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Abstract—In this paper, we propose a technique for custom 
instruction (CI) extension considering process variations. It 
bridges the gap between the high level custom instruction 
extension and chip fabrication in nanotechnologies. In the 
proposed method, instead of using the conventional static timing 
analysis (STA), statistical static timing analysis (SSTA) which in 
turn results in a probabilistic approach to identifying and 
selecting different parts of the CI extension is utilized. More 
precisely, we use the delay Probability Density Function (PDF) of 
the CIs in identification and selection phases of the CI extension. 
In the identification phase, the delay of each CI is modeled by 
PDF whereas the performance yield is added as a constraint. 
Additionally, in the selection phase, the merit function of the 
conventional approaches is modified to increase the performance 
gain of the selected CIs at the price of slightly sacrificing the 
design yield. Also, to make the approach computationally more 
efficient, we propose a method for reducing the modeling time of 
the PDF of the CIs by reducing the number of candidate CIs 
before extracting the PDF.  

Keywords-component; ASIP, Custom Instruction, Process 
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I. INTRODUCTION  

The use of embedded processors in a variety of platforms 
such as cell phones, health monitoring devices, automotive 
applications, and many others is increasing. Similar to many 
other digital systems, the computational speed and power 
consumption are two critical design parameters  [1]. A solution 
for these issues is the application specific instruction set 
processor (ASIP) methodology which can improve speed and 
power consumption of the GPP technique  [2] [3]. In the ASIP 
approach, the instruction set of a GPP is extended through 
ASIC design based on the features of the specific application. 
The augmented instructions are determined such that the 
desired speed, power, and cost requirements are fulfilled. The 
main idea behind using ASIP is to run the hotspot parts of an 
application on the custom instructions (CIs) and the other parts 
of the application on the ALU of the processor.  

The ASIP design methodology starts by extracting the data 
flow graph (DFG) of the application  [1] [4]. Next, in 
identification phase, all the subgraphs that meet the constraints 
of the parallel hardware are enumerated as CIs. The I/O ports 
number and propagation delays of the subgraphs are two 
common constraints in the CI enumeration. Finally, between 
the candidates, the best CIs based on their merit value will be 
selected. For each CI, the merit value shows the quantity of the 
parameters that the ASIP intends to improve. Normally, the 

main parameter is speedup, which shows how much 
performance is obtained by using CIs in the ASIP  [1] [2].  

In the conventional ASIP approach, the worst-case delays 
of the primitives (e.g., AND, ADD, SHIFT, etc.) are used as 
the reference to extract the latency of the CIs. In sub-100nm 
nanotechnologies, however, complexities in the manufacturing 
of the transistors with small sizes have caused significant 
variations in nominal transistor parameters (such as threshold 
voltage and effective channel length), which in turn has led to 
uncertainties in the performance and power consumption of the 
circuits  [5]. As the process variation impact increases, the gap 
between the high level design and fabrication may increase if 
proper statistical techniques are not invoked. Designing based 
on the process corners to meet the latency constraint is 
inadequate  [5]. The design flow of the embedded system also is 
not an exception and should shift from deterministic to 
probabilistic approaches. There are many published results on 
modeling and mitigating the process variability at the device 
and circuit levels of design abstraction. There are also some 
work in high level synthesis (HLS) where techniques have been 
proposed to improve the performance and reduce the hardware 
cost considering process variations (see, e.g.,  [5]- [7]). To the 
best of our knowledge, there is no report of considering the 
process variability in the CI extension in the ASIP design. 

In this paper, we propose to modify the design flow of 
ASIP by adding the statistical approach in identification and 
selection phases of the CI extension. In the identification phase, 
the delay of each CI is modeled by a Probability Density 
Function (PDF), and performance yield  [5] is added to the 
constraints set to guarantee the yield of the design. Also, the 
merit function which is used in the CI selection phase is 
modified based on the probability of increasing the speedup 
and improving the design yield using the CIs.  

The remainder of this paper is organized as follow. The 
problem statement is described in Section II with the overall 
approach is given in Section III. The experimental setup and 
the results are described in Section IV. Finally, the paper is 
concluded in Section V.  

II. PROBLEM STATEMENT 

In the selection phase of the ISA extension, the best CIs 
whose speedup is more than the other ones will be selected. 
Also, the selected CIs typically have to meet other predefined 
constraints such as the number of I/O ports and layout 
area  [1] [8] [9]. While the I/O ports are usually considered in the 
identification phase, the area constraint is considered in the 
selection phase. To consider process variations, we specify a 
performance yield which shows the probability of the 



manufactured chip meet the clock period constraint (CPC). 
This constraint means that the performance yield of the ith 
selected CI (PYi) given by ܲ ܻ = (ܫܥ)ܨܦܥ = න ܫܥ)ܨܦܲ

 )  (2) 

must be large than a predefined value. The PDF(CIi) and 
CDF(CIi) show the Probability and Cumulative Density 
Function of the ith CI, respectively. To simplify the analysis, we 
assume that the PDF of the CIs have a normal distribution 

Therefore, the problem is formulized as  ݁ݖ݅݉݅ݔܽܯ    #ௌ௧ௗ ூ௦ݑ݀݁݁ܵ
ୀଵ  (3) 

∀݅: ܥ ∈ ,ூ݀݁ݐ݈ܿ݁݁ܵ ܲ ܻ > ܲ ܻ௦௧ (4)

where the ܲ ܻ௦௧ is the predefined value for the performance 
yield constraint, and PYi is the performance yield of the ith CI 
Also, the ݈ܵ݁݁ܿ݀݁ݐூis the set of the selected CIs. 

III. PROPOSED APPROACH 

The proposed probabilistic consists of the identification and 
selection phases of CIs. The identification part obtains the 
DFGs of the application and generates all the CIs that meet the 
predefined constraints. The output of this phase is a set of 
identified CIs. In the deterministic approach, the critical path 
delay of the CIs is compared with CPC where CIs with longer 
critical path are removed from the CIs set. In the probabilistic 
approach, based on the performance yield, some CIs are 
eliminated. For pruning the CI set, the PDFs of the CIs should 
be modeled.  

There are two methods for extracting the PDFs which are 
Monte Carlo and SSTA  [10]. While the accuracy of the Monte 
Carlo is better than SSTA, its runtime is much higher. In the 
identification phase, there are a large number of enumerated 
CIs, and hence, finding the PDF of all the CIs is not feasible. 
To reduce the runtime, one can use less accurate techniques to 
guess the CIs that are not able to meet the performance yield 
constraint without finding their PDFs. Here, we propose an 
expression for this when the delay variation can be modeled by 
a normal distribution. Note that for the cases where the delay 
distributions of the CIs may not be described by a normal 
distribution, the framework used for calculating the expression 
in the normal distribution case is still valid. In these cases, only 
the expressions which will be modified based on the 
distributions. For the normal distribution case, we only need 
the nominal and worst-case delay of the CIs. The CIs whose ߤ + ݇ଵߪ  values are smaller than the CPC may be removed 
from the set. To determine μ and σ, we need to find the PDF 
for the CI which we wish to avoid in this stage. To overcome 
the problem, we approximate μ by the nominal value of the 
delay (Tnom). Also, we suggest using another constraint 
(independent of σ) instead of ߤ + ݇ଵߪ < .ܥܲܥ  For this 
purpose, we need the worst-case delay which may is given by  ݕ݈ܽ݁ܦ௪ = ߤ + a-(5) ߪ3
Also, our original constraint is  ߤ + ݇ଵߪ ≤ b-(5) ܥܲܥ
  
Combining (5)-a and (5)-b, one obtains  

ߪ ≥ ௪ݕ݈ܽ݁ܦ − 3ܥܲܥ − ݇ଵ ߤ  ≤ ܥܲܥ − 3 ൬ݕ݈ܽ݁ܦ௪ − 3ܥܲܥ − ݇ଵ ൰ (5)-c 

The coefficient ݇ଵ can be extracted from a normal 
distribution table or calculated using erf ൬ ݇ଵ√2൰ ≥ 2ܲ ܻ௦௧ − 1 (6) 

where PYConst is the minimum performance yield constraint. 
Substituting μ with the nominal delay of the CIs one may write 

ܶ ≤ ൭ܥܲܥ − 3 ൬ݕ݈ܽ݁ܦ௪ − 3ܥܲܥ − ଵܭ ൰൱ ×  (7) ݎݎ݁

The coefficient err which has a value larger than one has been 
included to minimize the error of using Tnom instead of μ. This 
error can be determined using experimental or analytical 
methods.  If the constraint in (7) is not satisfied, it is assured 
that the performance yield of the CI is smaller than the PYConst. 
If the constraint is satisfied, then using the PDF of the CI, one 
should determine if the performance yield is greater than the 
PYConst. Using (7), the set of the enumerated CIs may be 
pruned. Having reduced the number of CIs, the PDF and CDF 
of the remained CIs are calculated and the CIs with the 
performance yield smaller than ܲ ܻ௦௧  are removed. The 
extracted PDFs will also be used in the selection phase. The 
last part of the ISA extension is the CI selection phase in which 
the best CIs are selected based on the merit value.  

A. PDF Determination 

For finding the PDFs of CIs, we need the PDF of primitives 
such as adder, multiplier. When the primitive PDFs are 
available, the CI PDFs could be calculated using Monte Carlo 
or SSTA approaches. We developed a library that contains the 
PDFs of the primitives using the method explained here. First, 
we need the PDFs of the gates used in the design synthesis. 
These PDFs were extracted using their HSPICE model using its 
Monte Carlo analysis. In HSPICE, different types of variation 
sources are modeled. The delay PDFs obtained using HSPICE 
are put in a library. They are used to find the PDFs of complex 
circuits such as a 32-bits Adder. For finding the delay PDF of 
complex circuit, the HDL model of the circuit, which is 
synthesized based on the technology file, is needed. Using the 
model and either SSTA or Monte Carlo method the circuit PDF 
is determined.  

B. Merit Function 

Without considering the process variation, the value 
function is typically defined to be the number of clock cycle 
reduction (speedup) in the application runtime due to the CI 
extension. This function captures the speedup of the CI. The 
merit function may be expressed as ܯ = ݊݅ݐܽݎ݁ݐܫ# ∗ ൭ܫܥ. ܹܵ − ܫ ܱ. ݕݐ݈ܽ݊݁ܲ

− ݈ܿ݁݅ ൬ܫܥ. ݀݅ݎ݁ܲ ݈݇ܿܥݕ݈ܽ݁ܦℎݐ݈ܽܲܽܿ݅ݐ݅ݎܥ ൰ቇ 
(8) 

where Mi is the merit value of the ith CI, #݊݅ݐܽݎ݁ݐܫ is the 
number of times that the basic block to which the ith CI belongs 



is repeated, the ܫܥ. ܹܵ shows the runtime of the ith CI on the 
base processor. The IO.Penalty is the number of extra accesses 
to the register file for reading data to/writing data from CI, and 
the last part of this equation is the number of clocks that the CI 
needs to find the result. If the I/O port number of the CI is 
equal to the read and write port number of the register file, 
IOPenalty is equal to 0. 

By considering the process variation, we expect that the 
performance yield of the selected CIs will be larger than the 
predefined minimum performance yield and also the selected 
CIs reduce the application runtime more than other CIs. Also, 
we want the performance yield of the selected CIs are near the 
100%. In the presence of process variation, we can modify the 
merit function such that it includes the performance yield as 
well. Hence, the merit function may be modified as ܥ ܻ = ܲ)݂ߙ ܻ) +  (9)ݑ݀݁݁ܵ 
where ܥ ܻ  shows the merit function of the ith CI when the 
performance yield is also considered, α is a coefficient that 
determines the weight of the performance yield in the merit 
function of the CI, and f(PYi) is a function obtained by a linear 
mapping of PYi, which maps the smallest PY (equal to PYConst) 
to zero and the largest PY (100%) to one, given by ݂(ܲ ܻ) =  ܲ ܻ1 − ܲ ܻ௦௧ − ܲ ܻ௦௧1 − ܲ ܻ௦௧ (10) 

The ܵݑ݀݁݁ is equal to ܯ given by (8). 

IV. EVALUATION RESULTS 

A. Experimental Setup 

To assess the performance of the proposed technique, we 
used applications from mibench  [11], PacketBench  [12], and 
SNR-RT benchmark suits  [13]. The IPSec and MD5 were 
selected from PacketBench, lms from SNR-RT, and 
G721encoder, G721decoder, and bitcounter from mibench suit. 
The identification phase was performed based on the work 
described in  [1]. We modified the method such that the clock 
period constraint could be included. Also, to implement the 
selection phase we used a greedy approach  [2].  

In this work, we considered the timing variation only due to 
the threshold voltage variation. To extract the threshold 
variability induced by process variations, the HSPICE model of 
the 45nm PDK technology gates  [14] was simulated assuming 
10% of variation for the threshold voltages of PMOS (Vthp) and 
NMOS (Vthn) For this analysis, we used Monte Carlo analysis 
implemented in HSPICE. To extract the PDF of the primitives, 
we developed a tool which takes the gate PDFs and the gate 
level implementation of the primitives as the input and use 
Monte Carlo method to find the primitive PDFs.  

B. Experimental Results 

First, the impact of the process variation in the 
identification phase was studied. As mentioned before, by 
estimating the performance yield of a CI before finding its 
PDF, the time for extracting the PDF of the CIs is reduced. 
Figure 1 shows the percentage of the enumerated CIs which are 
removed from the CIs set before finding the PDFs. The results 
are for three benchmarks under two different performance yield 
constraints and four different clock period constraints. As 
observed from Figure 1, by increasing the CPC, the number of 
removed CIs is decreased and more CIs may satisfy the timing 

constraint. For example, in lms the removing percentage is 
decreased from 97% to 36%. Since in lms, the average delay of 
the identified CIs is 4.2ns compared to 3.6ns in G721encode, 
the number of the removed CIs in lms is more than that of 
G721encode. The removed items in lms are about 36% while 
this value for G721encode is about 4% for a CPC of 5ns.  

To show the accuracy of (7), we extract the number of CIs 
that are kept for the PDF calculation stage phase but their 
performance yield does not meet the PYConst. Figure 2 depicts 
the percentage of number of CIs which are passed to the 
selection phase (after their PDF and performance yield were 
calculated) to the number of CIs which were initially predicted 
to remain for the selection phase. As the charts show, although 
the proposed prediction model lowers the number of CIs that 
their PDFs should be calculated, the number of CIs that are 
eliminated when the PDFs are obtained increases as the CPC 
decreases, especially when the CPC has a value smaller than 
the delay average of the application. For example, the number 
of removed CIs in IP-Sec is not decreased as much as the other 
benchmarks when the CPC is decreased to 2ns. Increasing the 
number of removed CIs in the PDF check stage originates from 
decreasing the difference between the nominal and worst-case 
delay. Thereby, the err value must be reduced for the CIs with 
smaller delays. 

 
Figure 1.  Percentage of the removed CIs in the identifcation phase due to the 
performance yield befor extarcting the CI PDFs.  

 
Figure 2.  The percentage of number of CIs which are passed to the selection 
phase (after their PDF and performance yield were calculated) to the number 
of CIs which were initially predicted to remain for the selection phase.  

Because of the process variation, a number of CIs are 
removed in the identification phase. This has some impacts on 
the overall performance gain of the ISA extension. On the other 
hand, because of the probabilistic nature of performance yield, 
some of the CIs that their worst-case delays do not meet the 
CPC, have a chance to remain and be selected as a CI. Hence, 
we expect that by reducing PYConst the performance 
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