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Abstract—Instrumented Medical Shoes (MSs) are equipped with 
a variety of sensors for measurement of quantities such as 
pressure, acceleration, and temperature which are often greatly 
beneficial in numerous diagnosis, monitoring, rehabilitation, and 
other medical tasks. One of primary limiting factors of MSs is 
their energy sensitivity. In order to overcome this limitation, we 
have developed an optimization intensive approach for energy 
harvesting. Our goal is to size and position a single piezoelectric 
transducer for energy generation in a medical shoe in such a way 
that maximal energy is collected and/or specified maximal 
voltage is achieved while collecting energy. We propose a 
scenario approach that provides statistically sound solution and 
evaluate our approach using our medical shoe simulator for 
subject specific energy harvesting and generic MS scavenging. 
We could get 3.7X energy gain compare to smallest size sensor 
and 1.3X energy gain compared to sensor with the size of a shoe. 
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I.  INTRODUCTION 
Sensor-based medical equipment is on a brink of 

revolutionizing many tasks in diagnosis, tracking, treatment, 
rehabilitation and many other medical activities [16, 17]. These 
systems provide unprecedented comprehensive and real-time 
data collection with high convenience and reliability. However, 
there are several major obstacles for their more widespread 
application. Among them, energy supply is one of the most 
acute constraints. In a sense, energy harvesting is an ultimate 
solution. Unfortunately, the current generation of energy 
harvesters is rarely capable of collecting adequate amount of 
energy and providing sufficient power. 

We focus on energy harvesting in medical shoes with an 
objective to create and position a single mechanical 
piezoelectric harvester in such a way that we collect the 
maximal amount of energy and/or maximize the highest 
available energy while specified maximal voltage is achieved. 
The backbone of the approach can be summarized in the 
following way: We first analyze the pressure sensed at large 
number of points in the medical shoe during walking trails. 
Both the collected energy and the maximal achievable power 
are functions of the pressure. The key trade-off is that high 
pressure at a particular moment enables higher total energy if 
collected. This value is the function of the maximal pressure. 
However, in order to collect a large amount of energy it is not 
only sufficient to aim for a high pressure; we also need a large 
force, i.e. relatively large force over relatively large area. 
Therefore, it is essential to select size and location of a piezo-
electric energy harvester to achieve a quality trade-off between 

collected energy and maximal collected energy and hence, 
maximal achievable voltage.  

In addition to the first quantitative and optimization 
intensive treatment of energy harvesting in MSs our main 
contribution is a new algorithm for optimization under 
uncertainty. The algorithm is named scenario-based because it 
uses a combination of statistical and combinatorial 
optimization techniques to find and evaluate the maximal 
energy harvesting problem in sensor shoes. The key idea is to 
select a small number of time samples and conduct 
optimization using only these samples. Once the solution is 
generated, we evaluate it by calculating the interval of 
confidence within learn-and-test or re-sampling paradigm. The 
approach is also applicable to a customized shoe for a 
particular subject as well as its generic version. All results are 
obtained using data from BioFoot medical shoe[7]. 

The remainder of the paper is organized as follows: In 
Section II a description of related work is provided. Next, in 
Section III preliminaries for this paper are described. The basis 
of our proposed scenario-based algorithm is described in 
Section IV. Following it in Section V, simulation results on 
applying the mentioned algorithm on data from 30 subjects are 
provided. Finally, conclusions are drawn in Section VI. 

II. RELATED WORK 
In the last two decades a large variety of medical shoes with 

a variety of sensors and interfaces have been designed and 
evaluated [4, 12].  Recently, they have been used in 
conjunction with artificial intelligence techniques for a variety 
of tasks ranging from event detection to new types of user 
interfaces (e.g. computer mouse) [10, 13]. More importantly, 
they have proven invaluable in many medical tasks [11]. There 
is surprisingly few efforts that report quantitative design and 
optimization of medical shoes [19]. Our main novelty is that 
we use sensing data and sensor location not for data collection 
but for optimized energy harvesting.  

During the same period, energy and power emerged as 
premier design and operational metrics for many systems. A 
very attractive way to solve energy supply problem is to 
harvest (scavenge) environmental energy [1-3]. Numerous 
approaches emerged ranging from photovoltaic and vibration to 
human activity-based techniques to use of environmental 
electro-magnetic and nano-scale sources [5, 6, 9]. In [18] the 
authors have investigated power-harvesting from running shoes 
for generating power for wearable electronics.  
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III. PRELIMINARIES 
In this Section we review preliminaries covering 

information on medical shoes, specifically BioFoot [7] which 
we use for collecting samples. We also present information on 
energy harvesting and battery and capacitor models. 

A. Medical Shoes and Datasets 
With the advent of micro-system technologies, in-shoe 

plantar pressure measurement systems have become feasible. 
These systems are currently employed by clinicians and 
researchers to assess dynamic plantar pressures. TekScan F-
Scan®, Novel Pedar® and IVB Biofoot® are examples of such 
systems [7, 14, 15]. For this study we used plantar pressure 
measurements from BioFoot® (IBV [7]). The system consists 
of two flexible, 0.7 mm insoles. Each insole has 64 small size 
piezoelectric sensors and has a round 5 mm2 diameter shape. 
The output signals are amplified and sent through the wireless 
transmitter attached to the subject’s waist. The system allows 
measurements in 200m of distance, therefore subjects can 
freely move around. The sampling rate for our measurements is 
100Hz. Figure 1.a shows the BioFoot shoe. 

B. Energy Harvesting Model 
Electrical power can be harvested using multiple 

conversion mechanisms such as thermoelectric, electro-
magnetic and piezoelectric. Energy harvesting using 
piezoelectric conversion mechanism converts mechanical strain 
into electric current or voltage. This process can be described 
with charge displacement and can be modeled by a linear 
consecutive equation. According to [8], the energy stored in a 
parallel plate capacitor and corresponding voltage across 
piezoelectric (Vs) can be expressed as equations (1) and (2) 
respectively: 
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In these equations, ε0 and εr represent free space 
permittivity and relative permittivity (8.85e-12, 200 to 1350) 
respectively. In addition, T is thickness (191 um), K33 is 
Electromechanical coupling coefficient (0.69) and Y is Young's 
modulus (63 GPa). Cross-sectional area of the piezoelectric 
material and applied force are represented by A and F 
respectively. Equations (1) and (2) show that the generated 
voltage is proportional to the amount of pressure applied (F/A) 
while the generated energy is proportional to F2/A. 

C. Battery and Capacitor Models 
The instantaneous power generated using piezoelectric 

harvesters might be relatively small depending on the amount 
of energy required to perform certain tasks, such as wireless 
transmission. Therefore it is necessary to somehow aggregate 
the energy before using it, either using capacitors or batteries. 
Recently there have been several attempts in designing power 
harvesting circuits. Figure 1.b shows a simplified power 
harvesting circuit [5]. As shown in the figure, in order to 
aggregate energy continuously the generated voltage needs to 
get higher as more energy is accumulated. One solution for this 
is to use multiple small batteries and charging each battery 
separately. Using a single battery, due to cost consideration 

requires intelligent energy harvesting mechanisms that produce 
high voltages. 

  

Figure 1.  (a) BioFoot.  (b) Schematic of Energy Harvesting Circuit [5]. 

IV. ENERGY HARVESTING 
In this Section, we formulate the problem of Maximal 

Energy Harvesting (MEH) and show that this problem is NP-
Complete by transforming maximal clique problem. We then 
propose our scenario approach for this problem in Part C. 

A. Problem Formulation 
In order to design self-sustainable shoe systems, careful 

examination of pressure distribution during movement is 
needed. We use the data from plantar pressure distribution of 
subjects during walking trails, to find best location to place 
energy harvesters. Due to cost considerations, we only look at a 
single harvester placement problem and find the location and 
size of the harvester. Therefore, the MEH problem can be 
defined as selection of shape/size of a single energy harvester 
in such a way that the amount of generated energy is optimized. 
The problem can be viewed from another perspective. 
When considering a case where restoring energy for later burst 
use is needed, the goal is to optimize for energy optimize for 
energy considering produced voltage levels. 

We solve the MEH problem for two platforms: customized 
and generic. People have different walking patterns; therefore 
in order to maximize the amount of energy generated, 
customized platforms can be developed for individuals by 
studying their walking patterns. Figure 2 shows maximum 
pressure of different locations during walking, in four different 
individuals, where black represents maximum pressure. These 
images show how the pressure distribution is different among 
individuals; which in turn effects the decision of the location of 
energy harvester. Generic platforms can be also developed by 
considering most common features in different people.  

 
Figure 2.  Maximum Pressure Distribution in Different Subjects 

B. Problem Complexity 
At the intuitive level the MEH problem may be defined as 

selection of piezoelectric material shape and size so that total 
collected energy is maximized. There are two primary sources 
of difficulty in solving this problem.  The first is its statistical 
non-determinism and the second is its combinatorial structure. 
The first problem is due to uncertainty about future actions of 
the subject.  Although the former is dominant in practice, the 
latter is a formidable obstacle since it is associated with solving 
a computational intractable problem. We can formulate a very 
simplified version of the MEH problem in the following way: 



Problem: Deterministic Maximal Energy Harvesting (DMEH)  

Given: An undirected graph G (V,E) with a set of vertices and 
edges, time slots T1, .. , Tn and pressure Pi,j at each vertex i for 
each  Tj. 

Objective and constraints: Select a set of time slots Tt and 
vertices so that the total sum of pressures is maximized and in 
all selected time slots the pressure is at least P.  

In order to prove that the DMEH problem is NP-complete 
we transform an arbitrary instance of one of 21 initial 
problems, maximal clique, into DMEH. We start with a graph 
GG which has the same set of vertices V as graph G. Next, for 
each edge between vertices Vp and Vq in GG, we create a time 
slot in DMEH where only corresponding vertices have pressure 
P and all other vertices have zero pressure. Now, it is easy to 
see that if and only if graph GG has a clique of size K, we can 
collect total energy corresponding to sum of pressures K * P. 

C. Scenario Approach 
We use a scenario-based approach to find the best location 

and size of an energy harvester. The proposed algorithm uses a 
combination of statistical and combinatorial optimization 
techniques to find and evaluate the maximal energy harvester. 
The scenario approach uses walking samples from individuals. 
A small number of samples are chosen as input to a 
constructive iterative optimizer which finds the best location 
for the harvesters. This solution is evaluated through 
calculating the interval of confidence within a learn-and-test 
paradigm and more experiments are conducted if necessary.  
Figure 3 shows the flow of the scenario approach.  

The algorithm starts with randomly choosing a small subset 
of samples of multiple people. Specifically, K randomly 
selected samples are used as input to our constructive iterative 
optimizer (Algorithm II). The optimizer results in a single 
location for the placement of an energy harvester. We run the 
optimizer m times, where m is the number of scenarios 
(Algorithm I, lines 4-7), each time with K random samples and 
build an interval of confidence for the solution of the optimizer.  
If the interval of confidence is too small to accept the solution, 
we repeat the above process, by increasing the number of 
samples: that is with a larger K (Algorithm I, line 9). The above 
steps are repeated until an acceptable interval of confidence is 
found (Algorithm I, line 3). The solution of the constructive 
iterative optimizer at this step is presented as the final solution 
of the placement of a harvester. 
Algorithm I: Scenario Approach 
1:  Input: Randomly selected Samples. 
2:  Output: A single location for placement of a generator. 
3:  While ( interval-of-confidence < 90%) 
4:   for ( int i = 0 ; i< m; i++) 
5:         Select K randomly selected Samples 
6:         Location = Optimizer (samples) 
7:   end for 
8:   Calculate interval-of-confidence  
9:   if (interval-of-confidence<90%) K+= K_CONSTANT 
10: end while 
11: return Location 

Figure 3.  Algorithm I for Scenario approach 

The constructive iterative optimizer (Algorithm II) works as 
follows: It starts with a single location li to place a harvester. It 
checks to see if it satisfies problem constraints. If yes, it accepts 
it as a solution. In the next step it forms another solution called 
li' by combining li with one of its geometric neighboring 
locations. It then decides to choose li+1 = li or li+1 = li' based 
on the solution that optimizes the objective.  These steps are 
performed until all locations have been explored. In Figure 4, 
Algorithm II describes the details of the constructive iterative 
optimizer. It starts with the smallest location generating the 
highest energy. Next, neighbor locations that can be merged to 
give a better energy value and satisfy voltage constraints are 
merged (lines 5-8 in Algorithm II). Then the merged location is 
added to the potential result list (line 9 in Algorithm II). This 
process is continued until there is no merging possibility. 
Finally the location with highest energy is returned. 

Algorithm II: Constructive Iterative Optimizer 

1: resultList <= Highest energy single location 
2: locationList <= All available locations 
3: while (change in resultList size) 
4:    curr <= resultList.removeFirstItem(); 
5:    for each (location “l” in locationList) 
6:       if (curr.isNeighbor(l))  
7:            merged <= merge(l, curr); 
8:            if(merged.energy>curr.energy && merged.satisfyVoltage()) 
9:               resultList.insertLastItem(merged); 
10:     end if / end for / end while 
11: result <= maximumEnergy (resultList); 
12: return result; 

Figure 4.  Algorithm II for Constructive Iterative Optimizer 

As shown in Figure 1.b, in order to aggregate energy 
continuously, a relatively high generated voltage is needed to 
be able to accumulate energy. Therefore optimizing only for 
energy is not sufficient as a certain voltage level needs to be 
met to be able to store energy. The amount of voltage required 
is dependent upon many factors such as the amount of energy 
stored and the amount of energy consumed. Therefore in our 
approach we use a voltage/energy pareto technique, where we 
optimize for energy considering satisfying voltage 
requirements. Specifically, we consider a voltage level and 
require the voltage generated to meet this level by a percentage 
at all times. We use the same scenario technique described to 
find the best location of harvester to satisfy each voltage level.  

V. SIMULATION RESULTS 
In this Section we present experimental results on using the 

described scenario approach. We use walking samples from 30 
individuals to find the position for placing a single generator 
that would maximize the amount of energy generated and 
stored. The data is 6 seconds long for each individual. Here, 
due to space limitations, we only show the data from 5 users. 

A. Optimizing for Energy with Different Generator Sizes 
Based on our proposed approach the amount of energy 
consumed per second in a generic platform, optimizing just for 

 



   
Figure 5.  Energy vs. Generator area, Customized 

and Generic Platforms. 
Figure 6.  Voltage vs Generator area, Customized 

and Generic Platforms. 
Figure 7.  Paret vs Generator area, Customized 

and Generic Platforms. 

energy is 3.29µJ. To show the effectiveness and accuracy of 
our approach, we compare our results with two methods: 1) 
choosing smallest size generator at the location of maximum 
pressure (0.89µJ) and 2) choosing a large generator to cover all 
the locations that sense pressure (2.53µJ). The results show that 
choosing a large area piezoelectric to cover all points or a small 
area piezoelectric at the position of maximum pressure are not 
correct choices. The interval of confidence for optimizing for 
energy is (3.29 ± 0.15 µJ) with probability of 91%.  

Figure 5 shows the maximal amount of energy generated 
per second with different generator areas in both a customized 
and generic platform. As shown, if the goal is to only maximize 
the amount of energy generated, a generator with equivalent 
sensor area of 12 should be chosen for the generic platform. 
We also show customized results for 5 of the individuals. 

B. Optimizing for Voltage with Different Generator Sizes 
Figure 5 showed the maximal amount of energy generated 

per second with different size generators. However as 
discussed in Section IV, high voltages are also desired when 
generating energy, specifically for storing energy. Figure 6 
shows the maximal amount of voltage generated per second in 
different generator sizes for the same subjects in Figure 5. As 
expected, according to equation (2), smaller area generators 
generate more voltage. With the increase in generator area, the 
amount of voltage generated becomes smaller. 

C. Optimal Energy-Volage Points 
According to Figure 1.b, in order to aggregate energy 

continuously, the generated voltage needs to be relatively high 
as more energy is accumulated. Therefore optimizing just for 
energy or just for voltage is insufficient. We use a 
voltage/energy pareto technique, where we optimize for energy 
while at the same time satisfying specific voltage requirements. 

We consider a specific voltage level and require the voltage 
generated to satisfy this level by a specific percentage at all 
times. Figure 7 shows optimal energy-voltage points in both 
customized and generic platforms. Each point shows the 
maximum amount of energy generated, while satisfying a 
specific voltage value for at least 60% of the time. Therefore 
each of the found voltage/energy optimal points can be chosen 
based on different design parameters such as battery 
specification and application needs or user defined constraints. 
The result of the optimal location of a generator for a generic 
platform that produces maximal energy savings over all 
individuals is depicted in Figure 8. 

 

Figure 8.  Positon of Single Energy Harvester in the Generic Platform. 

VI. CONCLUSIONS 
We developed an optimization intensive approach for 

energy harvesting in medical shoes. We used readings from 64 
pressure sensors of 30 subjects. Using this information and a 
proposed scenario approach we found size and location for 
placement of piezoelectric transducer in both common and 
customized platforms, optimizing for maximal amount of 
collected energy and maximal amount of collected energy with 
a specified voltage achieved.  
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