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Abstract

In spite of the mature cell structure, the memory
controller architecture of Multi-level cell (MLC) NAND
Flash memories is evolving fast in an attempt to im-
prove the uncorrected/miscorrected bit error rate (UBER)
and to provide a more flexible usage model where the
performance-reliability trade-off point can be adjusted at
runtime. However, optimization techniques in the memory
controller architecture cannot avoid a strict trade-off be-
tween UBER and read throughput. In this paper, we show
that co-optimizing ECC architecture configuration in the
memory controller with program algorithm selection at
the technology layer, a more flexible memory sub-system
arises, which is capable of unprecedented trade-offs points
between performance and reliability.

I. Introduction

Flash memory is an important building block for mod-
ern embedded systems because of its high data transfer
rate, low power consumption and long mechanical dura-
bility. In addition, the advent of multi-level cell (MLC)
NAND flash memories [1] has opened unprecedented
opportunities for embedded systems and laptops to store
larger amounts of data in flash, thus replacing power-
hungry, relatively unreliable hard drives.

Unfortunately, flash memory devices come with their
unique reliability concerns [2] [3] [4] [5], making them a
highly vulnerable portable storage. MLC technology has
further exacerbated the problem with respect to traditional
SLC one. The raw bit error rate (RBEE) of MLC flash
memory is around 1076 [6] and is at least two orders
of magnitude worse than that of the SLC device [7]. In
general, page errors are expected to be the primary failure
pattern in flash-based systems.

Design techniques at the level of the memory controller,
such as page-level error correcting codes (ECC), are sys-
tematically used to achieve an acceptable uncorrectable
bit error rate (UBER). The choice of the most suitable
error correcting scheme is tightly application dependent.
For this reason, practical ECC solutions are typically
market segment-specific and range from derivatives of the
Hamming code [2] to the BCH [8] or the Reed-Solomon
code [9].

However, statically setting memory controller features
at design time is a practice that is rapidly running out of
steam. On one hand, the new mobile usage models that are
coming about require the execution of multiple use cases
on the same device while optimizing resource consumption
for each of them. On the other hand, the hardware and
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software design convergence in today’s complex embedded
systems call for an upgrade of architecture building blocks
in the direction of runtime re-configurability and adaptivity.

The main idea of this paper is that a wider range
of performance-reliability trade-off operating points than
those available with current memory controller architec-
tures could be achieved by combining ECC architecture
configuration with settings in the physical layer, thus
giving rise to a cross—lal}l/er optimization framework. In
act, the program algorithm and voltage waveforms that
are applied for memory writing are typically defined at
fabrication time by the memory vendor and hardwired
in memory operation. Accurate programming of NAND
Flash memories is usually obtained by the incremental
step pulse programming (ISPP) algorithm [3]. However,
a number of variants does exist to counter the dispersion
of programmed cell threshold distributions in nano-scaled
flash devices, such as the double verify algorithm in [11],
[2], which can potentially improve the RBER on the same

device or sustain the RBER on scaled _deif ces.
In this paper we propose to dynamically tune the pro-

gramming algorithm for MLC NAND flash memories so
to provide differentiated reliability provisions for memory
storage. Above all, this paper for the first time explores and
ﬂuantiﬁes the synergies between architecture-level (con-
guration of the ECC decoding structure) and physical-
level (selection of the program algorithm and waveforms)
settings, proving that a cross-layer optimization frame-
work can materialize new trade-offs between read, write
throughput, reliabili(tiy and power consumption.

An extensive modeling, simulation and implementation
framework has been set u}l)\lfor both the analog and the dig-
ital parts of an MLC NAND flash memory sub-system in
an homogeneous 45nm technology substrate, thus coming
up with the accurate quantification of these trade-offs.

II. Related Work

In traditional NAND products a single algorithm for
writing data into its addressable space is used. There
exists the possibility of having a segmented memory with
configuration of segment sizes at memory boot-time, but
once again only one write/erase algorithm will be used for
all the segments. This is a design solution which lacks of a
flexibility which could be potentially provided by memory
technology [12]. The only available df(:igree of freedom
in nowadays NAND Flash devices resides in the choice
of having a segmented memory with mixed SLC/MLC
structure [13], but this feature 1s something that can be
changed only at boot time and directly does not affect the
write algorithms, which are unique for every segment.

Error correction is also an integral part of using flash
memories that ensure data integrity. The literature 1s rich
of publications proposing ECC based solutions for flash



memories with fixed correction capability [25]. However,
to the best of our knowledge, only Chen et al. proposes
a solution allowing limited adaptation [19]. It introduces
an adaptable-rate Bose-Chaudhuri-Hocquenghem (BCH)
codec with a controllable parallel Linear Feedback Shift
Register (LFSR) and a pipelined decoder. The main draw-
back of this solution is the application of the code to small
blocks of data (512B compared to the typical 2/4KB page
of a NAND flash memory). Small blocks make it difficult
to handle high concentrations of errors and require a high
number of parity bits and higher hardware complexity.
These extra bits tend to saturate the spare area usually
available on a flash and may also consume extra pages.
This represents a major problem since the spare area is
usually dedicated to system management and not only to

ECC.
This paper advances state-of-the-art by quantifying the

synerIg\Iies between the architectural and physical layers in
a NAND Flash sub-system and the new trade-offs that can
be implemented out of them.

II}\. Advanced Controller Architecture for a
NAND Flash Memory

The NAND Flash sub-system consists not only of the
Flash memory device but also of the memory controller,
a key component for determining the quality metrics of
the whole non-volatile memory sub-system. State-of-the-
art controllers for NAND Flash memories typically consist

of one_ or_more bus interfaces toward the rest of the
MPSoC, of the Flash device interface and of sop%

isticated
error correctors. In some cases, queues are implemented
for data exchange (typically, a single page) between the
ECC and the flash device and to decouple blocks clocked
by different signals.

Unlike the data path, configuration commands end up
updating/reading from a command/status control register,
which drives operation of the core controller. However,
as the need for application optimization grows and the
number of use cases on the MPSoC proliferate, (re-
)configuration operations will become more frequent. We
envision two relevant scenarios. On one hand, the user
might configure the controller to meet the requirements
of the data set it is going to process, demanding for high
reliability versus hi l% performance accesses or for interme-
diate trade-off levels. Adaptation of system architecture to
runtime application requirements is an unmistakable trend
in current MPSoC design so to avoid waste of resources
and to succeed in meeting such requirements [22].

On the other hand, partial reconfiguration of the con-
troller could be achieveg in a self-adaptive way. It is in fact

ossible to envision an integrated reliability manager col-
ecting and elaborating results of a test unit and feedback
from the ECC sub-system, in addition to user requirements,
thus setting the proper correction capability to pages. In-
situ adaptation to actual operating conditions 1s another
clear trend for future MPSoC design [23].

Clearly, the key rationale behind this controller archi-
tecture is the availability of effective tuning knobs to trade-
off performance with reliability and/or power in memory
operations, thus exposing multiple service levels to the
user or a set of self-adaptive operating points to the
core controller and the reliability manager. This flexibility
is out-of-reach of current memory controllers, where a
limited set of parameters can be fixed at synthesis time
or, in the best case, at boot-time [10].

This paper moves a step forward in the direction of
materializing the needed flexibility and demonstrates the
feasibility of unprecedented trade-offs and operating points
stemming from the concurrent configuration of the ECC

sub-system in the memory controller and of the program
algorithm in the NAND Flash device. In order to quantify
these trade-offs and the synergies between the architecture
and technology layers, we now present the modeling effort
of the configurable sub-systems where such trade-offs
arise: the adaptive ECC architecture and the high-voltage
memory sub-system.

IV. Adaptive ECC Architecture

The adaptive ECC architecture analysed in this work
implements a Bose-Chaudhuri-Hocquenghem (BCH) ECC
with programmable correction capability. Bose-Chaudhuri-
Hocquenghem (BCH) codes are a family of ECCs largely
applied to NAND flash memories [19]. BCH codes are less
complex than other ECCs and provide high code efficiency.
Moreover, errors in flash memories are in general non-
correlated and BCH codes are particularly efficient in this
situation. The construction of a BCH code is based on
Galois field GF(2™).

A binary BCH code, denoted as BCH [n, k], encodes a
k-bit message (in our case consisting of a full 4KB page of
the flash) to an n-bit codeword (n > k) by adding r parity
bits to the original message. Parity bits are stored in the
spare area of the flash. The number r of parity bits required
to correct t errors in the k-bit message is computed by
finding the minimum m that solves the inequality k + r <
2™ —1 where r =m -t {20].

The correction capabi it}; t that the code must provide
depends on the RBER the Flash device is able to provide
and on the UBER the target service requires, according to
the following relation:

Uppn— W BBERY (1 - RBER)"~ "+

ey
n

The adaptable ECC block employed in this work makes
it possible to dynamically change its correction capability
t in a range between I and a maximum value denoted here
With tmae by using a dedicated input port.

The BCH encoder computes the r parity bits for a
k—Dbit block of data by computing the reminder of the
division between the message and the code generator
polynomial. This computation can be efficiently imple-
mented using a r—bit linear feedback shift register (LFSR)
with characteristic polynomial equal to the code generator
polynomial. To obtain adaptability to different correction
caFabilities a parallel pro%rammable LFSR able to support
different characteristic polynomials is employed [19]. The
sequences of bits representing each polynomial are stored
111 a sma]l ROl\(/i[ which ? used to_control a set ﬁf muéti-
plexers able to dynamically insert XOR gates 1n the LFSR
network according to the reqjilested polynomial. Given the
parallelism p of the parallel LFSR (1.e., the block receives

the message to encode in words of p bits starting from

the most significant word), £ clock cycles are required to

compute the parity bits. The encoding latency is therefore
not influenced by the selected correction capability.

The BCH decoding process aims at identifying the po-
sition of the erroneous bits of the codeword. This operation
is more complex than the encoding and requires three main
computational steps highlighted in Fig. 1.

Given the selected correction capability ¢ the Syndrome
block computes 2¢ syndromes of the codeword to decode.
The syndrome computation requires calculating the re-
minder of the division between the codeword and each
of the 2t polynomials ; (x) generating the generator
polynomial of the code. Similarly to the encoding, this step
requires a set of parallel LFSR (one for each polynomial
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Fig. 1. BCH decoding architecture.

¥; (x)). If all reminders are null the codeword is error-
free and the decoding process ends. If not, the syndromes
are computed by evaluating each reminder in the cor-
responding element of GF(2"") using a set of dedicated
combinational networks (see [20] for additional details).
In an adaptable decoder with maximum correction capa-
bility ¢4z » 2tmaee LFSR compose the syndrome block.
However, dePending on the selected correction capability
t only 2t of them will be actually enabled. Moreover,
depending on ¢, the number r of parity bits included in
the codeword changes. If this number does not perfectly
fit the parallelism of the decoder, which in our case is
the same selected for the encoder, a preliminary alignment
phase is required.

When all syndromes have been computed, the
Berlekamp Massey block computes the error locator poly-
nomial A whose roots represent the inverse of the error
positions in the codeword. To implement an adaptable
Berlekamp Massey Machine we considered the hardware
implementation of the Berlekamp-Massey (iBM) algorithm
proposed in [20]. It iteratively computes the coefficients
of the error locator _Folynomial without requiring complex
matrix inversions. The number of iterations required to
compute the coefficients is equal to the selected correction
capability ¢ thus easily allowing adaptability.

Finally, the Chien Search block searches for the roots of
the error locator polynomial computed by the Berlekamp
Massey block. This is the most complex and time intensive
process of the decoder since it basically requires evaluat-
ing the error locator polynomial A into each element of
GF(2™). In fact, according to the BCH theory, given the
chosen correction capability ¢ not all elements of GF(2™)
must be considered. The adaptable decoder stores in a
small ROM, for each possible correction capability, a set
of coefficients indicating the first element of GF(2™) from

hich the Chi t initiate.
W llghe pgrg)rﬁ%nsgear&h tlgréu(slhllré%llesle%rch strongly depends

on its parallelism denoted here with h, i.e., on the number
of parallel evaluations the block is able to perform. A
high parallelism allows for fast search but requires a
considerable set of hardware resources (f X h constant
Galois multipliers), while a low parallelism reduces the
amount of requested resources but, at the same time,
penalizes the decoding latency.

V. Runtime-Selection of Program Algorithm

The other sub-system affected by the new trade-offs
targeted by this work is the high-voltage sub-system of
the Flash memory device, which is in charge of generating

the voltage waveforms for flash cell read, program and
erase operations and for address decoding. Its operation is
regulated by the commands from a control FSM or from

an "ﬁ?be ded niicrocontroller in the flash device itself.
e physical layer considered in this work refers to

state of the art 2-MLC memories [3], which store two bits
er cell by accurately placing four different Vrg levels,
identified by the statistical distributions LO-L3 shown in
Fig. 2. An Erase operation places all the cells within a
block on the LO level (the threshold voltage distribution
typically below zero), representing the starting point for
each subsequent Pro%ram operation which will end up on
lacing threshold voltages of the selected cells on L1-L3
evels. In order to accurately fulfill the aforementioned op-
eration, a standard algorithm is exploited in NAND Flash
memories: the Incremental Step Pulse Programming (ISPP)
[14]. A voltage step (whose amplitude and duration are
predefined) is applied to the gate of the cells. Afterwards, a
Verify operation (i.e. threshold voltage Read) takes place in
order to check if the cells Vi have exceeded a predefined
voltage value Vi py (in MLC architectures more than one
Verify level is present). If the Verify is successful, the cells
have reached the desired distribution level and they are
excluded from the following pulses through the so-called
Program-inhibition technique [2]. Otherwise, another cycle
of ISPP is applied to the cells, where the programming
voltage is incremented by AISPP.

Lo Ll L2 L3

|| ! |
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Fig. 2. Threshold voltage distributions in a MLC

NAND Flash. Read levels (R1, R2, and R3),

Verify levels (VFY1, VFY2, VFYS), and over-

rogramminﬁ level (OP) are pointed out, .
ecause of the technological variations, Vrg is not

perfectly related to the amplitude of the ISPP pulse: there
are “fast” cells which reach the Verify level with few
Program pulses, while other slow” cells require more
pulses. Both kinds of behaviors represent a threat for the
reliability of the Program operation, since the threshold
voltage distributions of the L1-L3 levels significantly de-
viate from the ideal gaussian-like shape, thus crossing the
distribution read levels (R1-R3) and causing bit errors.

Different technological approaches for achieving distri-
bution compactness are commonly pursued, although they
share the same underlying principle: acting directly on the
ISPP pulse characteristics by decreasing the AISPP per
step or by increasing the total number of pulses per Pro-
gram o]f)eration. However, although these methodologies
could effectively increase the accuracy of the ISPP algo-
rithm in terms of threshold voltage placement, a substantial
penal_t(i/ both in power consumption and write throughput
1s paid.

l?An alternative solution for increasing ISPP Program-
ming accuracy with minimal burden on the programming
time and complexity has been recently presented in [2],
[11]. This algorithm exploits a Double Verify (DV) ap-
proach, where the bitline voltage of the selected cells is
modulated in order to partially decrease the AISPP step
using a prior Verify level with slightly lower voltage than
the original Verify level, hence compacting the final desired
threshold voltage distribution.



In current flash device controllers, the program algo-
rithm is set at fabrication time and hardwired in memory
operation, thus preventing runtime trade-offs.

We now illustrate our modeling effort of the high-
voltage memory sub-system with the capability to execute
both the ISPP-SV (Standard ISPP Single Verify) and ISPP-
DV (Double Verify ISPP) algorithms. The objective is to
capture how different program algorithms impact the raw
bit error rate RBER and the power consumption of the
memory. !

We targeted as a case study a 2-bit per cell (4LC)
NAND Flash Memory featuring a 45 nm manufacturing
Erocess designed for low-power applications. The entire
ramework has been implemented on a SPICE-like en-
vironment using the STM-45nm technology library. The
simulation environment is constituted by two distinct mod-
ules: the high-voltage (HV) subsystem of the memory,
includin§ the charge pumps and the voltage regulators
exploited for the generation of the voltages required for the
programming algorithm (including the verify stage), and
a compact model for NAND Flash memories with array
simulation capability.

The HV module refpresents the analog core of a NAND
Flash memory. Modifying or reading the number of elec-
trons stored into the floating gate requires a set of bias
voltages with a desired precision, timing and granularity.
Moreover, many voltages have a value larger than the
NAND power supply, requiring the use of several charge
pumps. In order to achieve a highly accurate estimation of
the power consumption of each ISPP algorithm considered
in this work we have simulated the following blocks
of the NAND HV subsystem: Program Charge pump,
Inhibit Charge pump, Verify Charge pump, Regulators and
limiting systems, following the design in [15].

The power consumption of each pump during the var-
ious stages of the ISPP algorithms, as measured from the
SPICE simulation, is then fed into a NAND Flash power
modeling framework based on the equation set provided
in [16]. As input parameters of the model, we assumed a
low-power NAND Flash supplied with Vpp = 1.8V usin
an ISPP algorithm starting f[r)om 14V to 19V and AISP
steps of 250mV.

The same settings hold both for the ISPP-SV and
the ISPP-DV. Similarly, the HV sub-system functionalit
simulated in this work is designed to work with bot
algorithms. In fact, in a NAND Flash device the timing
and sequence of analog circuitr ngrations are driven by
the embedded microcontroller/ESM by means of a set of
interface registers, generating the enable signals for the
charge pumps. Switching from ISPP-SV to ISPP-DV does
not require a modification of the HV subsystem but rather
implies a different sequence of enable signals notified
through the same register interface.

An additional modeling effort was devoted to NAND
Flash cells. We developed a compact model partially
based on [17], which includes variability effects typical
of nanoscaled memories. This allowed to simulate array
functionalities during a page-wide programming opera-
tion. Variability effects included the following: width and
length geometrical variations of FG-MOS transistors; non-
homogeneity of tunnel oxide and substrate doping; tun-
nelinlg1 caused by the electron injection granularity process
into the cells floating gate; Cell-to-Cell interference caused
by cross-talk between adjacent floating gates; aging effects
due to repeated Program/Erase cycling which typically
degrades the RBER.

lThe programming of MLC NAND Flash also depends on the strategy adoﬂled for loading the data to write
into the memory. Without loss of generality, we chose to investigate and explore the ISPP full sequence strategy [2]
insluimd of the two-rounds one since it allows reduced simulation time and faster post-processing of the experimental
results

All these effects contribute to significantly broaden the
gaussian distributions related to the programmed threshold
voltage levels within the array, negatively impacting the
RBER. For the sake of model validation, we were able to
perfectly fit experimental data collected from [17] model-
g cell voltage threshold shift during an ISPP transient in
41nm NAND Flash technology.

VI. Experimental results

The different sections of the memory sub-system are
at first characterized in isolation, and then combined in
section VI-C to quantify the trade-offs of the cross-layer
approach to memory configuration.

A. Characterization of programming algorithms

Power consumption of the NAND Flash device and its
RBER when using the ISPP-SV and the ISPP-DV algo-
rithms have been characterized by means of the developed
simulation framework. Such parameters are derived as a
function of the Program/Erase cycles of the memory, thus
enabling lifetime-wide assessment of memory features.

Fig. 3 shows RBER results for a simulated 4KB page
Program of a NAND Flash. Acting only upon Program
algorithm selection to improve memory reliability allows
to significantly improve RBER figures up to one order of
magnitude.

However, this reliability improvement comes with two
major penalties: an increase of the power consumption due
to the additional verify operations required by the ISPP-
DV algorithm, and a reduction of the write throughput due
to the increased algorithm run time.

The increased power consumption of the memory de-
vice during a program operation with ISPP-DV instead
of ISPP-SV has been measured but not reported for lack
of space. Power numbers do not include I/O pins and
the digital part, which are irrelevant in the comparative
analysis. A shift of just 7.5mW between the two algorithms
is measured, which is a marginal 4 to 5% increment
with respect to the baseline power with ISPP-SV. Such a
consumption mismatch is ascribed mainly to the increased
usage of the read charge pump circuitry in the memory
HV-subsystem, which anyway does not represent a major
source of power drain in the overall consumption context.
The power consumption is clearly pattern-dependent. In-
deed, programming a page with a target L1 distribution
requires less power than a L3 distribution target, as the
HV-subsystem of the memory is enabled for a longer time

frame. ) . .
The appealing RBER improvement Eropertles and the

minor power cost for that depend on the specific choice
of programming algorithms considered in this paper, indi-
cating that ISPP-SV and ISPP-DV are a good choice for
future reconfigurable memory sub-systems.

B. ECC characterization

Choosing the proper correction capability r of a BCH
code is crucial for determining the reliability and the
performance of the flash memory. Flash memory based
storage systems implementing ECst are characterized by

two values of BER. The RBER i‘f the bit error rate before
applying the error correction. The bit error rate after the

%{?Ehcatlon of an ECC is usually identified as the UBER.
en designing a flash-based system, UBER must fit the
acceptable failure rate of the application. It therefore fixes
the correction capability the selected ECC must provide.
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Considering the design of the BCH code, the current
trend is to enlarge the block size k over which ECC
operations are performed. In fact, longer blocks better
handle higher concentrations of errors, providing more
protection while using fewer parity bits [21]. For this
reason we decided to adopt a block size of k = 4KB equal
to the page size of the selected memory, thus overcoming
some of the drawbacks of the approach proposed in [19].

Manufacturers usually quote ET%ER values on their data
sheets typically around 10~!! [3]. Given this target, Fl(% 4
shows tﬁe relation between RBER and UBER achieved by
our ECC when using ISPP-SV as program algorithm in the
flash device. The specific algorithm determines different
RBERs, which even de%rade over time, as illustrated in
section VI-A. Those RBER ranges then become the x-axis
values in Fig. 4.
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Fig. 4. UBER and RBER relation for ISPP-SV
algorithm.

The Figure shows that in the best case (left-hand side),
tamrny = 3 is sufficient to meet the required reliability
constraints. Fig. 4 shows that, in the worst case, the
correction ca}fabilit required by the code is tprax = 65
errors for the ISPP-SV algorithm. A similar analysis for the
ISPP-DV algorithm revealed that a tj;4x = 14 is enough

for_the worst case, RBER. .
e therefore 1nsta§1t1at%d a BCH, codec _architecture
for the worst case ISPP-SV algorithm with correction

capability in the range ¢ = 3 + 65, which is able to
accommodate also the relaxed requirements of ISPP-DV
and of both program algorithms over time.

We then characterized the encoding and decoding la-
tency of this ECC architecture when required to guarantee
a constant UBER of 10~ !! over time and in the presence
of the ISPP-SV and ISPP-DV in the flash device. Results

are reported in Fig.5. We can see that with ISPP-SV the
adaptive ECC is reconfigured over time in an attempt to
meet the reliability requirement, thus clearly resulting in
longer (de-)coding latencies. Since ISPP-DV can contain
the RBER with memory aging, ECC requirements can
be relaxed accordingly hence almost keeping a constant
latency. As will be pointed out in next section, this latency
deviations translate into different write and read throughput
figures for the two program algorithms.
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Fig. 5. ECC encoding/decoding performance with
respect to the chosen ISPP algorithm and memory
lifetime. Assumed operating speed is 80 MHz.

C. The new performance-reliability trade-offs

The cross-domain approach proposed in this work for
performance-reliability trade-ofF leverages the possibility
to act both upon physical and architectural parameters, thus
combining tllljeir settings into unprecedented combinations.

We assume that ISPP-SV and the ECC settings meeting
the 107! requirement with that algorithm over time are
the baseline configurations of the memory sub-system.
With respect to that average case, we then ask for improved
read throughput or for improved UBER through our cross-
layer memory configuration.
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. Fig. 6. Write throughput penalty. .

1) Minimizing UBER: Some mission-critical applica-
tions may require an UBER value lower than the typical
10~*! one, which was originally projected for the SSD
and HDD markets [3]. The improvement of the UBER
can be obtained by keeping constant the ECC correction
capability, while tuning 0n1¥ on the physical layer. Indeed,
by switching from the ISPP-SV algorithm to the more
reliable ISPP-DV one it is possible to reduce the overall
RBER by an order of magnitude, which directly maps into
a reduction of the UBER value.
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Fig. 7 shows that by exploiting this methodology during
the whole memory lifetime, it is possible to achieve an
UBER boost which on average amounts to two orders of
magnitude but peaks at four orders of magnitude at the end
of memory lifetime with reslg)ect to the nominal setting. The
key benefit of this approach is that the UBER boost does
not come at the cost of read throughput penalty, since the
decoding time is unaffected.

2) Maximizing Read throughput: Some read intensive
scenarios may require the maximum read throughput
achievable by the memory, eventually penalizing write
throughput performance. By acting only upon the memory
controller parameters, the ECC strengtﬁ would have to be
reduced, thus degrading the UBER. In constrast, with a
cross-layer approach, it is possible to select the ISPP-DV
algorithm, so to provide the best RBER feature during the
whole memory lifetime (see Fig. 3), and to concurrentl
relax ﬂi? ECC configuration to provide a constant UBE

The decodinl% latency savings enable to improve the
memory read throughput of up to 30% at the end of
memory lifetime, as shown in Fig. 8. This depends on two
factors. On one hand, read throughput is dominated by
decoding latency and not by page read time (which takes
up to 7§us against the 158]us of the decoding operation
[18]). On the other hand, as previously shown in Fig. 5,
the improvement is a strict function of memory aging.

The key novelty of this approach lies in the fact that
read throughput can be maximized with respect to the
average case without impacting UBER. Moreover, the
relaxation of ECC performance allows to keep the memory
power budget constant since the increased power needs of
the physical layer are compensated by the lower power of

the ECC sub-system. Of course, this result is strictly ECC
architecture dependent.

3) Trading Write Throughput for Adaptivity: In both
adaptivity cases discussed above, when switching away
from the baseline memory setting, a loss in write through-
{)jlg has to be expected for improved read throughput or

ER.

Inl}act, in both cases the program algorithm is switched
to ISPP-DV, which takes a longer time to run than the
ISPP-SV. Since this time dominates with respect to the
encoding latency (1.5ms against the ECC encoder latency
which is about two orders of magnitude lower), then
the lonfer program time of the memory can be directly
referred to the longer ISPP-DV algorithm. As shown in
Fig. 6, the write throughput loss with respect to the
baseline setting on average amounts to 40%.

VII. Conclusions

In this paper, we demonstrate that combining settings
at the physical and architectural level in a memory sub-
system holds promise of exposing unprecedented trade-off
points between performance and reliability. In particular,
read throughput can be improved upon demand at runtime
without sacrificing UBER and viceversa. This comes with
at a loss in write throughput and with a marginal power
penalty in specific use cases. When combining these trade-
offs with those traditionally provided by design techniques
for the memory controller architecture, this work paves the
way for a more fine-grained optimization of applications
and for a higher degree of memory self-adaptivity.
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