
1

State-of-the-art Tools and Techniques for
Quantitative Modeling and Analysis of Embedded

Systems
Marius Bozga∗, Alexandre David†, Arnd Hartmanns§, Holger Hermanns§, Kim G. Larsen†, Axel Legay‡, Jan

Tretmans¶†Aalborg∗CNRS Verimag‡INRIA/IRISA §Saarland University ¶Embedded Systems Institute and
Radboud University

Abstract—This paper surveys well-established/recent tools and
techniques developed for the design of rigorous embedded sys-
tems. We will first survey UPPAAL and MODEST, two tools
capable of dealing with both timed and stochastic aspects. Then,
we will overview the BIP framework for modular design and
code generation. Finally, model-based testing will be discussed.

I. CONTEXT

The rigorous design of embedded systems radically differs
from pure software design in that it should take into account
not only functional but also extra-functional specifications
regarding the use of resources of the execution platform
such as time, memory and energy. Meeting extra-functional
specifications is essential for the design of embedded systems.
It requires predictability of the impact of design choices on
the overall behaviour of the designed system. It also implies
a deep understanding of the interaction between application
software and the underlying execution platform.
Our objective is to overview some of the well-
established/recent tools and techniques developed for
the design of rigorous embedded systems. What makes these
tools unique is their ability to deal with both timing and
stochastic aspects. We will start by introducing the UPPAAL
real-time modeling and verification toolset and its underlying
theory as well as recent features. Then, we will discuss the
MODESTapproach, that is a new unifying modeling paradigm
allowing to interconnect stochastic and timed analysis tools
in a semantically sound manner. Then, the BIP workflow
for component-based design will be introduced. One of the
major features of BIP is its ability to generate correct code
for component coordination. Finally, model-based testing,
that is already used in industry, and its potential integration
in existing toolsets will be discussed.

II. THE UPPAAL TOOLSET

UPPAAL [1] is a tool suit supporting modeling, simulation,
verification, synthesis and performance analysis of real-time
systems described as networks of timed automata [2] com-
municating by channel synchronisations. It now features an
advanced modelling language where the basic timed automata
formalism is extended with a C-like imperative language with
user-defined types and functions, allowing for readable and

compact models with reusable updates of discrete variables.
The property language of UPPAAL allows for safety, liveness
and time-bounded liveness properties to be expressed. The
tool also features a user-friendly graphical interface, and an
efficient symbolic model checking engine. In addition, several
flavours of the tool have matured in recent years.

Using a shared modeling and specification formalism, UP-
PAAL has developed into several domain specific versions:

• UPPAAL-CORA is based on timed automata extended
with cost variables [3]. The tool uses a symbolic algo-
rithm for solving minimum cost reachability problems,
with several applications to optimization for embedded
systems, including Worst-Case Execution Times (WCET)
analysis [4].

• UPPAAL-TIGA [5] provides an efficent method for syn-
thesizing winning control strategies from timed game
automata with respect to safety and liveness objectives.
E.g the tool has been applied to controller synthesis of
optimal and robust controllers for hydraulic pumps [6].

• UPPAAL-TRON [7] is a testing tool suited for black-box
conformance testing of timed systems (see also Section
V). UPPAAL-TRON is mainly targeted for embedded
software commonly found in various controllers, and
applies on-line testing in the sense that tests are derived,
executed, and checked during interaction with the system
in real-time.

• ECDAR [8] is a variant of UPPAAL supporting com-
postional development. The tool is designed to check
incrementally refinement and consistency between com-
ponent specifications given as timed automata. Also, the
tool allows for structural and logical composition of
specifications.

• UPPAAL-SMC [9], [10] is the newest member of the
UPPAAL suite coming equipped with a completely new
and highly efficient and scalable engine for performing
statistical model checking. I.e. based on a stochastic
semantics of networks of timed automata, properties
are settled with a desired level of confidence based on
random simulation runs.

A. A Train Crossing Example

We present an example that we use for model-checking,
code synthesis, and performance analysis. We consider a978-3-9810801-8-6/DATE12/ c©2012 EDAA



2

go[id]?

x=0

x=0
appr[id]!

leave[id]!

stop[id]?

x=0

x=0

x>=3

x<=10

x>=7

Safe
x<=5

x>=10

x<=20 x<= 15
Start

Cross

Stop

Appr

(a) Train.

appr[e]?

enqueue(e)

go[front()]!

stop[tail()]!

leave[e]?
dequeue()enqueue(e)

e : id_t
e == front()len > 0
e : id_t

e : id_t
appr[e]?

Occ

len == 0

Free

(b) Controller. (c) Types and functions of the controller.

id_t list[N+1];
int[0,N] len;

void enqueue(id_t element)
{ list[len++] = element; }

id_t front()
{ return list[0]; }

id_t tail()
{ return list[len - 1]; }

void dequeue()
{

int i = 0;
len -= 1;
while (i < len)
{

list[i] = list[i + 1];
i++;

}
list[i] = 0;

}

Fig. 1. A UPPAAL model of a train (a) and a controller (b) with its code (c).

number of trains that are approaching a bridge on their own
tracks. The bridge has only one track so a controller decides to
stop and restart trains when more than one train is approaching
at the same time.

Figure 1.(a) shows a timed automaton template that we use
for every train. Trains start in the Safe location and when
they are approaching, they synchronize with the controller with
appr[id]! and go to the Appr location where they stay for at
most 20 time units. Trains may be stopped by the controller
before 10 time units (and go to the Stop location) otherwise
they will cross and go to the Cross location. When stopped,
a train may be restarted with the go[id]? synchronization and
then it will cross the bridge between 7 and 15 time units.

Figure 1.(b) shows the controller that maintains a FIFO
queue of stopped trains. It has two main locations Free and
Occ that keep track of the state of the bridge that is free
or occupied. When a train approaches, it is enqueued. It is
dequeued when it leaves the bridge. If the bridge is occupied,
then it is immediately stopped (bottom committed location
marked with c).

Figure 1.(c) shows the user-defined code and functions that
handle the FIFO queue. The queue is declared as an array and
its length is kept track with the len integer. The functions
enqueue, front, and tail are used to respectively en-
queue elements at the end of the queue, read the first element,
or read the last element. To dequeue elements we have to shift
the values in the array to the left, which is done with a while
loop.

a) Verification: We are interested in the following prop-
erties to ensure correctness of the controller:

• Safety: At most one train at a time will cross the bridge.
A[] forall (i:id_t) forall (j:id_t)
Train(i).Cross && Train(j).Cross imply
i == j

x=0stop[id]?

leave[id]!

x=0

x=0

x=0

x=0

appr[id]!

go[id]?

Appr Start

x<=30

Safe Cross

Stop

x>=7x>=10

x<= 15

x<=10

x>=3

x<=5

x<=20

Fig. 2. Timed game automaton for the trains.

stop[e]!

go[e]!

leave[e]?

appr[e]?

e:id_t

e:id_te:id_t

e:id_t

Fig. 3. Unconstrained automaton for the controller.

• Liveness: Whenever a train is approaching then it will
eventually cross the bridge.
Train(0).Appr --> Train(0).Cross
. . .
Train(5).Appr --> Train(5).Cross
We specify one property per train in this case.

• Absence of deadlock: A[] not deadlock.
b) Synthesis: Instead of making a controller by hand we

can synthesize it. To do this we use UPPAAL-TIGA that is
going to solve a two-player timed game where one player, the
environment, decides non-deterministically when trains arrive
and the time it takes to cross, and the second player, the
controller, decides deterministically when to stop and restart
the trains. Figure 2 shows a slightly modified train where



3

Train 0

Train 1

Train 2

Train 3

Train 4

Train 5

run duration in time

p
ro

b
a
b
ili

ty

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 22 34 46 58 70 82 94

Cumulative Probability Distribution

Fig. 4. Cumulative distribution for the trains to cross in function of time.

the environment decides to take the uncontrollable transi-
tions (dashed) and the controller the controllable transitions.
Figure 3 shows an unconstrained automaton that specifies
what the controller can do. It is up to UPPAAL-TIGA now
to compute a strategy that will decide when to take the
controllable transitions. We note that this automaton could
include some constraints if, for example, it took a certain
additional time to send a signal to trains.

c) Performance Analysis: We can study performance of
models using UPPAAL-SMC. To do so, we equip our timed
automata model with a stochastic semantics. In a nutshell, ev-
ery train can choose to output appr[id]! or leave[id]!
independently after making a delay according to a distribution.
The distribution is exponential when there is no invariant (on
the Safe location), or uniform when there is an invariant
(on the Cross location). The train picking the shortest delay
moves.

We are interested in how fast the trains may cross where
we give as rate (of the exponential distribution) 1+id to
differentiate the trains. Figure 4 shows the cumulative dis-
tribution over time of trains crossing. To obtain this plot we
check the property Pr[<=100](<> Train(0).Cross)
(for train 0) that we repeat for every train and we supperpose
the distributions.

III. MODESTAND THE MODEST TOOLSET

MODEST [11] is a compositional modelling language that
combines expressive and powerful syntax-level features with
a formal semantics in terms of stochastic timed automata
(STA). The STA model includes probabilistic choices based
on continuous and discrete probability distributions as well as
nondeterministic choices over successor locations and time.

The idea behind MODEST is to provide a single-formalism,
multi-solution approach to modelling and analysis: Many well-
known models are subsumed by STA, such as (probabilistic)
timed automata ((P)TA, [12]), and most of them are easy
to identify on the syntactical level (for example, a MODEST
model is a TA if no probabilistic constructs are used). MOD-
EST can thus be used to build models in a wide range of
formalisms, and with an appropriate transformation, existing
analysis engines and algorithms that are specifically designed
for the formalism at hand can be used for analysis.

This approach is supported by the MODEST TOOLSET,
available at www.modestchecker.net, which currently

process Channel() {
clock c;
put palt {

:98: {= c = 0 =};
// transmission delay of
// up to TD time units
invariant(c <= TD) get

: 2: {==} // message lost
}; Channel()

}

Fig. 5. A communication channel with 2% message loss in MODEST

provides three ways to analyse MODEST models, with more
under development:

• mctau [13] connects UPPAAL to MODEST for TA mod-
els, allowing both automated analysis of properties spec-
ified in the model as well as export to UPPAAL XML,
including automatic layout of the component automata;

• mcpta [14], [15] handles MODEST models of PTA, using
the PRISM [16] probabilistic model checker as a backend,
but including optimisations specific to MODEST; and

• modes [17] provides discrete-event simulation for arbi-
trary deterministic MODEST models as well as for models
that exhibit nondeterminism due to concurrency.

These tools are seamlessly integrated in mime, a graphical
modelling and analysis environment.

A. A Bounded Retransmission Example

Let us consider the Bounded Retransmission Protocol
(BRP, [18]), an alternating-bit-based communication protocol
with an upper bound on the number of retransmissions. A
realistic model of the BRP includes both real-time aspects,
namely timeouts and transmission delays [19], and probabilis-
tic choices, namely the loss of messages on the communication
channel [20]. To show how these aspects are combined in
MODEST in an orthogonal way, the MODEST code modelling
the communication channel, which synchronises with the
sender and receiver via actions put and get, is listed in
Figure 5. The full model is available as part of the MODEST
TOOLSET download.

As a first step to analyse the BRP, we should use mctau.
The model contains probabilistic decisions, which UPPAAL
cannot handle, but mctau can automatically overapproximate
these with nondeterministic decisions. This is particularly
useful for model debugging, since a nonprobabilistic analysis
is usually significantly faster than a probabilistic one. Table I
summarises the results that the different tools obtain on the
BRP model; we see that mctau is able to obtain the exact
value for the invariant properties TA1 (no premature timeouts)
and TA2 (correct handling of failures) as well the proba-
bilistic reachability properties1 PA and PB (the probabilities
of certain incorrect sender reactions). mctau cannot handle
property Emax (the expected time until a transfer finishes),
and cannot safely conclude that the probability for P1 (no

1All properties considered here ask for a maximum probability over all
resolutions of nondeterminism; minimum probabilities are equally supported.



4

TABLE I
RESULTS FOR THE BRP MODEL, PARAMETERS (N,MAX, TD)=(16, 2, 1)

property mctau mcpta modes
TA1 true true true (all 10k runs satisfied TA1)
TA2 true true true (all 10k runs satisfied TA2)
PA 0 0 0 (no observations in 10k runs)
PB 0 0 0 (no observations in 10k runs)
P1 [0, 1] 4.233 · 10−4 µ=3.0 · 10−4, σ=1.7 · 10−2

P2 [0, 1] 2.645 · 10−5 0 (no observations in 10k runs)
Dmax [0, 1] 9.996 · 10−1 µ=9.9 · 10−1, σ=1.7 · 10−2

Emax n/a 33.473 µ=33.473, σ=2.136

success reported), P2 (uncertainty reported) or the time-
bounded property Dmax (probability of success in time 64)
is zero or one.

Once we are confident that the model is correct (in this case,
the results for the first four properties match our expectations),
we can use mcpta to perform a full probabilistic analysis,
which takes noticeably longer than the quick check with
mctau (still <1min for this small example), but yields precise
results for all properties considered.

Again, the very same model can also be simulated with
modes; however, the results in Table I show that this particular
model is not very well-suited for simulation because we are
interested in rather rare events, some of which were never
observed in 10000 simulation runs that also took significantly
longer than model-checking. In the table, µ is the mean and
σ is the standard deviation of the assumed normal distribution
for the results. For property Emax, which is not a rare event
but an expected value, modes performs very well; in general,
the advantage of simulation is that it is not subject to the
state-space explosion problem and can thus handle arbitrarily
large model instances, as well as more complex properties.
We also note that simulation, in principle, cannot be used for
nondeterministic models; in this case, we explicitly specified a
scheduler to resolve nondeterminism, but modes is also able
to soundly handle nondeterminism resulting from the inter-
leaving of concurrent behaviour without relying on (implicit
or explicit) schedulers [17].

In [14], we also considered two protocols that, in contrast
to the BRP, are inherently probabilistic due to the use of
randomized schemes to resolve contention, and we explored
different modelling approaches, including a straightforward
pattern to (mechanically) transform a graphical model given
as automata into a (text-based) MODEST model.

IV. COMPONENT-BASED DESIGN OF AUTONOMOUS
SYSTEMS

Rigorous system design requires the use of a single compo-
nent framework, with sound semantics, allowing the represen-
tation of the system at different levels of detail, from high-level
design to implementation. The use of a single framework is
essential to maintain the overall coherency and correctness by
relating different models and their properties along the flow.

BIP – Behavior, Interaction, Priority [21] – is a component
framework intended to rigorous system design. BIP allows
the construction of composite hierarchically structured systems
from atomic components characterized by their behavior and

their interface. Components are composed by layered appli-
cation of interactions and of priorities. Interactions express
synchronization constraints between actions of the composed
components while priorities are used to filter amongst possible
interactions and to steer system evolution so as to meet
performance requirements e.g. to express scheduling policies.
Interactions are described in BIP as the combination of two
types of protocols: rendez-vous, to express strong symmetric
synchronization and broadcast, to express triggered asym-
metric synchronization. The combination of interactions and
priorities confers BIP expressiveness not matched by any other
existing formalism. It defines a clean and abstract concept
of architecture separate from behavior. Architecture in BIP
is a first class concept with well-defined semantics that can be
analyzed and transformed. BIP relies on rigorous operational
semantics that has been implemented by specific execution
engines for centralized, distributed and real-time execution.

BIP is used as a unifying semantic model in a rigorous
system design flow [22]. Rigorousness is ensured by two kinds
of tools: verification tools such as D-Finder [23] for checking
safety properties (and deadlock-freedom in particular) and
source-to-source transformers [24], [25] that allow progressive
refinement of (purely functional) application software towards
platform-dependent implementations.

Execution controller (R2C)

Pos 
Y

Module 
X Functional Module Poster

Procedural 
executive

(open-PRS)

Planner and 
temporal executive

(IxTeT)

Execution control level

OR

Functionnal level

Decisionnal level

Antenna
PosPOM

Po
sVME

Science

Aspect Obs

Laser 
RF ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Fig. 6. An overview of the embedded software of DALA

The BIP design flow has been applied for the development
of a new version of the functional and execution control
level of DALA (see Figure 6), an autonomous rover robot
developed at Laas Laboratory, Toulouse. This experiment



5

has been partially described in [26], [27]. The construction
involves hierarchical decomposition of the functional level
into atomic components, definition of the behavior of each
atomic component and description of composition by using
interactions and priorities. The BIP model has been formally
verified for deadlock-freedom and other safety properties.
Moreover, it has been used to synthesize an execution con-
troller that encodes and enforces safety properties by con-
struction, thereby facilitating the development of safe and
dependable robotic architectures. Experiments with the code
generated automatically from the BIP model demonstrate (via
fault injections) that the controller successfully stops the robot
from reaching undesired/unsafe states.

V. MODEL-BASED TESTING

When models have been used for system design and ver-
ification, a logical next step is to obtain a system imple-
mentation that faithfully implements the behaviour described
in the model. Sometimes, it is possible to generate such an
implementation by means of code generation or by step-
wise refinement from the model. Whenever such a correctness
preserving transformation from model to code is not feasible,
e.g., due to a too large abstraction discrepancy between model
and implementation, the correctness of the (manually devel-
oped) implementation must be checked afterwards. Systematic
testing is an important technique for checking the quality
of a system implementation and for verifying compliance
of its actual behaviour with its specified model behaviour.
Traditional testing, however, is often a manual and laborious
process, which makes it expensive, error-prone, and time-
consuming.

Model-based testing is one of the promising technologies
to meet the challenges imposed on testing. In model-based
testing, a model serves as a precise and complete specification
of what the system shall do, and, consequently, is a good
basis for testing the system. Moreover, such a model allows
the algorithmic generation of large amounts of test cases, in-
cluding test oracles, completely automatically from the model.
This leads to faster, less error-prone, and better maintainable
test generation: millions of test events can be automatically
generated, and ‘on-the-fly’ executed and analysed. And if the
model is valid, i.e., expresses precisely what the system under
test should do, then all these generated tests are provably valid,
too. This makes it possible to automate the testing process well
beyond the mere automatic execution of manually crafted test
cases, which is the current state of practice.

Model-based testing complements formal verification ap-
proaches such as (statistical) model checking. Formal ver-
ification intends to show that a system has some desired
properties by proving that a model of that system satisfies
these properties. Thus, any verification is only as good as the
validity of the model on which it is based. Model-based testing
starts with a (verified) model, and then aims at showing that
the real, physical implementation of the system behaves in
compliance with this model. Due to the inherent limitations
of testing, such as the limited number of tests that can be
performed, testing can never be complete: testing can only
show the presence of errors, not their absence.

Model-based testing is more than just the generation of
some test cases from a model. A well-defined and sound
theory shall underpin model-based testing. Such a theory must
support precise reasoning about the objects of model-based
testing, such as models, implementations under test (IUT),
test cases, test generation, and verdicts, and about their mutual
relations: when is an IUT correct with respect to a model, what
does it mean for a test case to be valid, and what encompasses
a correctness proof for a test generation algorithm. Two
important ingredients of such a theory of model-based testing
are a testing hypothesis and an implementation relation.

A testing hypothesis, or test assumption, establishes the link
between the black-box, real IUT and the world of models.
The assumption is made that any real IUT can be modelled
by some object in a domain of models. In this way, the
testing hypothesis allows reasoning about IUTS as if they were
models in this (formal) domain. Building on the testing hy-
pothesis, an implementation relation, also called conformance-
or refinement relation, is a formal relation between models of
IUTS and specification models. It defines when an IUT is
correct with respect to a specification model.

One of the theories for model based testing is the ioco-
testing theory, where models are expressed as labelled tran-
sition systems and compliance is defined with the ioco-
implementation relation (Input/Output Conformance) [28].
This model-based testing theory, on the one hand, provides
a sound and well-defined foundation for transition system
testing, having its roots in the theoretical area of testing
equivalences and refusal testing. On the other hand, it has
proved to be a practical basis for several model-based test
generation tools and applications. The ioco-testing theory uses
labelled transition systems as models for specifications and
tests, the testing hypothesis is that implementations behave
as if they were input-enabled labelled transition systems,
and conformance between IUTS and specification models is
defined by ioco. An algorithm generates tests from a model,
which can be shown to be complete (sound and exhaustive)
meaning that the algorithmically generated test cases detect
only, and in the limit all, non-ioco conforming IUTS.

Tools that implement the ioco-approach are, among others,
TORX, JTORX, TORXAKIS, TGV, and Axini Test Manager,
which have been applied, for instance, to testing of a highway-
tolling system protocol, the EU electronic passport, a software
bus, and wireless-sensor-network nodes [29], [30].

An important variant of ioco for the embedded systems
domain is rtiocoe: environment-relativized timed input/output
conformance. It adds testing for real-time properties, and is
implemented in the model-based testing tool UPPAAL-TRON,
a member of the UPPAAL family of Timed Automata-based
analysis tools.

Benefits of model-based testing compared with manual
testing are the generation of large numbers of long, valid
tests, allowing testing that is more thorough, faster, cheaper,
and more efficient. Moreover, testing is easily repeated after
modifications in the model or in the system. Although the
construction of a model may seem an extra effort, practice
shows that this modeling activity in itself leads to improved
understanding of the system, and to earlier detection of im-



6

precise, incomplete, or ambiguous requirements. A model for
model-based testing can be more abstract, with less detail,
then a model for code generation: testing a system for a
particular property is easier than generating a system with
that property. Finally, the ioco- and rtiocoe-approaches can
deal with typical embedded software aspects such as real-time
properties, concurrency, nondeterminism, abstraction, under-
specified and partial specifications, and assumptions on the
(physical) environment,

REFERENCES

[1] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
in SFM, ser. Lecture Notes in Computer Science, M. Bernardo and
F. Corradini, Eds., vol. 3185. Springer, 2004, pp. 200–236.

[2] R. Alur and D. L. Dill, “Automata for modeling real-time systems,” in
ICALP, ser. Lecture Notes in Computer Science, M. Paterson, Ed., vol.
443. Springer, 1990, pp. 322–335.

[3] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. W. Vaandrager, “Minimum-cost reachability for priced
timed automata,” in HSCC, ser. Lecture Notes in Computer Science,
M. D. D. Benedetto and A. L. Sangiovanni-Vincentelli, Eds., vol. 2034.
Springer, 2001, pp. 147–161.

[4] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen,
“Metamoc: Modular execution time analysis using model checking,”
in WCET, ser. OASICS, B. Lisper, Ed., vol. 15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2010, pp. 113–123.

[5] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!” in CAV, ser. Lecture
Notes in Computer Science, W. Damm and H. Hermanns, Eds., vol.
4590. Springer, 2007, pp. 121–125.

[6] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier,
“Automatic synthesis of robust and optimal controllers - an industrial
case study,” in HSCC, ser. Lecture Notes in Computer Science, R. Ma-
jumdar and P. Tabuada, Eds., vol. 5469. Springer, 2009, pp. 90–104.

[7] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing real-
time embedded software using uppaal-tron: an industrial case study,” in
EMSOFT, W. Wolf, Ed. ACM, 2005, pp. 299–306.

[8] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed
i/o automata: a complete specification theory for real-time systems,” in
HSCC, K. H. Johansson and W. Yi, Eds. ACM ACM, 2010, pp. 91–100.

[9] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang, “Time
for statistical model checking of real-time systems,” in CAV, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds., vol.
6806. Springer, 2011, pp. 349–355.

[10] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van
Vliet, and Z. Wang, “Statistical model checking for networks of priced
timed automata,” in FORMATS, ser. Lecture Notes in Computer Science,
U. Fahrenberg and S. Tripakis, Eds., vol. 6919. Springer, 2011, pp.
80–96.

[11] H. C. Bohnenkamp, P. R. D’Argenio, H. Hermanns, and J.-P. Katoen,
“MoDeST: A compositional modeling formalism for hard and softly
timed systems,” IEEE Transactions on Software Engineering, vol. 32,
no. 10, pp. 812–830, 2006.

[12] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic
verification of real-time systems with discrete probability distributions,”
Theor. Comput. Sci., vol. 282, no. 1, pp. 101–150, 2002.

[13] J. Bogdoll, A. David, and A. Hartmanns, “mctau: Bridging the gap
between Modest and UPPAAL,” submitted to TACAS 2012.

[14] A. Hartmanns and H. Hermanns, “A modest approach to checking
probabilistic timed automata,” in QEST. IEEE Computer Society, 2009,
pp. 187–196.

[15] A. Hartmanns, “Model-checking and simulation for stochastic timed
systems,” in FMCO, ser. LNCS, vol. 6957. Springer, December 2010.

[16] D. Parker, “Implementation of symbolic model checking for probabilistic
systems,” Ph.D. dissertation, University of Birmingham, 2002.

[17] J. Bogdoll, L. M. Ferrer Fioriti, A. Hartmanns, and H. Hermanns,
“Partial order methods for statistical model checking and simulation,” in
FMOODS/FORTE, ser. LNCS, R. Bruni and J. Dingel, Eds., vol. 6722.
Springer, 2011, pp. 59–74.

[18] L. Helmink, M. P. A. Sellink, and F. W. Vaandrager, “Proof-checking a
data link protocol,” in TYPES, ser. LNCS, H. Barendregt and T. Nipkow,
Eds., vol. 806. Springer, 1993, pp. 127–165.

[19] P. R. D’Argenio, J.-P. Katoen, T. C. Ruys, and J. Tretmans, “The
bounded retransmission protocol must be on time!” in TACAS, ser.
LNCS, E. Brinksma, Ed., vol. 1217. Springer, 1997, pp. 416–431.

[20] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen, “Reach-
ability analysis of probabilistic systems by successive refinements,” in
PAPM-PROBMIV, ser. LNCS, L. de Alfaro and S. Gilmore, Eds., vol.
2165. Springer, 2001, pp. 39–56.

[21] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-
time Systems in BIP,” in Software Engineering and Formal Methods,
SEFM’06 Proceedings, 2006, pp. 3–12.

[22] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous Component-based Design using the BIP
Framework,” IEEE Software, Special Edition – Software Components
beyond Programming – from Routines to Services, vol. 28, no. 3, pp.
41–48, 2011.

[23] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-Finder: A Tool
for Compositional Deadlock Detection and Verification,” in Computer-
Aided Verification, CAV’09 Proceedings, 2009, pp. 614–619.

[24] M. Bozga, M. Jaber, and J. Sifakis, “Source-to-Source Architecture
Transformation for Performance Optimization in BIP,” IEEE Transac-
tions on Industrial Informatics, vol. 6, no. 4, pp. 708–718, 2010.

[25] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “From
High-Level Component-Based Models to Distributed Implementations,”
in Embedded Software, EMSOFT’10 Proceedings, 2010, pp. 209–218.

[26] A. Basu, M. Gallien, C. Lesire, T.-H. Nguyen, S. Bensalem, F. Ingrand,
and J. Sifakis, “Incremental Component-Based Construction and Ver-
ification of a Robotic System,” in European Conference on Artificial
Intelligence, ECAI’08 Proceedings, 2008, pp. 631–635.

[27] S. Bensalem, L. de Silva, A. Griesmayer, F. Ingrand, A. Legay, and
R. Yan, “A Formal Approach for Incremental Construction with an
Application to Autonomous Robotic Systems,” in Software Composition,
SC’11 Proceedings, 2011, pp. 116–132.

[28] J. Tretmans, “Model Based Testing with Labelled Transition Systems,”
in Formal Methods and Testing, ser. Lecture Notes in Computer Science,
R. Hierons, J. Bowen, and M. Harman, Eds., vol. 4949. Springer-Verlag,
2008, pp. 1–38.

[29] W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. Wich-
ers Schreur, “Model-Based Testing of Electronic Passports,” in Formal
Methods for Industrial Critical Systems – FMICS 2009, ser. Lecture
Notes in Computer Science, M. Alpuente, B. Cook, and C. Joubert,
Eds., vol. 5825. Springer-Verlag, 2009, pp. 207–209.

[30] M. Sijtema, M. Stoelinga, A. Belinfante, and L. Marinelli, “Experiences
with Formal Engineering: Model-Based Specification, Implementation
and Testing of a Software Bus at Neopost,” in FMICS 2011, ser. LNCS,
G. Salaün and B. Schätz, Eds., vol. 6959, 2011, pp. 117–133.


