next_or or N-next_or assertion where pa is the
antecedent. To avoid the risk a huge number of propositions
are included in the OR formula, the error state can be reached

70 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Fig. 4. Next (upper part) an N-next (lower part) pattern automata.

a maximum number of times defined by the user. When this
threshold is overcome the automaton stops and the couple of
candidates pa, pc is definitely discarded. From our experience
reasonable thresholds are between 2 and 4.

VII. EXPERIMENTAL RESULTS

Experimental results have been carried out on an Intel
Core2 Duo 2.2 GHz processor equipped with 2.0 GByte
of RAM running Linux OS. Efficiency and effectiveness of
the proposed mining methodology has been evaluated by
considering the benchmarks reported in Table I. For B06 and
BMaker two cones of influence have been identified, only one
for the other benchmarks. A set of execution traces for a total
number of 10,000 simulation instants has been generated for
all benchmarks.

Table II reports the number of atomic propositions (AP),
the number of propositions (P), and the number of temporal
assertions (Assertions) extracted by the proposed approach
before running the stressing phase described in Section VI.
In particular, the number of assertions have been divided
among next-based (X), until-based (U), and alternating (A).
Concerning the N-next pattern, values 2 and 3 are considered
for the parameter N. Finally, in the last two columns, the
total execution time of the mining approach (Time) and the
percentage of this time spent by Daikon (D) are shown.

As expected, the most time-expensive step of the miner
is the extraction of atomic propositions performed by using
Daikon. Daikon time is not so much affected by the number
of considered variables. In fact, considering B06 and BMaker,
we observe that there is a low difference between the execution
time related to the single cones of influence (where the con-
sidered variables are a subset of the total), and the execution
time of the DUV without differentiating the cones of influence.
Indeed, Daikon time is dominated by the time spent to initialize
internal data structures, which depends mainly on the data type
of the considered variables. For a Boolean variable only two
invariant patterns have to be considered (i.e., var = true,
var = false), which are very simple to be inferred. On
the contrary, for numeric data types the number of invariant
patterns is higher and their inference is more difficult. This
justifies why benchmarks where only Boolean variables (e.g.,
bit and bit vectors) are involved (i.e., B03, B06 and Uart) have
an execution time lower than the other benchmarks, which are
implemented by using integer (i.e., Dig_proc) or real data types
(i.e., BMaker and Thermostat).

For B03 a high number of propositions has been gener-
ated. This is due to the nature of the DUV that, being an
arbiter among 4 devices, presents a high number of possible
combinations among the four request signals and the four grant
signals. Such different combinations give rise to a high number
of next-based assertions according to the received requests. On

DUV Typology Cones PIs POs Lines

B03 RTL 1 4 4 141
B06 RTL 2 2 6 128

cone 1 RTL - 1 4 -
cone 2 RTL - 2 2 -

BMaker ESW 2 4 4 552
cone 1 ESW - 3 1 -
cone 2 ESW - 1 3 -

Dig_proc RTL 1 2 8 2580
Thermostat ESW 1 2 1 56
Uart TLM 1 9 5 14815

TABLE I. CHARACTERISTICS OF BENCHMARKS.

DUV AP P
Assertions Time

D
X U A Total (s.)

B03 28 80 240 0 0 240 551 93%
B06 w/o cones 29 13 27 4 0 31 577 93%
B06 w/ cones 23 11 15 6 0 21 1078 93%

cone 1 14 6 12 2 0 14 540 93%
cone 2 9 5 3 4 0 7 538 93%

BMaker w/o cones 37 19 0 9 0 9 1641 89%
BMaker w/ cones 17 9 0 8 0 8 2949 89%

cone 1 8 4 0 3 0 3 1476 89%
cone 2 9 5 0 5 0 5 1473 89%

Dig_proc 15 4 12 0 0 12 1916 93%
Thermostat 4 3 0 3 0 3 1297 94%
Uart 20 19 57 0 16 73 394 92%

TABLE II. EXPERIMENTAL RESULTS.

the contrary, the sequential length of B03 is too short to reflect
until-based behaviours, and no evident alternating behaviour is
implemented by the arbiter.

For BMaker and Thermostat only until-based assertions are
mined. This is consistent with the fact that their evolution
depends on real data-type variables that evolve in a contin-
uous, rather than discrete, way. Typical behaviours captured
by analysing these benchmarks are “command is off until
temperature is higher than setpoint” or “engine turns clockwise
and engine turns fast until input of the mixer becomes false”.

Extracted assertions have been then subjected to the stress-
ing phase by stimulating the corresponding checkers connected
to the DUV with up to 1 million stimuli. Table III reports the
number of assertions for which the stressing phase was unable
to found counterexamples at varying of the number of stimuli.
For most of benchmarks, we found very few counterexamples
by increasing the number of stimuli. Generally, by using a
number of stimuli which is double (20,000) with respect to
the length of execution traces adopted for the mining phase
(10,000), the number of “survived” assertions stabilizes and no
new counterexample is found any more. The only benchmark
that does not converge on the number of survived assertions
is Uart. Indeed, Uart, after a set of input is provided, requires
670 simulation instants before the corresponding result is
observable at primary outputs. By using an execution trace of
length 10,000 it means we can simulate completely no more
than 15 different operations, which are too few for mining
a set of assertions with a high degree of survival. However,
this is not a problem of the proposed methodology, but a
characteristic of the benchmark.

Finally, we report a comparison between the proposed
approach and the tool ODEN described in [6]. Concerning the
total execution time, the comparison is reported in Table IV.
The table reports execution time at varying of the total number
of considered simulation instants in the execution traces.
Actual values are reported for the proposed methodology; for
ODEN actual values are reported only for 100 and 1,000
simulation instants, since reaching 10,000 simulation instants
becomes practically intractable for most of the considered
benchmarks. ODEN’s time for 10,000 simulation instants has
been estimated on the basis of the tendency observed for
shorter execution traces. By looking at the table, it appears
that the increasing in execution time for the proposed approach
is linear, at varying of the length of execution traces. On
the contrary, ODEN execution time increases polynomially,
till becoming unacceptable for long execution traces. This

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 71

Design
Number of stimuli

10000 20000 40000 80000 100000 1M

B03 240 191 177 171 171 171
B06 w/o cones 31 30 29 29 29 29
B06 w/ cones 21 21 21 21 21 21

cone_1 14 14 14 14 14 14
cone_2 7 7 7 7 7 7

BMaker w/o cones 9 9 9 9 9 9
BMaker w/ cones 8 8 8 8 8 8

cone_1 3 3 3 3 3 3
cone_2 5 5 5 5 5 5

Dig_proc 12 12 12 12 12 12
Thermostat 3 3 3 3 3 3
Uart 73 71 71 67 67 57

TABLE III. SURVIVED ASSERTIONS AFTER THE STRESSING PHASE.

Design
Length of execution traces

Proposed methodology ODEN
100 1000 10000 100 1000 10000

B03 6 58 551 569 11202 643227
B06 w/o cones 6 56 577 500 7920 118539
B06 w/ cones 11 105 1043 na na na

cone_1 5 51 505 na na na
cone_2 6 54 538 na na na

BMaker w/o cones 33 167 1641 474 5209 323040
BMaker w/ cones 60 296 2949 na na na

cone_1 30 149 1476 na na na
cone_2 30 147 1473 na na na

Dig_proc 13 135 1916 625 12721 730651
Thermostat 13 116 1297 394 7102 252501
Uart 14 134 394 629 10934 425375

TABLE IV. COMPARISON BETWEEN EXECUTION TIME (IN SECONDS)
OF THE PROPOSED APPROACH AND ODEN.

difference is mainly due to the different way Daikon is used
in the extraction of atomic propositions, which represents
the most expensive phase of both the proposed methodology
and ODEN. By adopting the optimizations described in Sec-
tion V-A, the cost of Daikon’s invocation on a set of sub-traces
is almost 40 times lower than ODEN’s approach.

A different comparison is related to the number of asser-
tions extracted by the proposed approach and by ODEN at
varying the length of the execution traces. Results are reported
in Table V. We observe that the number of assertions extracted
by the current methodology has an horizontal asymptotic
trend, while for ODEN the values generally keeps going to
increase by augmenting the number of simulation instants.
This highlights that the approach proposed in this paper is
not dependent on the length of the execution traces, but on the
number of different behaviours that execution traces expose.
In fact, when the most of cases are covered by the execution
traces, no new assertion is mined. On the contrary, in ODEN
the number of assertions keeps to increase for longer traces.
The reason is evident by analysing the assertions extracted by
the two approaches. In ODEN, assertions are more related to
the specific values assigned to PIs by the testbench. In the
approach presented in this paper, assertions reflect symbolic
relations between PIs and POs. For example, several assertions
in ODEN include atomic propositions of the kind variable =
constant. Clearly, if the value’s range of a variable is very
large, the number of possible atomic propositions of this kind
increases rapidly by using different stimuli. On the contrary,
to avoid such a problem, in this work we explicitly discarded
the possibility of comparing a variable with a constant, as
reported in Section V. As a result, we generate a smaller set of
assertions that focuses more precisely on the relation among
PIs/POs that derives from the DUV functionality, discarding
specific conditions that are just an instance of more interesting
and more general behaviours.

VIII. CONCLUSIONS

In this work we proposed a mining approach for be-
havioural descriptions that automatically extract temporal as-
sertions from execution traces. Mined assertions capture arith-
metic/logic relations between PIs and POs according to a set of
temporal patterns that can be easily extended. With respect to
similar existing techniques, the proposed methodology points

Design
Length of execution traces

Proposed methodology ODEN
100 400 1000 10000 100 400 1000

B03 132 230 240 240 1554 15448 38385
B06 w/o cones 40 39 37 31 204 586 608
B06 w/ cones 32 23 21 21 na na na

cone_1 18 16 14 14 na na na
cone_2 15 7 7 7 na na na

BMaker w/o cones 9 9 9 9 287 1266 834
BMaker w/ cones 8 8 8 8 na na na

cone_1 3 3 3 3 na na na
cone_2 5 5 5 5 na na na

Dig_proc 6 7 6 12 24 26 55
Thermostat 3 3 3 3 35 89 88
Uart 34 34 43 73 156 162 341

TABLE V. COMPARISON BETWEEN THE NUMBER OF ASSERTIONS

EXTRACTED BY THE PROPOSED APPROACH AND ODEN.

out an higher efficiency from the execution time point of view,
and an higher effectiveness by considering the quality of mined
assertions. Current limitations that will be part of future works
are related to the incapability of capturing liveness assertions
involving the eventually operator.

REFERENCES

[1] G. Ammons, R. Bodík, and J. R. Larus, “Mining specifications,” in
Proc. of ACM POPL, 2002, pp. 4–16.

[2] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Proc. of ACM/IEEE CAD, 2010, pp. 755–
760.

[3] L. Liu, C.-H. Lin, and S. Vasudevan, “Word level feature discovery to
enhance quality of assertion mining,” in Proc. of IEEE ICCAD, 2012,
pp. 210–217.

[4] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta: min-
ing temporal API rules from imperfect traces,” in Proc. of ACM/IEEE
ICSE, 2006, pp. 282–291.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1,
pp. 35–45, 2007.

[6] M. Bonato, G. Di Guglielmo, M. Fujita, F. Fummi, and G. Pravadelli,
“Dynamic property mining for embedded software,” in Proc. of
ACM/IEEE CODES+ISSS, 2012, pp. 187–196.

[7] M. Bertasi, G. Di Guglielmo, and G. Pravadelli, “Automatic generation
of compact formal properties for effective error detection,” in Proc. of
ACM/IEEE CODES+ISSS, 2013, pp. 1–10.

[8] “Standard for property specification language (PSL),” IEC
62531:2012(E) (IEEE Std 1850-2010), pp. 1–184, 2012.

[9] D. Lo and S. Maoz, “Specification mining of symbolic scenario-based
models,” in Proc. of ACM PASTE, 2008, pp. 29–35.

[10] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of iterative patterns
for software specification discovery,” in Proc. of ACM KDD, 2007, pp.
460–469.

[11] J. Henkel and A. Diwan, “Discovering algebraic specifications from
java classes,” in Proc. of ECOOP, 2003, pp. 431–456.

[12] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. on Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[13] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “Goldmine: automatic assertion generation using data mining and
static analysis,” in Proc. of ACM/IEEE DATE, 2010, pp. 626–629.

[14] S. Vasudevan, D. Sheridan, and V. Athavale, “Automatic generation of
assertions from system level design using data mining,” in Proc. of
IEEE MEMOCODE, 2011, pp. 191–200.

[15] D. Sheridan, L. Liu, H. Kim, and S. Vasudevan, “A coverage guided
mining approach for automatic generation of succinct assertions,” in
Proc. of IEEE VLSI Design, 2014, pp. 68–73.

[16] http://www.atrenta.com/about-bugscope.htm5.
[17] “Jasper Activeprop,” http://www.jasper-da.com.
[18] http://www.grammatech.com/research/technologies/codesurfer.
[19] N. Bombieri, G. D. Guglielmo, M. Ferrari, F. Fummi, G. Pravadelli,

F. Stefanni, and A. Venturelli, “Hifsuite: Tools for hdl code conversion
and manipulation,” EURASIP J. Embedded Syst., pp. 4:1–4:20, 2010.

[20] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “TANE: An
efficient algorithm for discovering functional and approximate depen-
dencies,” The computer journal, vol. 42, no. 2, pp. 100–111, 1999.

[21] http://plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-
list.

[22] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proc. of ACM/IEEE ICSE,
1999, pp. 411–420.

[23] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic generation of simulation checkers from formal spec-
ifications,” in Proc. of CAV, 2000, pp. 538–542.

72 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

