
978-3-9810801-7-9/DATE11/©2011 EDAA

Timing Variation-Aware Custom Instruction
Extension Technique

Mehdi Kamal1, Ali Afzali-Kusha1, Massoud Pedram2 1School of Electrical and Computer Engineering, University of Tehran
2EE Department, University of Southern California

m.kamal@ece.ut.ac.ir, afzali@ut.ac.ir, pedram@usc.edu

Abstract—In this paper, we propose a technique for custom
instruction (CI) extension considering process variations. It
bridges the gap between the high level custom instruction
extension and chip fabrication in nanotechnologies. In the
proposed method, instead of using the conventional static timing
analysis (STA), statistical static timing analysis (SSTA) which in
turn results in a probabilistic approach to identifying and
selecting different parts of the CI extension is utilized. More
precisely, we use the delay Probability Density Function (PDF) of
the CIs in identification and selection phases of the CI extension.
In the identification phase, the delay of each CI is modeled by
PDF whereas the performance yield is added as a constraint.
Additionally, in the selection phase, the merit function of the
conventional approaches is modified to increase the performance
gain of the selected CIs at the price of slightly sacrificing the
design yield. Also, to make the approach computationally more
efficient, we propose a method for reducing the modeling time of
the PDF of the CIs by reducing the number of candidate CIs
before extracting the PDF.

Keywords-component; ASIP, Custom Instruction, Process
Variation, PDF

I. INTRODUCTION

The use of embedded processors in a variety of platforms
such as cell phones, health monitoring devices, automotive
applications, and many others is increasing. Similar to many
other digital systems, the computational speed and power
consumption are two critical design parameters [1]. A solution
for these issues is the application specific instruction set
processor (ASIP) methodology which can improve speed and
power consumption of the GPP technique [2] [3]. In the ASIP
approach, the instruction set of a GPP is extended through
ASIC design based on the features of the specific application.
The augmented instructions are determined such that the
desired speed, power, and cost requirements are fulfilled. The
main idea behind using ASIP is to run the hotspot parts of an
application on the custom instructions (CIs) and the other parts
of the application on the ALU of the processor.

The ASIP design methodology starts by extracting the data
flow graph (DFG) of the application [1] [4]. Next, in
identification phase, all the subgraphs that meet the constraints
of the parallel hardware are enumerated as CIs. The I/O ports
number and propagation delays of the subgraphs are two
common constraints in the CI enumeration. Finally, between
the candidates, the best CIs based on their merit value will be
selected. For each CI, the merit value shows the quantity of the
parameters that the ASIP intends to improve. Normally, the

main parameter is speedup, which shows how much
performance is obtained by using CIs in the ASIP [1] [2].

In the conventional ASIP approach, the worst-case delays
of the primitives (e.g., AND, ADD, SHIFT, etc.) are used as
the reference to extract the latency of the CIs. In sub-100nm
nanotechnologies, however, complexities in the manufacturing
of the transistors with small sizes have caused significant
variations in nominal transistor parameters (such as threshold
voltage and effective channel length), which in turn has led to
uncertainties in the performance and power consumption of the
circuits [5]. As the process variation impact increases, the gap
between the high level design and fabrication may increase if
proper statistical techniques are not invoked. Designing based
on the process corners to meet the latency constraint is
inadequate [5]. The design flow of the embedded system also is
not an exception and should shift from deterministic to
probabilistic approaches. There are many published results on
modeling and mitigating the process variability at the device
and circuit levels of design abstraction. There are also some
work in high level synthesis (HLS) where techniques have been
proposed to improve the performance and reduce the hardware
cost considering process variations (see, e.g., [5]- [7]). To the
best of our knowledge, there is no report of considering the
process variability in the CI extension in the ASIP design.

In this paper, we propose to modify the design flow of
ASIP by adding the statistical approach in identification and
selection phases of the CI extension. In the identification phase,
the delay of each CI is modeled by a Probability Density
Function (PDF), and performance yield [5] is added to the
constraints set to guarantee the yield of the design. Also, the
merit function which is used in the CI selection phase is
modified based on the probability of increasing the speedup
and improving the design yield using the CIs.

The remainder of this paper is organized as follow. The
problem statement is described in Section II with the overall
approach is given in Section III. The experimental setup and
the results are described in Section IV. Finally, the paper is
concluded in Section V.

II. PROBLEM STATEMENT

In the selection phase of the ISA extension, the best CIs
whose speedup is more than the other ones will be selected.
Also, the selected CIs typically have to meet other predefined
constraints such as the number of I/O ports and layout
area [1] [8] [9]. While the I/O ports are usually considered in the
identification phase, the area constraint is considered in the
selection phase. To consider process variations, we specify a
performance yield which shows the probability of the

manufactured chip meet the clock period constraint (CPC).
This constraint means that the performance yield of the ith
selected CI (PYi) given by ܲ ܻ = (ܫܥ)ܨܦܥ = න ܫܥ)ܨܦܲ

) (2)

must be large than a predefined value. The PDF(CIi) and
CDF(CIi) show the Probability and Cumulative Density
Function of the ith CI, respectively. To simplify the analysis, we
assume that the PDF of the CIs have a normal distribution

Therefore, the problem is formulized as ݁ݖ݅݉݅ݔܽܯ #ௌ௧ௗ ூ௦ݑ݀݁݁ܵ
ୀଵ (3)

∀݅: ܥ ∈ ,ூ݀݁ݐ݈ܿ݁݁ܵ ܲ ܻ > ܲ ܻ௦௧ (4)

where the ܲ ܻ௦௧ is the predefined value for the performance
yield constraint, and PYi is the performance yield of the ith CI
Also, the ݈ܵ݁݁ܿ݀݁ݐூis the set of the selected CIs.

III. PROPOSED APPROACH

The proposed probabilistic consists of the identification and
selection phases of CIs. The identification part obtains the
DFGs of the application and generates all the CIs that meet the
predefined constraints. The output of this phase is a set of
identified CIs. In the deterministic approach, the critical path
delay of the CIs is compared with CPC where CIs with longer
critical path are removed from the CIs set. In the probabilistic
approach, based on the performance yield, some CIs are
eliminated. For pruning the CI set, the PDFs of the CIs should
be modeled.

There are two methods for extracting the PDFs which are
Monte Carlo and SSTA [10]. While the accuracy of the Monte
Carlo is better than SSTA, its runtime is much higher. In the
identification phase, there are a large number of enumerated
CIs, and hence, finding the PDF of all the CIs is not feasible.
To reduce the runtime, one can use less accurate techniques to
guess the CIs that are not able to meet the performance yield
constraint without finding their PDFs. Here, we propose an
expression for this when the delay variation can be modeled by
a normal distribution. Note that for the cases where the delay
distributions of the CIs may not be described by a normal
distribution, the framework used for calculating the expression
in the normal distribution case is still valid. In these cases, only
the expressions which will be modified based on the
distributions. For the normal distribution case, we only need
the nominal and worst-case delay of the CIs. The CIs whose ߤ + ݇ଵߪ values are smaller than the CPC may be removed
from the set. To determine μ and σ, we need to find the PDF
for the CI which we wish to avoid in this stage. To overcome
the problem, we approximate μ by the nominal value of the
delay (Tnom). Also, we suggest using another constraint
(independent of σ) instead of ߤ + ݇ଵߪ < .ܥܲܥ For this
purpose, we need the worst-case delay which may is given by ݕ݈ܽ݁ܦ௪ = ߤ + a-(5) ߪ3
Also, our original constraint is ߤ + ݇ଵߪ ≤ b-(5) ܥܲܥ

Combining (5)-a and (5)-b, one obtains

ߪ ≥ ௪ݕ݈ܽ݁ܦ − 3ܥܲܥ − ݇ଵ ߤ ≤ ܥܲܥ − 3 ൬ݕ݈ܽ݁ܦ௪ − 3ܥܲܥ − ݇ଵ ൰ (5)-c

The coefficient ݇ଵ can be extracted from a normal
distribution table or calculated using erf ൬ ݇ଵ√2൰ ≥ 2ܲ ܻ௦௧ − 1 (6)

where PYConst is the minimum performance yield constraint.
Substituting μ with the nominal delay of the CIs one may write

ܶ ≤ ൭ܥܲܥ − 3 ൬ݕ݈ܽ݁ܦ௪ − 3ܥܲܥ − ଵܭ ൰൱ × (7) ݎݎ݁

The coefficient err which has a value larger than one has been
included to minimize the error of using Tnom instead of μ. This
error can be determined using experimental or analytical
methods. If the constraint in (7) is not satisfied, it is assured
that the performance yield of the CI is smaller than the PYConst.
If the constraint is satisfied, then using the PDF of the CI, one
should determine if the performance yield is greater than the
PYConst. Using (7), the set of the enumerated CIs may be
pruned. Having reduced the number of CIs, the PDF and CDF
of the remained CIs are calculated and the CIs with the
performance yield smaller than ܲ ܻ௦௧ are removed. The
extracted PDFs will also be used in the selection phase. The
last part of the ISA extension is the CI selection phase in which
the best CIs are selected based on the merit value.

A. PDF Determination

For finding the PDFs of CIs, we need the PDF of primitives
such as adder, multiplier. When the primitive PDFs are
available, the CI PDFs could be calculated using Monte Carlo
or SSTA approaches. We developed a library that contains the
PDFs of the primitives using the method explained here. First,
we need the PDFs of the gates used in the design synthesis.
These PDFs were extracted using their HSPICE model using its
Monte Carlo analysis. In HSPICE, different types of variation
sources are modeled. The delay PDFs obtained using HSPICE
are put in a library. They are used to find the PDFs of complex
circuits such as a 32-bits Adder. For finding the delay PDF of
complex circuit, the HDL model of the circuit, which is
synthesized based on the technology file, is needed. Using the
model and either SSTA or Monte Carlo method the circuit PDF
is determined.

B. Merit Function

Without considering the process variation, the value
function is typically defined to be the number of clock cycle
reduction (speedup) in the application runtime due to the CI
extension. This function captures the speedup of the CI. The
merit function may be expressed as ܯ = ݊݅ݐܽݎ݁ݐܫ# ∗ ൭ܫܥ. ܹܵ − ܫ ܱ. ݕݐ݈ܽ݊݁ܲ

− ݈ܿ݁݅ ൬ܫܥ. ݀݅ݎ݁ܲ ݈݇ܿܥݕ݈ܽ݁ܦℎݐ݈ܽܲܽܿ݅ݐ݅ݎܥ ൰ቇ
(8)

where Mi is the merit value of the ith CI, #݊݅ݐܽݎ݁ݐܫ is the
number of times that the basic block to which the ith CI belongs

is repeated, the ܫܥ. ܹܵ shows the runtime of the ith CI on the
base processor. The IO.Penalty is the number of extra accesses
to the register file for reading data to/writing data from CI, and
the last part of this equation is the number of clocks that the CI
needs to find the result. If the I/O port number of the CI is
equal to the read and write port number of the register file,
IOPenalty is equal to 0.

By considering the process variation, we expect that the
performance yield of the selected CIs will be larger than the
predefined minimum performance yield and also the selected
CIs reduce the application runtime more than other CIs. Also,
we want the performance yield of the selected CIs are near the
100%. In the presence of process variation, we can modify the
merit function such that it includes the performance yield as
well. Hence, the merit function may be modified as ܥ ܻ = ܲ)݂ߙ ܻ) + (9)ݑ݀݁݁ܵ
where ܥ ܻ shows the merit function of the ith CI when the
performance yield is also considered, α is a coefficient that
determines the weight of the performance yield in the merit
function of the CI, and f(PYi) is a function obtained by a linear
mapping of PYi, which maps the smallest PY (equal to PYConst)
to zero and the largest PY (100%) to one, given by ݂(ܲ ܻ) = ܲ ܻ1 − ܲ ܻ௦௧ − ܲ ܻ௦௧1 − ܲ ܻ௦௧ (10)

The ܵݑ݀݁݁ is equal to ܯ given by (8).

IV. EVALUATION RESULTS

A. Experimental Setup

To assess the performance of the proposed technique, we
used applications from mibench [11], PacketBench [12], and
SNR-RT benchmark suits [13]. The IPSec and MD5 were
selected from PacketBench, lms from SNR-RT, and
G721encoder, G721decoder, and bitcounter from mibench suit.
The identification phase was performed based on the work
described in [1]. We modified the method such that the clock
period constraint could be included. Also, to implement the
selection phase we used a greedy approach [2].

In this work, we considered the timing variation only due to
the threshold voltage variation. To extract the threshold
variability induced by process variations, the HSPICE model of
the 45nm PDK technology gates [14] was simulated assuming
10% of variation for the threshold voltages of PMOS (Vthp) and
NMOS (Vthn) For this analysis, we used Monte Carlo analysis
implemented in HSPICE. To extract the PDF of the primitives,
we developed a tool which takes the gate PDFs and the gate
level implementation of the primitives as the input and use
Monte Carlo method to find the primitive PDFs.

B. Experimental Results

First, the impact of the process variation in the
identification phase was studied. As mentioned before, by
estimating the performance yield of a CI before finding its
PDF, the time for extracting the PDF of the CIs is reduced.
Figure 1 shows the percentage of the enumerated CIs which are
removed from the CIs set before finding the PDFs. The results
are for three benchmarks under two different performance yield
constraints and four different clock period constraints. As
observed from Figure 1, by increasing the CPC, the number of
removed CIs is decreased and more CIs may satisfy the timing

constraint. For example, in lms the removing percentage is
decreased from 97% to 36%. Since in lms, the average delay of
the identified CIs is 4.2ns compared to 3.6ns in G721encode,
the number of the removed CIs in lms is more than that of
G721encode. The removed items in lms are about 36% while
this value for G721encode is about 4% for a CPC of 5ns.

To show the accuracy of (7), we extract the number of CIs
that are kept for the PDF calculation stage phase but their
performance yield does not meet the PYConst. Figure 2 depicts
the percentage of number of CIs which are passed to the
selection phase (after their PDF and performance yield were
calculated) to the number of CIs which were initially predicted
to remain for the selection phase. As the charts show, although
the proposed prediction model lowers the number of CIs that
their PDFs should be calculated, the number of CIs that are
eliminated when the PDFs are obtained increases as the CPC
decreases, especially when the CPC has a value smaller than
the delay average of the application. For example, the number
of removed CIs in IP-Sec is not decreased as much as the other
benchmarks when the CPC is decreased to 2ns. Increasing the
number of removed CIs in the PDF check stage originates from
decreasing the difference between the nominal and worst-case
delay. Thereby, the err value must be reduced for the CIs with
smaller delays.

Figure 1. Percentage of the removed CIs in the identifcation phase due to the
performance yield befor extarcting the CI PDFs.

Figure 2. The percentage of number of CIs which are passed to the selection
phase (after their PDF and performance yield were calculated) to the number
of CIs which were initially predicted to remain for the selection phase.

Because of the process variation, a number of CIs are
removed in the identification phase. This has some impacts on
the overall performance gain of the ISA extension. On the other
hand, because of the probabilistic nature of performance yield,
some of the CIs that their worst-case delays do not meet the
CPC, have a chance to remain and be selected as a CI. Hence,
we expect that by reducing PYConst the performance

0%

20%

40%

60%

80%

100%

2 3 4 5 2 3 4 5

%
 o

f t
he

 re
m

ov
ed

 C
Is

CPC (ns)

lms G721encode G721decode

95% PYconst 85% PYconst

0%

20%

40%

60%

80%

100%

2 2.5 3 3.5 2 2.5 3 3.5%
of

 n
um

be
r o

f C
Is

 p
as

se
d

to
 th

e
se

le
ct

io
n

ph
as

e

CPC (ns)

bitcounter IP-Sec MD5

95% PYconst 85% PYconst

imp
this
nod
dela
per
per
on
G2
the
dec
incr
PYC

sma
PYC

com
lms
to
G72
the
PY

per
sele
ave
PYC

per
per
(inv

Figu

des
var
and
per
con
pro
valu
the
run
was
per
set
on

2

2

3

3

4

4

5

5

Pe
rf

or
m

an
ce

 G
ai

n
provement of t
s behavior is d
des usually ha
ays are small

rformance imp
rformance yield

equation (5)
1decode was 4
α value in me

creasing the
reases. In IP-S

YConst from 95%
all delay value

YConst of 95%, th
mparison with
s and bitcounte
80% does no
21encoder and

worst-case ap
YConst are about t

Lastly, to inve
rformance gain
ected CIs in lm
erage of the p

YConst while it
rformance gain
rformance yiel
versely) propor

ure 3. The perfor

In this work,
sign flow of the
riation. The te
d selection ph
rformance yiel
nverted the c
obabilistic appr
ue, the timing v
delays of the

ntime speed of
s proposed. I
rformance yield
while the final
the merit funct

20%

25%

30%

35%

40%

45%

50%

55%

the selected CI
due to the fact
ave more spee
er than CPC

provement of
ds. In this figur
-a. The CPC

4ns and for othe
erit function w
performance
Sec, however,
to 80% are co

es of the sele
he performanc
the worst-cas

er benchmarks
t change the

d G721decoder
pproach and
the same with a
estigate the im

n and average o
ms benchmark
performance y

becomes larg
n decreases as α
ld average (p
rtional to α coe

rmance gain of ISA

V. CON

we proposed a
e ISA extension
echnique, whic
hase, modeled
ld as a probab
conventional
roach where in
variation of the
e custom instr
the CI identifi

In the identifi
d were used as
l CIs were chos
tion. To study t

Worse Cas
95% PY
90% PY
85% PY
80% PY

Is increases. In
t that while th
edup, the prob

is low. Figur
the benchmar

re the worst-ca
C for lms, G
er benchmarks

was 0.5. As the
yield the pe
the performan

onstant. This or
cted CIs. Whe
e gain is impro
e approach. A
changing the P
performance

r, the performan
statistical appr
a difference of

mpact of the α c
of the perform
is presented in

yield is decrea
ger as α incre
α increases. Th
performance g
efficient.

A extension under

NCLUSION

a probabilistic
n in the presen

ch included bo
the timing c

bilistic timing
deterministic

nstead of using
e primitives we
ructions. Also,
ication, an app
fication phase,

parameters for
sen in the selec
the effect of th

se

n the other wo
he CIs with mo
bability that th
re 3 depicts t
rks for differe
ase delay is bas
G721encode, a

 was 2.5ns. Al
e chart shows,
erformance ga
nce gains for
riginates from t
en considering
oved about 5%

Also, note that
PYConst from 85
gain. Finally,
nce gain betwe
roach with 95

f about 1.5%.
coefficient on t

mance yield of t
n Figure 4. T

ased for a giv
eases. Also, t

his shows that t
gain) is direc

different PYConst.

approach for t
nce of the proce
oth identificati
constraint by t
g approach. Th

approach to
a constant del

ere used to mod
, to improve t
roximate meth
, the delay a
r pruning the C
ction phase bas

he selected CIs

rd,
ore

heir
the
ent
sed
and
so,
by
ain
all
the
g a

% in
in

5%
in

een
5%

the
the

The
ven
the
the

ctly

the
ess
ion
the
his

a
lay
del
the

hod
and
CIs
sed
on

the spe
applied
relation
the com
perform

Figure 4.
of the p
average o

[1] L. P
the
CA

[2] P. B
Ext
126

[3] K.
inst
Inte
200

[4] N.T
Gen
Tra

[5] Y.
Var
200

[6] F.
and
and

[7] F. W
Fra
and

[8] K.
app
CO

[9] N.
map
200

[10] V.
mo
reso
Con

[11] M.
emb
cha

[12] R.
cha
Wo

[13] SN
kr/r

[14] Fre
uni

30%
31%
31%
32%
32%
33%
33%
34%
34%

Pe
rf

or
m

an
ce

 G
ai

n

PYconst

eedup of the
d to different
n between the s
mparison betwe
mance yield (pr

. The impacts of
performance yield
of the performance

Pozzi, K. Atasu, an
Extension of Em

AD, Vol. 25, No. 7,

Bozini, and L. Poz
tensible Embedded
67, 2008.

Atasu, L. Pozzi
truction-set exte
ernational Journal
03.

T. Clark, H. Zhon
neration for Dom
ans. on Computers

Xie, and Y. Chen
riability, “ in IEEE
09, pp.78-87.

Wang, Y. Xie, an
d Binding in Beha
d South Pacific De

Wang, G. Sun, and
amework,” in Proc
d test in Europe, 20

Atasu, G. Dundar
proach for ident

ODES+ISSS, 2005,

Clark, A. Horma
pping for acyclic
06, pp. 147-157.

Veetil, Y. Chang
nte carlo based S
ource utilization,”
nference, 2010, pp

R. Guthaus et al
bedded benchmar

aracterization, 200

Ramaswamy and
aracterization of n
orkshop on Worklo

NU-RT Real Time B
realtime/benchmar

eePDK, AFree O
iversity, http:// ww

%
%
%
%
%
%
%
%
%

0 0.5 1
t=95%

processor, the
applications.

speedup and p
een the worst-c
robabilistic) app

f the α coefficient
in lms benchma

e yield.

REFERENC

nd P. Ienne,“Exac
mbedded Processo
, July 2006.

zzi,“Recurrence-A
d Processors,” in

i, and P. Ienne,
ensions under
l of Parallel Prog

ng, and S. Mahlke
main-Specific Pro
, Vol. 54, pp. 1258

n, “Statistical Hig
E Transaction Des

nd A. Takach,“V
avioral Synthesis,”
esign Automation C

d Y. Xie, “A Varia
ceedings of the c
008, pp. 1063-106

r, and C. Ozturan
tifying instruction
, pp. 172-177.

ati, S. Mahlke, a
c computation acc

g, D. Sylvester, a
SSTA on graphics
” in Proceedings
p. 793-798.

l. ,“MiBench: A f
rk suite,” in Proc
01, pp. 3-14.

d T. Wolf, “Pac
etwork processing

oad Characterizati

Benchmarks.[Onli
rk/.

OpenAccess 45nm
ww.eda.ncsu.edu

0 0.5 1 0 0
90% 8α

e proposed te
The study i

erformance yie
case (determin
proaches.

on performance g
arks. The linear c

ES

t and Approximate
or Instruction Sets

Aware Instruction S
IEEE TVLSI, Vo

”Automatic appl
microarchitectura

gramming, Vol. 3

e ,“Automated Cus
ocessor Accelerat
8-1270, 2005.

gh-Level Synthesi
sign and Test Com

ariation-Aware R
” in Proceedings o
Conference, 2009,

ation Aware High
onference on Des
8.

n.“An integer line
n-set extensions,

and S. Yehia,“Sc
celerators,” in Pr

and D. Blaauw, “
s processing units
of the 47th Des

free, commerciall
c. of Int. worksho

cketBench: A too
g,” in Proc. of IEE
ion, October 2003,

ine]. Available: htt

m PDK and Ce

0.5 1 0 0.5
85% 80%

echnique was
included the
eld as well as

nistic) and the

gain and average
chart shows the

e Algorithms for
s”, IEEE Trans.

Set Selection for
ol. 16, pp. 1259-

lication specific
al constraints,”
1, pp. 411-428,

stom Instruction
tion,” in IEEE

is under Process
mputers, Vol. 26,

esource Sharing
of the 2009 Asia
, pp. 79-84.

Level Synthesis
sign, automation

ar programming
” in Proc. of

alable subgraph
roc. of CASES,

“Efficient smart
s with improved
ign Automation

ly representative
op on workload

ol for workload
EE International
, pp. 42-50.

tp://archi.snu.ac.

ell Library for

97%

97%

98%

98%

99%

99%

100%

100%

1

Av
er

ag
e

of
 P

er
fo

rm
an

ce

Yi
el

d

%

