
Experiences With Mobile Processors for Energy
Efficient HPC

Nikola Rajovic∗†, Alejandro Rico∗†, James Vipond∗, Isaac Gelado∗, Nikola Puzovic∗, Alex Ramirez∗†
∗Barcelona Supercomputing Center

†Universitat Politècnica de Catalunya, BarcelonaTech
{first.last}@bsc.es

Abstract—The performance of High Performance Computing
(HPC) systems is already limited by their power consumption.
The majority of top HPC systems today are built from commod-
ity server components that were designed for maximizing the
compute performance. The Mont-Blanc project aims at using
low-power parts from the mobile domain for HPC.

In this paper we present our first experiences with the use of
mobile processors and accelerators for the HPC domain based
on the research that was performed in the project. We show
initial evaluation of NVIDIA Tegra 2 and Tegra 3 mobile SoCs
and the NVIDIA Quadro 1000M GPU with a set of HPC micro-
benchmarks to evaluate their potential for energy-efficient HPC.

I. INTRODUCTION

The performance of supercomputers has shown an expo-
nential growth in the past years: according to the Top500 list
of fastest supercomputers, the performance has increased 10x
every 3.6 years [1]. According to the Green500 list [2], which
ranks supercomputers according to their energy efficiency,
today’s most energy efficient supercomputer – Beacon (Intel
Xeon E5-2670 and Intel Xeon Phi 5110P) – achieves an energy
efficiency of ∼2.5 GFLOPS/W1. Following this performance
trend, exascale performance could be achieved in 2018, but
without improvements in energy efficiency, the power require-
ment of such a machine would be 500 MW. According to a
DARPA study on the future of exascale systems, a realistic
budget for such a system will be in the order of 20 MW2 [3]
which requires an energy efficiency of 50 GFLOPS/W.

Current fastest supercomputers are based either on multi-
core processors or on heterogeneous architectures and are at
least one order of magnitude away from the required energy
efficiency. The Mont-Blanc project [4] is a European initiative
to explore the use of low-power parts from the mobile and
embedded market for HPC. The aim of the project is to lower
the total power of exascale systems by using parts with a much
higher GFLOPS/W ratio than the current general purpose
processors, but at a cost of lower peak performance per core.
This paper presents early performance and energy efficiency
results from executing HPC-specific micro-kernels on three

1Data from Green 500 list published in November 2012:
http://www.green500.org/lists/green201211

2This is seen as a reasonable requirement to avoid having to set the
supercomputing facility next to a nuclear plant

TABLE I
EVALUATED PLATFORMS

Platform CPU Memory

Tegra 2 dual-core Cortex-A9 @ 1 GHz 1 GB DDR2
Tegra 3 quad-core Cortex-A9 @ 1.3 GHz 2 GB DDR3
Quadro 1000M 96 CUDA cores @ 700 MHz 2 GB DDR3

mobile platforms: two embedded general purpose SoCs and a
discrete mobile GPU in the form of a compute accelerator.

II. MOBILE PLATFORMS

In this section we describe the mobile platforms that we
use to evaluate mobile processors for HPC, both in terms of
performance and energy efficiency. Table I shows the three
mobile platforms under evaluation.

A. Tegra 2 platform

The first mobile SoC under evaluation is NVIDIA Tegra
2 [5]. It integrates a dual-core ARM Cortex-A9 [6] running at
1 GHz with 32 KB of private L1 cache and 1 MB of shared L2
cache. Alongside the CPU cores, Tegra 2 features a number of
application-specific accelerators targeted at the mobile market
such as GPU, video and audio encoder/decoder and image
signal processor. None of these accelerators are programmable
by means of CUDA, OpenCL or similar programming models
which makes them unusable in HPC scenarios.

The Tegra 2 platform (See Figure 1(a)) consists of a Q7-
compliant motherboard [7] and a Q7 compute card [8]. The
compute card integrates an NVIDIA Tegra 2 SoC, 1 GB of
DDR2-667 memory, 16 GB of eMMC storage, a 100 MbE
NIC (interfaced through USB) and exposes PCIe connectivity
to the motherboard. The motherboard hosts the compute card
and also integrates a 1 GbE NIC (interfaced through the PCIe
to the Tegra 2), µSD card adapter and exposes other connectors
with related circuitry that are targeted to mobile/embedded
hardware and software development (RS-232, HDMI, USB,
SATA, etc.).

B. Tegra 3 platform - CARMA kit

The second system is the CARMA kit [9], which provides
two platform configurations - homogeneous and heteroge-
neous. The first is quad-core ARM Cortex-A9 processor
cluster and the second couples this cluster with a mobile
discrete GPU for compute acceleration. The CARMA board
has the same layout as the Tegra 2 platform (See Figure 1(b)).978-3-9815370-0-0/DATE13/ c©2013 EDAA



(a) Tegra 2 developer board (b) CARMA kit

Fig. 1. Platforms under evaluation.

The difference is that it contains a more powerful NVIDIA
Tegra 3 SoC which (quad-core ARM Cortex-A9 running on
to 1.3 GHz) [10], has 2 GB of memory and a single 1
GbE NIC (connected through USB to Tegra 3). It uses four
PCIe v1 lanes to connect to a discrete mobile GPU. The
GPU in this configuration is the NVIDIA Quadro 1000M,
which is a mobile GPU (more precisely entry-level laptop
GPU). This GPU is not well suited for applications that use
double-precision floating point since the ratio between single-
precision and double-precision performance is 1:8, meaning
that double-precision performance is 8 times lower than the
single-precision performance3. Tegra 3 itself brings some
improvements in on-chip accelerators performance, but like in
the Tegra 2, they are not programmable with CUDA, OpenCL
or similar programming models. There is also a 5th companion
core which in a typical mobile scenario runs latency insensitive
workloads (like background tasks), but this core cannot be
used as a computational resource in an HPC scenario since it
is not exposed to the OS.

III. BENCHMARKS

During the lifetime of the Mont-Blanc project, we will
test multiple architectures, some of which include compute
accelerators, and in such cases the effort of porting real world
production-level applications with thousands of lines of code
is unaffordable. Hence, in order to evaluate these mobile
platforms we use a number of micro-architectural benchmarks
that stress different architectural features and cover a wide
range of algorithms employed in HPC applications to provide
a fundamental understanding of the strengths and weaknesses
of mobile processors for HPC. The set includes 11 micro-
benchmarks and here we list them with a brief description.

Vector Operation (vecop): This code takes two vectors
of a given size and produces an output vector of the same
size by performing addition in an element-by-element basis.
This workload mimics the vector operations often found in
numerical simulations, and other compute intensive regular
codes.

3NVIDIA GPUs that are commonly used for HPC have 1:2 ratio

Dense matrix-matrix Multiplication (dmmm): This code
takes two dense matrices and produces an output dense matrix
that is the result of a multiplying the two input matrices.
Matrix multiplication is a common computation in many
numerical simulations and measures the ability of the compute
accelerator to exploit data reuse and compute performance.

3D Stencil (3dstc): This code takes one 3D volume and
produces an output 3D volume of the same size. Each point
in the output volume is calculated as a linear combination of
the point with the same coordinates in the input volume and
the neighboring points on each dimension, i.e., points with the
same coordinates as the input point plus/minus an offset on
only one dimension. This code evaluates the performance of
strided memory accesses on the compute accelerator. More-
over, by allowing the number of stencil points to be variable,
different memory load/computation ratios can be evaluated.

2D Convolution (2dcon): This code takes an input matrix
and produces an output matrix of the same size. Each point
in the output matrix is calculated as a linear combination of
the point with the same coordinates in the input matrix and
the neighboring points. Contrary to the 3D stencil compu-
tation, neighboring points can include points with the same
coordinates as the input point plus/minus an offset in one or
two dimensions. This code allows measuring the ability of the
compute accelerator to exploit spatial locality when the code
performs strided memory accesses.

Fast Fourier Transform (fft): This code takes one input
vector and produces an output vector of the same size by
computing a one-dimensional Fast Fourier Transform. This is
compute intensive code that measures the peak floating-point
performance, as well as variable stride memory accesses.

Reduction (red): This code takes one input vector and
applies the addition operator to produce a single (scalar) output
value. The amount of data parallelism in this code decreases
after each reduction stage. This allows us to measure the
capability of the compute accelerator to adapt from massively
parallel computation stages to almost sequential execution.

Histogram (hist): This code takes an input vector and
computes the histogram of values in the vector, using a



configurable bucket size. This code uses local privatization
that requires a reduction stage which can become a bottleneck
on highly parallel architectures.

Merge Sort (msort): This code takes an input vector of any
arbitrary type, and produces a sorted output vector. This code
requires synchronizing execution threads after each merge step
and serves as a good hint about the performance of barrier
instructions on the compute accelerator.

N-Body (nbody): This code takes a list describing a
number of bodies including their position, mass, and initial
velocity, and updates these parameters with new values after
a given simulated time period, based on gravitational inter-
ference between each body. This code is used to characterize
the performance of irregular memory accesses on the compute
accelerator.

Atomic Monte-Carlo Dynamics (amcd): This code per-
forms a number of independent simulations using the Markov
Chain Monte Carlo method. Initial atom coordinates are
provided and a number of randomly chosen displacments
are applied to randomly selected atoms which are accepted
or rejected using the Metropolis method. This code is em-
barrassingly parallel with no data sharing across execution
threads and is a measurement of the peak performance the
compute accelerator can achieve in absence of inter-thread
communication.

Sparse Vector-Matrix Multiplication (spvm): This code
takes a vector and a sparse matrix as inputs, and produces an
output vector that is the result of multiplying the input matrix
and vector together. This code assigns a different workload
to each execution thread, and serves as a measurement of the
performance of the compute accelerator when load imbalance
occurs.

All micro-benchmarks are developed in three versions. The
serial version is used in single-core scenarios to test the
performance of a single core. The parallel version that we use
for results reported here is developed using the OmpSs [11]
programming model. OmpSs is a flexible programming model
that supports asynchronous task-based parallelism. The version
for testing the performance of GPUs is developed using
NVIDIA’s CUDA [12] programming model.

IV. RESULTS

To get a comprehensive overview of the platforms we
measure both the performance and power consumption of our
micro-benchmarks, and we execute them in both serial version
(See Figure 2) and multithreaded version (See Figure 3).

Although the core microarchitecture is the same in both
Tegra 2 and Tegra 3, the higher operating frequency of the
latter is reflected in the resulting performance: when utilizing
only one core on both platforms, the execution time on
Tegra 3 is 30% shorter on average for single precision (See
Figure 2(a)). For double-precision codes the difference is
slightly larger in favour of Tegra 3 (See Figure 2(b)). This is
due to the higher memory bandwidth requirements of double-
precision codes; these benchmarks operate on double the size
of data compared to their single-precision counterparts, so they

benefit from the higher memory bandwidth in Tegra 3 (DDR3
versus DDR2 in Tegra 2). This effect is also visible in those
benchmarks that are memory bound, such as vecop, where
the performance on Tegra 3 improves beyond the clock speed
difference.

Figure 3 shows the performance and energy-to-solution
results for all micro-benchmarks using all the available CPU
cores: two on Tegra 2 and four on Tegra 3. On average, Tegra 3
completes execution two times faster. Although it uses twice
the number of cores, Tegra 3 requires 67% of the energy-
to-solution on average. The larger number of cores in the
Tegra 3 MPSoC roughly translates into a doubling of the
computational power, but a very small increment in the system
power consumption. The power consumed by the CPU cores
only accounts for a fraction of the total platform power budget,
hence the power consumption of the whole board does not
increase linearly with the number of cores. The result shows
that energy efficiency benefits from increasing the multicore
density as long as applications scale reasonably well. Only
3D stencil offers a worse energy-to-solution when running on
Tegra 3 compared to Tegra 2. This benchmark is very memory
intensive because only one stencil point is used so the ratio of
floating point operations to memory operations is the lowest
among all the benchmarks. As a result, this code requires a
very large number of accesses that consume more power on
Tegra 3 because of the higher frequency of the memory clock.

Both Figure 2 and Figure 3 also show the performance
of the CUDA version of the micro-benchmarks running on
the discrete GPU. These performance and energy-to-solution
results are using all the processing cores in the GPU, as we
do not have a way to restrict the execution to a subset of
them. The GPU performance is, on average, 14x better than
Tegra 2 using two cores and 7x better than Tegra 3 using
four cores. Energy-to-solution is also better: 3x with respect
to Tegra 2 and 2.5x with respect to Tegra 3. There are two
micro-benchmarks for which the CUDA version is still under
development and is not fully optimized yet: merge-sort and
atomic monte carlo dynamics. In these cases, running the
micro-benchmark on the GPU takes more energy than using
the Tegra 3 cores only. This shows that off-loading tasks to
the GPU only pays off if the speed-up is large enough to
compensate for the increased platform power when running on
the GPU compared to using just the CPU. Optimized versions
of these two micro-benchmarks are expected to achieve higher
energy efficiency numbers closer to those of their counterparts,
which will confirm the benefits of the CPU+GPU combination
for energy-efficient HPC also for mobile components.

V. CONCLUSIONS

In this paper we presented initial results from our evaluation
of mobile MPSoCs and their suitability for being used in the
HPC domain. The evaluation with micro-benchmarks shows
that more recent MPSoC (Tegra 3 vs Tegra 2) reduces the
required energy to solution to 67% on average, using the same
core architecture with increased multicore density.



hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy

100

101

102

103
Sp

ee
du

p

Tegra2 Tegra3 Quadro 1000M

(a) Single-precision speedup.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy

100

101

102

103

Sp
ee

du
p

Tegra2 Tegra3 Quadro 1000M

(b) Double-precision speedup.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y

To
So

lu
ti

on Tegra2 Tegra3 Quadro 1000M

(c) Single-precision energy-to-solution.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y

To
So

lu
ti

on Tegra2 Tegra3 Quadro 1000M

(d) Double-precision energy-to-solution.

Fig. 2. Results for micro-benchmarks executed on a single core (normalized to Tegra 2 platform)

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy

100

101

102

103

Sp
ee

du
p

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(a) Single-precision speedup.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy

100

101

102

103

Sp
ee

du
p

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(b) Double-precision speedup.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
ne

rg
y

To
So

lu
ti

on

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(c) Single-precision energy-to-solution.

hist

dm
mm fft

3d
stc

mso
rt

ve
co

p
am

cd
sp

vm
2d

co
n re

d
nbo

dy
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
ne

rg
y

To
So

lu
ti

on

Tegra2 : 2th Tegra3 : 4th Quadro 1000M

(d) Double-precision energy-to-solution.

Fig. 3. Results for micro-benchmarks when executing multiple threads (normalized to Tegra 2 platform)

In our previous work, we compared an ARM Cortex-A9
(integrated in Tegra 2) to an Intel Core i7 640M processor [13],
showing that a Cortex-A9 platform can be 1.2x more energy
efficient on average at the cost of being 9x slower. In the
light of the results shown here, we can see that the latest
generation of Tegra MPSoCs (Tegra 3) could improve our
previous results, and the gap in performance seen in our
previous work is starting to close.

Recent interest in server-class low-power systems is pushing
the evolution of ARM processors in a direction that is suitable
for HPC as well: ARM is working on increasing the floating-
point performance of its processors, and vendors are starting to
implement better connectivity into their MPSoCs. The Cortex-
A15 core [14], which is entering the market, already offers
better performance than the Cortex-A9 core tested in this
work. With future generations of ARM cores, such as the 64-



bit Cortex-A57, and with increased multicore density, ARM-
based MPSoCs are expected to be more competitive in terms
of performance while increasing energy efficiency.

Another way for increasing the usability of ARM-based
mobile MPSoCs in the HPC domain is the use of integrated
GPU: most ARM-based mobile MPSoCs have an integrated
GPU, such as NVIDIA ULP GeForce in Tegra 2 and Tegra 3,
ARM Mali [15] in Samsung Exynos 5 and PowerVR in TI’s
OMAP. If these GPUs are made programmable for general
purpose applications, and not only for graphics, the overall
energy efficiency of ARM-based MPSoCs should further in-
crease.

ACKNOWLEDGMENTS

This project and the research leading to these results is
supported by Mont-Blanc project (European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant
agreement no 288777) and PRACE project (European Com-
munity funding under grants RI-261557 and RI-283493).

REFERENCES

[1] “TOP500: TOP 500 Supercomputer Sites,” http://www.top500.org.
[2] “The Green 500 List,” http://www.green500.org.

[3] K. Bergman et al., “Exascale Computing Study: Technology Challenges
in Achieving Exascale Systems,” in DARPA Technical Report, 2008.

[4] “The MontBlanc project,” http://montblanc-project.eu.
[5] NVIDIA, “The Benefits of Multiple CPU Cores in Mobile Devices,”

White Paper, 2010.
[6] ARM Ltd., “Cortex-A9 Processor,” http://www.arm.com/products/

processors/cortex-a/cortex-a9.php.
[7] SECO, “SECOCQ7-MXM,” http://www.seco.com/en/item/

secocq7-mxm.
[8] ——, “QuadMo747-X/T20 - Qseven R© Rel.1.20 Compliant Module

based on NVIDIA R© Tegra R© T20 Processor,” http://www.seco.com/en/
item/quadmo747-x t20.

[9] NVIDIA, “CARMA - CUDA R© Development Kit For ARM R©,” http:
//www.nvidia.com/object/carma-devkit.html, 2012.

[10] ——, “Variable SMP (4-PLUS-1
TM

) – A Multi-Core CPU Architecture
for Low Power and High Performance,” White Paper, 2011.

[11] A. Duran et al., “OmpSs: A Proposal for Programming Heterogeneous
Multi-Core Architectures,” Parallel Processing Letters, vol. 21, no. 02,
pp. 173–193, 2011.

[12] NVIDIA, “Compute Unified Device Architecture Programming Guide,”
2007.

[13] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez,
“The Low Power Architecture Approach Towards Exascale Computing,”
Journal of Computational Science, To Appear.

[14] J. Turley, “Cortex-A15 ”Eagle” flies the coop,” Microprocessor Report,
vol. 24, no. 11, pp. 1–11, Nov. 2010.

[15] ARM Ltd., “Mali Graphics,” http://www.arm.com/products/multimedia/
mali-graphics-hardware/index.php.


