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Abstract

In 2011, property directed reachability (PDR) was proposed as

an efficient algorithm to solve hardware model checking problems.

Recent experimentation suggests that it outperforms interpolation-

based verification, which had been considered the best known al-

gorithm for this purpose for almost a decade. In this work, we

present a generalization of PDR to the theory of quantifier free for-

mulae over bitvectors (QF BV), illustrate the new algorithm with

representative examples and provide experimental results obtained

from experimentation with a prototype implementation.

1 Introduction

For almost a decade, interpolation-based verification [1] has been

considered the best algorithm to solve hardware model checking

problems. In this approach, one repetitively solves bounded model

checking instances with bound k. Next, one derives interpolants

from the refutation proofs, which act as overapproximations of the

forward image of the initial set. After applying this procedure for

several iterations, the overapproximations of the forward image of-

ten stabilizes, i.e. one finds an inductive invariant that proves the

model checking problem.

Recently, a novel approach to hardware model checking has

been proposed which attempts to decide a model checking prob-

lem stepwise by solving a large number of small lemmata instead

of unrolling the transition relation as in interpolation-based veri-

fication which often yields large SAT instances. This algorithm,

later named property directed reachability, has been originally pro-

posed in [2] and its implementation IC3 demonstrated remarkably

good performance in the hardware model checking competition

(HWMCC) 2010 (3rd place). The authors of [3] have shown that

a more efficient implementation of the algorithm would have won

the HWMCC 2010. In particular, the new algorithm outperforms

interpolation-based verification.

In addition to its excellent runtime performance on practical

problems, PDR has a number of other favorable properties. For

instance, the algorithm has modest memory requirements and has

been shown to be parallizable, a property which has become partic-

ularly important in recent years.

Similarly as the excellent algorithmic properties of the DPLL

algorithm [4] have fueled interest in generalizing the DPLL algo-

rithm to richer logics [5], all the positive characteristics of PDR

motivate research for generalizations to richer logics.

Two such generalizations have been published recently.

Whereas the authors of [6] present generalizations to push-down

systems and to the theory QF LA, the authors of [7] propose to

apply PDR to the Boolean skeleton of a lazy satisfiability modulo

theory (SMT) solver in order to leverage it for richer logics.

As main contribution of this work, we describe a generalization

of the PDR algorithm from Boolean formulae to the theory QF BV.

The generalized version incorporates analogs to all optimization

techniques applied in the original version, such as hot solving, fast

expansion using the minimum unsatisfiable core, simulation based

expansion of proof obligations, etc.

We anticipate that an efficient QF BV model checking algo-

rithm will be useful in many different application domains. In par-

ticular, we envision its use in program verification.

The remainder of this paper is structured as follows: To keep the

paper self-contained, we describe PDR for solving hardware model

checking problems in the following section. Next, in Section 3, we

present the proposed generalization from the binary PDR algorithm

to an algorithm to solve problems formulated in QF BV. As proof

of concept, we have implemented the algorithm and in Section 4

we describe details of our implementation and report experimental

results. Finally, we draw conclusions and describe future work in

Section 5.

2 Property Directed Reachability

In this section, we start with defining the hardware model checking

problem. Next, we explain the overall solving strategy of PDR and

finally present the actual algorithm. Note that for space consider-

ations, we have omitted many important details in our discussion

about PDR, some of them essential for the efficiency of the algo-

rithm. We refer the reader to [3] for a complete presentation.

2.1 Hardware Model Checking Problem

We are given a state space spanned by the domain of n Boolean

variables x = x1,x2, · · · ,xn. We define two sets of states: initial

states I(x) and bad states B(x) using Boolean formulae over the

Boolean variables x. We model our hardware design operating in

the state space x using a transition relation T (x,x′) that is a Boolean

formula over x and x′, a copy of x which corresponds to the same

variables but one time step later. The transition relation is true iff

the combination x and x′ represent a possible transition of the hard-

ware design. The problem to be solved is to decide whether a state

in B(x) can be reached from a state in I(x) using only transitions

in T (x,x′). Note that for ease of notation, we will omit the depen-

dence of I, T , and B on the variables x and x′ in the remainder of

this paper.

2.2 Overall Solving Strategy

The conceptual strategy of PDR to fulfill the overall proof obli-

gation is to iteratively find small truth statements and combine all

these lemmata to obtain a proof for the desired result. In contrast to

many other approaches in hardware model checking, the algorithm

purposely avoids unrolling the transition relation over several time

steps. The motivation for this strategy is that solving a number of

small problems one by one is more likely successful than attempt-

ing to solve one big problem at once.



More concretely, PDR constructs a trace t consisting of frames

f0, f1, · · · . Each frame contains a set of Boolean cubes {ci}, where

each cube ci =
∧

j l j is a conjunction of Boolean literals l j where a

Boolean literal l j can either be a Boolean variable xk or its negation

¬xk. If there is a cube c in frame fi, the semantic meaning of this is

that all states contained in c cannot be reached within i steps from

the initial states. In this case, we say that the states in c are covered

in frame i and we will call all cubes in frame fi the cover. The

inverse of the cover in fi is an overapproximation of the states that

are reachable in i steps. In frame f0, a state is covered if it is not

reachable in 0 steps, in other words, if it is not in the initial set I.

Algorithm 1 PDR(I,T,B)

1: while true do

2: Cube c = findBadCube()

3: int l = lengthsTrace()

4: if c then

5: if !recCoverCube(c, l) then return “property fails”

6: else

7: pushNewFrame()

8: if propagateCubes() then return “property holds”

Algorithm 2 recCoverCube(Cube c, int l)

1: if l = 0 then return false

2: while c reachable from c̃ in one transition do

3: if !recCoverCube(c̃, l −1) then return false

4: expand(c, l)

5: propagate(c, l)

6: return true

Algorithm 1 shows the overall PDR algorithm. In each iter-

ation, the algorithm searches for a cube in the last frame of the

trace that is in B and not yet covered using findBadCube().

If such a cube c exists, the algorithm tries to recursively cover c

(recCoverCube(), see Algorithm 2). To this end, the routine

checks if c is reachable from the previous frame. Assume that this

is possible and denote with c̃ a cube in the previous frame that is

not covered and from which c can be reached in one step. Then

recCoverCube() calls itself recursively on c̃. If such a sequence

of recursive calls reaches back to frame f0, the corresponding call

stack effectively proves that c can be reached from I, i.e. that the

property fails. Otherwise, if a cube c is proved to be unreachable

from the previous frame, the algorithm expands c by iteratively at-

tempting to remove literals from cube c. An attempt of removing

a literal lk from c =
∧

j l j is successful if
∧

j 6=k l j remains unreach-

able. After expansion, the algorithm attempts to propagate the cube

to later frames (if existent). Continuing the discussion of Algo-

rithm 1, if findBadCube() returns without successfully finding

an uncovered cube in B, we know that B is covered in the last frame

fl . As we preserve the invariant that the cover in frame fi is an un-

derapproximation of the space not reachable within i steps, we can

conclude that B is not reachable within l steps and we push a new

frame to the end of the trace. Afterwards, we attempt to propa-

gate cubes from frame l to frame l + 1. If this is successful for

all cubes, we have shown that from an overapproximation of the

reachable states in frame fl we cannot reach any state outside this

overapproximation in frame fl+1. In other words, we have found

an inductive invariant. Moreover, the set of bad states B is disjoint

of this inductive invariant. This proves that the property holds.

PDR is a sound and complete algorithm for solving hardware

model checking problems. We already argued why the algorithm

gives the correct response upon termination. It remains to show

that the algorithm terminates. The complete proof for this result is

given in [3]. Herein, we restrict ourselves in pointing out the main

intuition of the proof which is based on the following idea: note that

every state which is reachable within i steps is also reachable within

i+1 steps. Hence, the cover of frame fi+1 implies the cover of fi.

If two succeeding frames have the same cover, the algorithm ter-

minates. Otherwise, the cover of fi+1 must be strictly smaller than

that of fi. As the state space is finite, this implies that the algorithm

will eventually terminate. Note, however, that the asymptotic worst

case runtime is linear to the size of the state space which is expo-

nential to the size of the problem, i.e. the algorithm has runtime

O(2n) with n being the size of the problem.

The overall algorithm leverages a SAT-solver to answer atomic

queries such as “Can cube c be reached from a state that is not

covered in the previous frame?”

3 Generalization of PDR

Table 1 summaries the main aspects of our generalization of the

binary version of PDR to a more general logic. We assume that the

input format of the generalized version are QF BV formulae, which

motivated the use of a suitable SMT-solver instead of a SAT-solver.

Binary Approach Generalization

I,B,T Boolean formulae QF BV formulae

Solver SAT-Solver QF BV SMT-Solver

Atomic Reasoning Unit Boolean Cubes Polytopes

Expansion of
Ternary Simulation Interval Simulation

Proof Obligations

Table 1: Summary Generalization PDR

The most challenging problem for the generalization is to find a

suitable representation of the atomic reasoning unit. As indicated in

Table 1, we propose polytopes as the format of the atomic reason-

ing unit. Originally, we experimented with a simpler representa-

tion, integer cubes. For ease of exposition, in the following section,

we will explain the algorithm with integer cubes and illustrate the

limitations of this representation. Subsequently, we will describe

polytopes and how they can be used effectively in PDR.

3.1 Formulation with Integer Cubes

We now denote with x = x1,x2, · · · ,xn bitvector variables. We de-

fine an integer cube as a set of static intervals on the domain of

these variables. The static intervals are to be interpreted in the con-

junctive sense, i.e. a point is in the integer cube iff all variables are

in their respective static intervals. As an example, consider the in-

teger cube c defined by c = (3 ≤ x1 ≤ 5)∧ (−4 ≤ x2 ≤ 20). The

point x1 = 4, x2 = 0 is in c whereas the point x1 = 4, x2 = −10

is not. Geometrically, an integer cube corresponds to an orthotope

(a.k.a. hyperrectangle) in the n-dimensional space. The definition

of integer cubes as atomic reasoning unit appears to be an imme-

diate generalization of the concept of Boolean cubes, allows for an

efficient implementation of the algorithm, and the expansion oper-

ation is immediate. Instead of skimming Boolean literals, we at-

tempt to increase the intervals of the variables by decreasing lower

bounds and increasing upper bounds using binary search. Also, the

fact that all inductive invariants can be represented by a union of

integer cubes is promising in the theoretical sense.

3.1.1 Expansion of Proof Obligations

The efficiency of the binary version of PDR as documented in [3]

is partly based on its ability to generalize proof obligations using



ternary simulation. We propose to use interval simulation as a gen-

eralization of this idea.

The binary version of PDR uses ternary simulation in two con-

texts. Firstly, to expand bad, uncovered cubes found in line 2 of

Algorithm 1 and secondly to expand a cube c̃ from which c is reach-

able in line 3 of Algorithm 2. In both cases, a SAT solver is utilized

to find a point in the state space which, if reachable, proves that

the property does not hold. Consequently, the point represents a

proof obligation. The aim of expansion is to generalize these proof

obligations so that many points can be processed simultaneously.

Note that for the correctness of the algorithm, expansion of proof

obligations is not necessary. Hence, a conservative approximation

of the expansion is sufficient where we call an approximation con-

servative if it underapproximates the largest possible expansion. In

contrast, an overapproximation would cause the algorithm to po-

tentially report specious counterexamples.

In our generalization of the binary PDR algorithm, the backbone

for expansion of proof obligations is interval simulation on expres-

sions. To this end, we associate an interval Φe = [le,ue] with each

expression e. We evaluate an interval Φe using simulation rules. A

small but representative subset of these rules is given below. Note

that we denote the minimally and maximally representable num-

ber for a given expression with −∞ and ∞, respectively. Binary

variables are represented as bitvectors with length one; the corre-

sponding intervals are [0,0], [0,1], and [1,1] which stand for false,

false or true, and true, respectively.

[l1]
[const]

Φc = [c,c]

l ≤ v ≤ u
[var]

Φv = [l,u]
Φe1

= [l1,u1] Φe2
= [l2,u2]

[and]
Φe1∧e2

= [min{l1, l2},max{u1,u2}]

Φe1
= [l1,u1] Φe2

= [l2,u2] l1 + l2 ≥−∞ u1 +u2 ≤ ∞
[plus-r]

Φe1+e2
= [l1 + l2,u1 +u2]

Φe1
= [l1,u1] Φe2

= [l2,u2] l1 + l2 <−∞∨u1 +u2 > ∞
[plus-o]

Φe1+e2
= [−∞,∞]

Φe1
= [l1,u1] Φe2

= [l2,u2] u1 < l2
[lt-1]

Φe1<e2
= [1,1]

Φe1
= [l1,u1] Φe2

= [l2,u2] l1 > u2
[lt-0]

Φe1<e2
= [0,0]

Φe1
= [l1,u1] Φe2

= [l2,u2] u1 ≥ l2 l1 ≤ u2
[lt-x]

Φe1<e2
= [0,1]

Φe1
= [l1,u1] l1 = 1

[ite-t]
Φif e1 then e2 else e3

= Φe2

Φe1
= [l1,u1] u1 = 0

[ite-e]
Φif e1 then e2 else e3

= Φe3

Φe1
= [l1,u1] Φe2

= [l2,u2] Φe3
= [l3,u3] l1 6= u1

[ite-x]
Φif e1 then e2 else e3

= [min{l2, l3},max{u2,u3}]

To illustrate the use of these rules, imagine we attempt to evaluate

the expression e = (x1 > 2∧ x2 > 2)∨ x1 ≤ 2. We represent e as a

directed acyclic graph in which each vertex corresponds to a subex-

pression of e and each edge corresponds to a dependency between

subexpressions (see Figure 1). We calculate intervals by applying

the simulation rules topologically from source to sink in the expres-

sion graph. After evaluation of a subexpression, we memoize the

obtained interval for future use. Denote with Φe(c) the simulation

interval associated with expression e where c contains lower and

upper bounds of referenced variables. As for our example, assume

that we want to evaluate Φe(c) with c = {x1 ≥ 3,x2 ≥ 3}. In this

case, we obtain the intervals as given in Figure 1. We have that

Φe(c) = [1,1], i.e. the expression evaluates to one for any pair of

values for x1,x2 in c.

2 Φ2 = [2,2]

x2 > 2

x1 > 2

Φx2>2 = [1,1]

Φx1>2 = [1,1]

Φx2>2∧x2>2 = [1,1]

Φ!(x1>2) = [0,0]

!(x1 > 2)

x1 > 2

e

x2

x1

Φx2
= [3,∞]

Φx1
= [3,∞]

∧x2 > 2
Φe = [1,1]

Figure 1: Example of an interval simulation.

Note that the presented interval simulation overapproximates

the obtained intervals in the presence of reconvergence. To see

why, imagine we removed the constraint on x1 in c in the example

above, i.e. we evaluated Φe(c̃= {x2 ≥ 3}). In this case, the simula-

tor would return [0,1] meaning that depending on the actual values

of x1 and x2 in c̃, expression e could evaluate to 0 or 1. However,

assuming c̃, one can simplify e to e = x1 > 2∨ x1 ≤ 2 = 1, i.e. for

all values of x1 and x2 in c̃, e evaluates to 1 and the accurate result

would be [1,1].
For the purpose of expanding proof obligations, imagine we

identified point c as a proof obligation using an SMT-solver. We

use the described interval simulator as follows. For each variable

xi, we attempt to expand c by relaxing the lower and upper bounds

of xi using binary search. Denote with c̃ a proposed expansion dur-

ing this binary search. In the context of expanding bad, uncovered

cubes, we test whether a proposed expansion c̃ is valid by checking

if

ΦB∧u(c̃) = [1,1] (1)

where u is the expression describing the points that are uncovered.

In case the equation holds, the expansion is valid.

In the context of expanding a cube c from which another proof

obligation c′ is reachable in one step, we check whether the inter-

vals of the variables after one step starting from c̃ are included in

the intervals of the variable given by c′, formally

∀xi.Φnextxi
(c̃)⊆ Φxi

(c′) (2)

where we denote with nextxi
the expression which captures the

computation of the next value of xi. Note that this requires that

the transition relation is in the format of transition functions solv-

able for each variable. In many applications, this is naturally the

case.

Note that the overapproximation of the intervals by the simu-

lation procedure as illustrated above causes checks (1) and (2) to

yield conservative expansion moves, as desired.

We conclude the description of the formulation of the gener-

alized PDR algorithm with integer cubes by illustrating operation

and limitations of the algorithm using integer cubes using two ex-

amples.

3.1.2 Example: Simple

Consider PDR was called with the following model checking prob-

lem in which B is unreachable.

I := (n = 1)∧ (x = 0)

T := (n > 0)∧ (x′ = x+1)∧ (n′ = n−1)

B := (x ≥ 3)

Figure 2 shows how a simplified version of PDR would prove this

fact. Each row corresponds to a trace at a certain point in the algo-

rithm. Each plot in a trace corresponds to a frame where the first



plot in a trace corresponds to f0 of this trace, the second plot to f1,

and so forth.
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Figure 2: Iterative construction of proof for example Simple.

Initially, the trace has only one frame, f0. As B∧ I = false, B

is not reachable in zero steps and f1 is pushed at the end of the

trace. In f1, findBadCube() returns integer cube x ≥ 3 that is

in B and uncovered (indicated by the red rectangle in the first row

of Figure 2). Next, PDR checks whether there are points in x ≥ 3

that are reachable from the initial set in f0 in one transition. This

is not possible, hence x ≥ 3 can be covered. Before being added to

the cover of f1, the cube is expanded, yielding x ≥ 2 as indicated in

gray in the second row of Figure 2. After adding this integer cube

to the cover, there are no longer uncovered points in B and f2 is

pushed at the back of the trace. Now, PDR attempts to propagate

integer cube x ≥ 2 to f2. This is not possible, however, because

from the overapproximation of the reachable set in f1 (the inverse

of the cover) one can reach points in x ≥ 2 in one transition. Af-

ter the propagation phase, PDR continues with finding uncovered

cubes in B in f2, yielding x ≥ 3 for another time (see trace in the

second row of Figure 2). No point in x ≥ 3 can be reached from the

reachable set in f1 and the cube is added to the cover in f2. Now, B

is covered completely and PDR pushes f3 in the end of the trace. In

the succeeding propagation phase, the attempt to propagate x ≥ 3

fails. The subsequent call of findBadCube() returns again x ≥ 3

(see third row in Figure 2 in f3). This time, however, points in

f3 can be reached from the uncovered region of f2. For instance,

one can reach x = 3,n = 0 from x = 2,n = 1 in f2 in one transi-

tion. Using interval simulation, one can generalize this new proof

obligation to 2 ≤ x < 3∧ 1 ≤ n. Points in this region can also be

reached from the previous frame, yielding an additional proof obli-

gation 1 ≤ x < 2∧2 ≤ n in f1 (see third row in Figure 2). No point

in this cube can be reached from the initial set in f0. Hence, a new

cube covering the area is generated, expanded to n≥ 2 and added to

f1. In the sequel, PDR also attempts to propagate the new cube to

the next frames and realizes that this is in fact possible. Therefore,

the new cube is also added in frames f2, and f3 (see row four in

Figure 2). As a consequence of adding cube n ≥ 2 to f1, all points

in 2 ≤ x < 3∧ 1 ≤ n in f2 cease to be reachable from f1. After ex-

pansion, this yields an additional cube x ≥ 1∧n ≥ 1 in the cover of

f2. As with cube n ≥ 2, this cube cannot be reached in any succeed-

ing frame either, hence it is propagated as well. Also note that if a

cube cannot be reached within two steps, it can neither be reached

within one step. Hence, it can also be considered covered in f1 (see

row five in Figure 2). As a consequence of adding x ≥ 1∧ n ≥ 1

to the cover of f2, x ≥ 3 in f3 ceases to be reachable and allows to

cover B completely. Note that transitions such as x = 2,n = −2 to

x= 3,n =−3 are invalid by the constraint n≥ 0 in the transition re-

lation. We obtain the cover in row six in Figure 2. Note that in this

row, the covers in f2 and f3 are identical. This means that no point

in the overapproximation of the reachable set in f2 can reach any

state outside this overapproximation, i.e. we have found an induc-

tive invariant proving that B is unreachable. Technically, however,

Algorithm 1 would not detect this until after pushing a new frame

and successfully propagating all cubes in f3 to f4.

3.1.3 Example: Linear Invariant

Consider now the following model checking problem

I := (x+2y ≤ 5)

T := (x′ = x+1)∧ (y′ = y−1)

B := (x+2y > 5)

Note that the initial condition is preserved by the transition rela-

tion and serves itself as an inductive invariant to prove that B is

unreachable.
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2 4 6 x 10

2
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y
10

Figure 3: Attempt to decide Example Linear Invariant

For this example, the formulation of PDR using integer cubes is

not able to construct an inductive invariant efficiently. The trace in

Figure 3 which was recorded after a couple of iterations of the main

loop illustrates this fact. For each integer on the line x+2y= 5, one

needs an integer cube to cover the bad area entirely. Assuming that

the variables are 32-bit integers, this means that PDR needed to add

231 cubes.

In general, if the inductive invariant required to decide a model

checking problem contains a relation between two or more vari-

ables, it is not possible to represent the inductive invariant effi-

ciently using integer cubes. Inductive invariants that relate vari-

ables are common in many possible applications of our model

checker, which strongly suggests that integer cubes are a bad choice

as atomic reasoning unit.

3.2 Formulation with Polytopes
The limitations of the algorithm with integer cubes pointed out in

the previous section suggests for a more expressive formulation.



Instead of integer cubes, we propose to use polytopes as our

atomic reasoning unit. Mathematically, a polytope can be repre-

sented as a system of linear inequalities Ax ≤ b. Although fre-

quently used atomic operations in PDR, such as checking for im-

plication, become less efficient with polytopes than with integer

cubes, the algorithm can relatively easily be extended to cope with

polytopes. With respect to expansion, we now attempt to relax the

individual boundaries by increasing their right-hand-sides.

Conceptually, using polytopes as the atomic reasoning unit per-

mits us to represent any piecewise linear loop invariant efficiently.

For instance, the inductive loop invariant in the second example can

be represented using a single polytope.

In the current formulation of the algorithm, however, the addi-

tional expressive power of polytopes over integer cubes is not used.

Initially, findBadCube() returns an integer cube. The defined

expand operation allows to increase the polytopes by moving the

limiting halfplanes parallely outward to increase the polytopes but

does not allow for changing the principal shape of any polytope.

Hence, we also require a mechanism in our algorithm to use

the added expressiveness of polytopes. To this end, we define a

new operation, reshape(), which is geared towards resolving this

problem. In Algorithm 2, reshape() is called after propagation

in line 5 and is followed by an additional expansion.

Mathematically, the purpose of this reshape-operation is to in-

crease the number of terms within the boundaries of the polytope.

Initially, we only have unary boundaries, such as aixi ≤ bi. One

solution towards finding boundaries with higher arity would be

to add an additional variable to obtain a boundary of the form

aixi + a jx j ≤ bi and run a search algorithm to find values of ai

and a j that are maximum with respect to a suitable optimization

criterion. Note that this brute-force solution basically resembles a

random search which is unlikely to be efficient.

Instead, we propose a more targeted approach. The principal

idea of our reshape-operation is to use information from several

polytopes to make guesses for possible new boundaries. Then, one

attempts to substitute these new boundaries for existing ones of

lower arity.

3.2.1 Example: Linear Invariant (revisited)

Consider our second example for another time. In Figure 4, we il-

lustrate how our reshape-operation would proceed after the second

polytope has been found. Figure 4(a) displays the situation right

before the call of the reshape-operation. Assume that reshape()

is called on the striped polytope (pivot). The other polytope acts as

guide. The situation suggests that the line defined by the lower-left

corners of the two polytopes might be a good candidate as a new

boundary. Hence, reshape() calculates this line and substitutes it

for one of the neighbor boundaries of the corner. In Figure 4(b), the

new boundary is substituted for x ≥ 1. Next, reshape() checks

if the polytope is still unreachable from the previous frame after

the substitution. This is the case for the given example. After the

reshape-operation, expand() is called once more which also elim-

inates the other neighbor boundary (see Figure 4(c)). Now, the

reshaped polytope covers B completely.

3.2.2 General Reshape Algorithm

Details of the general algorithm are given in Algorithm 3. If called

on a polytope, the routine iterates through all corners and finds

for each promising set of guides G a corresponding hyperplane.

The efficiency and effectiveness of reshape() depends critically

on the choice of guides. With respect to effectiveness, iterating

through all possible sets is clearly the optimal choice. However, the
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Figure 4: Flow of a Reshape Operation

number of sets grows exponentially with the number of other poly-

topes that may act as guide. Consequently, a smaller choice guided

by heuristics is necessary. Our experimentation showed that sets

of guides that are close to p are most likely to yield a successful

substitution. After a set of guides G is found, we find the hyper-

plane h fixed by the corners of the guides and iteratively attempt to

substitute it for a neighbor boundary b of the corner in p. If such

a substitution yields a polytope that is reachable from the previous

frame, we reverse the substitution and continue with our attempt to

reshape p by substituting h for another neighbor boundary. Other-

wise, we bail out, keeping the substitution and continue with trying

to reshape another corner of p.

Algorithm 3 reshape(Polytope p, int l)

1: for all corner c of p do

2: for all promising set of n guides G do

3: h = findHyperplane(c, p, G)

4: for all neighbor boundary b of p w.r.t. c do

5: substitute(p, h, b)

6: if p reachable from fl−1 then substitute(p, b, h)

7: else break 2

The reshape-operation as described in Algorithm 3 is able to

substitute an n-ary boundary for a unary one where n is the number

of dimensions of the state space. This comes at the expense of an

asymptotic running time that grows exponentially with the number

n. In problem domains which only require linear invariants that

relate less than n variables with each other, Algorithm 3 should be

restricted appropriately for better runtime performance.

4 Implementation and Experimentation

We implemented the proposed algorithm in C++. The skeleton of

our implementation is similar to the one suggested in [3]. As back-

end solver, we used the QF BV part of the SMT-solver Yices [8]

instead of a SAT-solver. This choice allowed us to implement all of

the suggested optimizations described in [3], in particular to con-

sider the unsatisfiable core for fast expansion and reusing learned

clauses by incremental solving with retractable assertions (hot solv-

ing). To generalize proof obligations, we use interval simulation on

the transition relation instead of ternary simulation as discussed in

Section 3.1.1.

For experimentation, we compiled a set of 10 representative

benchmark problems from the regression test suite of InvGen [9].

To this end, we manually extracted QF BV model checking prob-

lems suitable to infer typical loop invariants from the test programs.

In all derived model checking problems, the property holds, i.e. no

bad state is reachable from any initial state.

4.1 Performance

Table 2 summarizes our runtime results. We attempted to solve

each model checking instance three times. For the first two at-

tempts, we used our generalized PDR algorithm with integer cubes

and polytopes, respectively, as the atomic reasoning unit. Thirdly,



Benchmark
QF BV PDR

Binary PDR
Integer Cubes s Polytopes s

simple 3.01 0.25 0.93

lin timeout 0.07 7.82

max timeout 0.40 timeout

diameter 0.22 0.25 0.15

gen di timeout 0.34 0.89

split 0.03 0.04 0.05

sim inv timeout 0.13 450.22

bound timeout 11.27 12.02

rajam timeout 0.62 timeout

parity timeout timeout 0.12

Table 2: Performance of PDR Algorithms

as a point of comparison, we attempted to solve the problems us-

ing the original binary PDR algorithm. Therefore, we formulated

all problems in BTOR [10], a format for specifying word-level

model checking problems, and used the tool Synthebtor, which is

part of the distribution of the Boolector SMT-solver [11], to bit-

blast the problems into a standard format for specifying hardware-

model checking problems (AIGER [12]). Eventually, we solved

the derived Boolean model checking problems with the implemen-

tation of PDR contained in the logic synthesis and verification tool

ABC [13]. In Table 2, all runtime results are reported in seconds.

We report timeout in case the solver did not terminate within 30

minutes.

Comparing columns two and three of the table, it is clear that

polytopes are a better choice for typical model checking instances

derived from programs. In all problems in which an efficient rep-

resentation of the invariant is a relation of variables, the PDR algo-

rithm with integer cubes fails to solve the problem efficiently. In-

terestingly, in the remaining problems, the formulation with integer

cubes is faster. This is because certain operations, such as checking

that one atomic reasoning unit implies another, can be solved faster

with integer cubes. As an exception, note that the implementation

with integer cubes solves the instance simple slower. Manual in-

vestigation indicates that this is because the two algorithms derive

different invariants to solve the problem whereas the invariant with

polytopes can be found substantially faster.

Comparing columns three and four of the table, it is visible that

the generalized PDR algorithm solves the problems typically faster

than the binary PDR algorithm. Most significantly, in two cases

(rajam and max), the generalized algorithm solves the instances

efficiently whereas the binary version times out. The binary ver-

sion of PDR appears to perform similarly efficient for instances

where the invariant can be represented with unary constraints (sim-

ple, diameter, split) which is to be expected because constraints

like x1 ≤ c with c constant can be represented efficiently as Boolean

cubes. Note that instance parity could not be solved with our gen-

eralized PDR algorithm but very quickly with the original PDR

algorithm. This is due to the fact that parity requires the invari-

ant representing “odd number”, which cannot be represented effi-

ciently as a disjunction of polytopes. We intend to find a solution of

this specific limitation as future work because we have encountered

problems of this kind several times during our experimentation. In

general, however, our experiments suggest that the vast majority of

invariants encountered in practice can be represented as a disjunc-

tion of polytopes.

We also investigated the impact of interval simulation on the

performance of the generalized PDR algorithm. Without interval

simulation, the runtimes for solving the considered benchmarks

increase from approximately 1.3× to over 300×. This is a sim-

ilar range of performance improvements as reported in [3] with

ternary simulation suggesting that interval simulation is an appro-

priate means for the expansion of proof obligations.

5 Conclusions and Future Work

Property directed reachability is an efficient model checking algo-

rithm for Boolean logic. To increase the scope of possible applica-

tion domains, a generalization to richer logics is desirable.

In this paper, we presented such a generalization to admit prob-

lems formulated in the theory QF BV. We discussed two possible

choices for the atomic reasoning unit, integer cubes and polytopes,

and argued that polytopes are the more promising choice as they

allow the representation of linear relations between variables effi-

ciently. To use this expressiveness, we propose a heuristic approach

that increases the number of terms within the constraints based on

the geometric interpretation of the state space. For expansion of

proof obligations, we propose the use of interval simulation.

In our implementation of the outlined algorithm, we were able

to implement analogs to all optimizations known for the binary ver-

sion of the algorithm. We experimented with our software proto-

type and reported results in which we compared the performances

of the generalized algorithm formulated with integer cubes versus

polytopes versus the original, binary version of the algorithm run

on bit-blasted versions of the benchmark problems and found that

the generalized PDR algorithm with polytopes performs best.

As future work, we intend to investigate the potential of gener-

alizing the PDR algorithm for other logics. In particular, we an-

ticipate that a generalization for QF LA would be useful in many

applications.
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