
Dynamic applications on reconfigurable systems:
from UML model design to FPGAs implementation

Jorgiano Vidal∗, Florent de Lamotte∗, Guy Gogniat∗, Jean-Philippe Diguet∗, Sebastien Guillet∗
∗ Lab-STICC – European University of Brittany - UBS – CNRS, UMR 3192, Lorient, France

Abstract—In this paper we propose a design methodology to
explore dynamic and partial reconfiguration (DPR) of modern
FPGAs. We define a set of rules in order to model DPR by
means of UML and design patterns. Our approach targets
MPSoPC (Multiprocessor System on Programmable Chip) which
allows: a) area optimization through partial reconfiguration
without performance penalty and b) increased system flexibility
through dynamic behavior modeling and implementation. In our
case, area reduction is achieved by reconfiguring co-processors
connected to embedded processors, and flexibility is achieved
by permitting new behavior to be easily added to the system.
Most of the system is automatically generated by means of
MDE techniques. Our modeling approach allows designers to
target dynamic reconfiguration without being experts of modern
FPGAs. Such a methodology allows design time speed-up and a
significant reduction of the gap between hardware and software
modeling.

I. INTRODUCTION

Modern embedded systems require dynamic properties, i.e.
the capability to change at run-time the execution of the appli-
cation to fit the environment evolution. Such needs depend on
the system being developed. As an example when dealing with
multimedia systems where different CODECs are required,
dynamic properties can lead to reduce power consumption by
specializing some parts of the system or to reduce system
chip area by sharing the same resources for different tasks
that run at different times. Capturing such execution scenarios
during the design phases becomes mandatory to guarantee
the definition of an efficient system. During the development
process flexibility, performance and chip area are the key
concerns for the designer.

Existing FPGA technology (e.g. Xilinx Virtex devices)
offers dynamic and partial reconfiguration (DPR) features that
can be advantageously considered to address these points.
DPR allows HW components to share the same resource
if their execution is exclusive. This solution is very inter-
esting as it reduces the total system area while still meet-
ing performance constraints. For instance, supporting DPR
allows multiprocessor systems to replace co-processors or
accelerators at run-time which significantly increases platform
flexibility. Unfortunately there is a lack of tools addressing the
design of reconfigurable MPSoPCs (Multiprocessor System on
Programmable Chip) at the higher abstraction levels.

In this paper, we propose to address this issue and to reduce
the gap between the design of dynamically reconfigurable
MPSoPCs and the targeted technology (FPGA). To achieve
this goal, we propose to model a DPR system at a high level
which allows a technology-independent modeling. Moreover
we use the Unified Modeling Language (UML) [1] in order to
build an interchangeable and standardized model format. We
add dynamic system modeling on top of an existing UML-
based embedded system design methodology [2].

The paper is organized as follows: in Section II, we discuss
existing efforts related to our work. In Section III, we present
a dynamic and partial reconfigurable platform. In Section IV,
we show our modeling methodology for dynamic behavior. In
Section V, we show some results. Finally, in Section VI, we
conclude and present some future work.

II. RELATED WORK

The use of model based approaches for co-design has been
discussed in [3], which pointed out some advantages: cost
decrease, silicon complexity handling, productivity increase,
etc. Several works have also shown the benefit of using UML
for embedded system modeling. Dynamic and partial recon-
figuration modeling using UML allows existing methodologies
to take advantage of dynamic reconfiguration capabilities of
modern FPGAs. Although there is a lot of work on embedded
system modeling using UML, only few explore dynamic and
partial reconfiguration capabilities [4], [5].

In [4], authors use UML sequence diagram with specific
stereotypes to model dynamic reconfiguration. Their approach
is very simple and efficient, but it lacks platform modeling.
In their work the system platform is fixed: a processor with a
reconfigurable device as an auxiliary computing unit. Also, it
does not support dynamic and partial reconfiguration.

In [5], authors detail a dynamic reconfigurable system by
extending UML/MARTE with specific stereotypes. Their ap-
proach is developed in a design environment called GASPARD
[6], where VHDL code is generated. This approach is very
target-dependent and requires a strong level of expertise as all
elements of the Xilinx partial reconfiguration design process
need to be modeled.

Compared to previous efforts, our approach only uses
standard UML/MARTE elements and well known modeling
solutions (for instance design patterns). Specific properties
are required by the code generation tool that is target de-
pendent. In order to allow a large adoption of dynamic and
partial reconfiguration we hide from system designers many
technology details. Reconfiguration services and resources are
automatically added to the system during the code generation
step. Furthermore we are able to capture both application
and architecture dynamic properties within a single design
methodology.

III. DYNAMIC AND PARTIAL RECONFIGURATION

To define a dynamically reconfigurable MPSoPC, we con-
sider a platform architecture as described in Figure 1 embed-
ded in a single FPGA. We also define a dynamic application,
where some parts of the application behavior can change at
run-time. Such a dynamic behavior is possible by using FPGA
dynamic and partial reconfiguration capabilities. Our approach
proposes to dynamically replace a co-processor.978-3-9810801-7-9/DATE11/ c©2011 EDAA



2

IP server

Reconfigurable multiprocessor on chip

bus

proc copro

mem

proc copro

mem

mem

IO IO HWICAP

Manager
(reconfiguration 

API)

Xilinx 
specific

Reconfig API

12

3

4

5

SDRAM CTRL

6

Fig. 1. Network based reconfiguration service.

FPGA configuration is performed by loading a bitstream
into the device. The bitstream contains the system to be
implemented into the FPGA. When dynamic and partial re-
configuration is done, a partial bitstream is required as only a
part of the system is modified (in our case co-processors).

To perform dynamic reconfiguration, we need some target
specific features. In this paper, we call reconfiguration ser-
vice all the elements used to perform dynamic and partial
reconfiguration, as defined in [7]. This service is composed
of hardware and software elements (e.g. ethernet controller,
Xilinx ICAP (Internal Reconfiguration Access Port), reconfig-
uration API) required to perform bitstream loading, as showed
in Figure 1.

The service is offered to the system as a software API
(Application programming interface), residing in one proces-
sor, identified as the manager processor. The reconfiguration
is performed by target-dependent code that relies on specific
platform components. Beyond the manager processor, a net-
work Ethernet adapter, a SDRAM controller and a HWICAP
(which is target specific) components must be embedded in
the platform.

The reconfiguration request is done by the processor that
wants to reconfigure one of its co-processor (1). The manager
processor checks if the requested bitstream is in the SDRAM
cache (2). If the bitstream is not present in the local cache,
the processor sends a request to the IPserver (3) and after
sends a reconfiguration command to the HWICAP (4). The co-
processor is reconfigured by the HWICAP (5) through a direct
access to the FPGA LUTs and at the end the manager proces-
sor sends a END-OF-CONFIG confirmation to the requesting
processor (6). The reconfiguration service is accessible by the
reconfig(id) function, where id is the bitstream identification
to be loaded.

IV. MODELING

We use a co-design UML based approach to model the
complete system. The modeling approach used is defined in
[2], where three models are built to define a complete system:
application, platform and allocation. The main rules for system
modeling were first introduced in [8] and further enhanced in
[9] and [10]. We first describe how to model dynamic behavior
in section IV-A and how to generate code in section IV-B.

A. Dynamic system modeling

In order to facilitate understanding, speed-up design time
and to allow seamless code generation, we define a set of
design rules that allows DPR exploring.

1) Platform modeling: We consider the platform model as
defined in [9] and we add reconfiguration specific informa-
tion, as specified in [10]. The first point is to identify the
reconfiguration manager processor. This is done by adding
the �Manager� stereotype in the processor. Each recon-
figurable zone is identified using the �HwPLD� stereotype
from MARTE HRM profile, in the component.

Once the system model contains a reconfiguration manager
processor and a set of reconfigurable zones (HwPLD com-
ponents), the code generation tool automatically includes the
reconfiguration library in the system. Also, in order to simplify
the designer task, Xilinx HWICAP IP is automatically added
in the system platform.

2) Application modeling: Modeling rules must be simple in
order not to penalize productivity. Considering our application
modeling methodology, we add dynamic behavior into an
application component, i.e. dynamic property is defined at the
task level.

Design patterns [11] have been used in object oriented mod-
eling in order to build a common problem-solution catalog,
speeding-up design time, creating a set of known terms (the
pattern) shared by the community and allowing reuse of tested
and approved solutions. In order to augment productivity and
simplify the rules, we use well known design patterns to model
a dynamic component: the Strategy and the state patterns, both
are described in [11].

a) Strategy pattern: The strategy design pattern is de-
fined as a software design pattern, whereby algorithms can be
selected at run-time when it is necessary to dynamically swap
algorithms in an application.

In Figure 3, we can observe the class diagram for the
pattern. The Context active class captures the internal pattern
behavior, where several objects inherit the Strategy abstract
class. Once a strategy is chosen, the corresponding concrete
object is pointed from the context. Details about our method-
ology modeling rules are explained in section IV-A4.

It is important to remark that, as we define a family of
algorithms, the operations and associated parameters are the
same for whatever algorithm is chosen.

b) State pattern: The state pattern is a behavioral soft-
ware design pattern. This pattern is used in computer program-
ming to represent the state of an object, where the behavior
of an object depends on its state.

The state pattern class diagram is similar to the strategy one,
as we can see in Figure 4. Each concrete object represents
a context state with its associated behavior. Once the state
changes the context pointer to the object changes.

3) Component modeling: To model a component dynamic
behavior in our methodology we must consider two compo-
nents: the client and the dynamic component.

We can observe the application dynamic part modeled in
Figure 2. The first point that must be done is to inform that
such a dynamic component can be able to reconfigure itself.
This is done by adding the �adaptive� stereotype, indicat-
ing that this component changes its behavior dynamically.

The designer must also inform how that change is per-
formed: by changing state (state design pattern) or by an
explicit operation that tells the component to reconfigure (strat-
egy design pattern). This is done by the adaptive stereotype
tag method, which can be state or strategy. Modeling details
change from the chosen method, as explained in the next
sections.



client
strategyComp

<< RtUnit >> << RtUnit >>
<< Adaptive >>

<<Adaptive>>
method=strategy

Fig. 2. The dynamic component is stereotyped with the adaptive stereotype
and the method tag indicates the reconfiguration method.

Algo
+ compute (a)

Context

Alg1

IContext
+ <<signal,reconf_op>> setOperation (id)

+ compute (a)

Alg2

+ compute (a)

Alg3

+ compute (a)

+ <<signal>> compute (id)

<<reconf>> <<reconf>> <<reconf>><<reconf>>
ID=1

Fig. 3. Strategy: Reconfiguration operation and configurations IDs are
indicated in the class diagram.

4) Strategy based reconfiguration modeling: When choos-
ing the strategy method to allow dynamic components, the
designer must model the component as follows: the recon-
figuration operation must be indicated. This is done by the
�reconf op� stereotype in the chosen operation and the
chosen operation must contain only one integer argument,
which indicates what is the configuration to setup. Once the
operation is defined, the designer also must indicate the ID
tag of the �reconf� stereotype in the concrete classes. This
information allows to download the correct bitstream.

Figure 3 shows the class diagram of the strategyComp
component, where the setOperation operation is defined to
be the reconfiguration trigger. In Section IV-B, we detail an
example of the strategy pattern example code generation.

5) State based reconfiguration modeling: The state based
method uses an internal variable to define which configuration
to be used. This is done by the �reconf state� stereotype
in the active class state attribute of the component, as we
can observe in the Figure 4, and the attribute type must be
integer. The model is completed with the state indication in
the concrete classes, like the strategy pattern, with the ID tag.

In both methods we need to define exactly one object in the
dynamic component. This object corresponds to an instance
of the active class in the class diagram. The set of concrete
passive classes defines the number of configurations of the
component.

Concrete classes are reachable from the abstract class
through inheritance. Figure 5 shows a strategyComp and
its associated state machine (actually, the active class state
machine, which controls the component behavior).

6) Allocation modeling: Allocation modeling rules are
the same for both methods: the client is allocated into a
�HwProcessor� and the dynamic component is allocated
into a �HwPLD� connected through dedicated buses to the
processor containing the client, as show in Figure 6 for the
strategy pattern. As we target Xilinx Virtex FPGAs in our tests,
the allocation must be done into a co-processor connected to

State
+ compute (a)

Context

objState1

IContext

+ <<signal>> doSomething (a,b)

+ compute (a)

objState2

+ compute (a)

objState3

+ compute (a)

+ <<signal>> doAnotherThing (a)

<<reconf>> <<reconf>> <<reconf>><<reconf>>
ID=1

- <<reconf_state>> state

Fig. 4. Reconfiguration state and configurations IDs are indicated in the
class diagram.

strategyComp

<< RtUnit >>
<< Adaptive >>

main:Context

Idle

STATE 01

STATE NN

Reconfiguring

compute
setOperation

states

State machine

IContext

Fig. 5. Dynamic component internals: there is only one object, all other
objects are derived from the modeling rules

client strategyComp

<< RtUnit >> << RtUnit >>
<< Adaptive >>

mb_main co-pro
<< HwProcessor >> << HwPLD >>

<<allocate>>
kind=structural

<<allocate>>
kind=structural

Fig. 6. Allocation of the dynamic component into the platform reconfigurable
zone: the co-processor connected to the Microblaze processor.

a Microblaze processor through FSL dedicated buses. This
limitation is required by the code generation tool, thus we
can change target by adapting the tool or developing a new
one, the model remains the same. In the next section, we show
how to generate code from our dynamic application modeling.

B. Code generation
The code generation presented here enhances a set of

existing rules introduced in [10]. Code generation algorithm
depends upon chosen reconfiguration method. In both cases
the generated code considers the reconfiguration service, as
explained in section III, and the reconfiguration request source
is the processor code, i.e. the reconfiguration client component.

1) Strategy method code generation: The code generation
for the strategy method considers the reconf op in order to
generate appropriate reconfiguration call. The code generation
tool replaces the method call with the reconfiguration com-
mand in the client component that runs on the processor.
It is important to note that there is no inter-configuration
variables, i.e. all values are lost from one configuration to
another. Also, the code in the operation is not considered by
the code generation tool.

As our code generation substitutes the call to the reconfig-
uration operation, the new configuration is in the initial state.
This is an important point in the semantic of the tool, as any
behavior implemented in the reconfiguration operation is not
considered in the code generation.

The dynamic component is implemented as an hardware
component. As we target Xilinx FPGAs series, we generate an
ISE project for each concrete object in the class diagram that
inherits from the abstract class pointed by the context object.
Each ISE project contains VHDL code that is used to build the
bitstream used to configure the corresponding co-processor in
the system.

2) State pattern code generation: The state method code
generation is more complex than the previous one, as the
state is an attribute in the client object and potentially any
operation can change its value. The code generator must find
any assignment to the state variable and replaces it by a
reconfiguration call by the client component.

In order to permit code generation in the state pattern, we
constrain assignments to the state attribute as follows: first the
method where the assignment operation is used should not



Calc
+ compute (a,b)

AdaptiveCalculator

add

IContext
+ <<signal,reconf_op>> setOperation (id)

+ compute (a,b)

sub

+ compute (a,b)

mult

+ compute (a,b)

+ <<signal>> compute (a,b)

<<reconf>> <<reconf>> <<reconf>>

client

calculator_comp<< RtUnit >>

<< RtUnit >>
<< Adaptive >>

div

+ compute (a,b)

<<reconf>>

main:AdaptiveCalculator
Instance of

Fig. 7. Calculator application components and dynamic component class
diagram.

change any data in the dynamic component. This is due to the
fact that the reconfiguration cleans up the dynamic component
implementation. The assignments operations are removed from
the code and a reconfig command is inserted in the client
object in order to trigger the reconfiguration. One ISE project
must be generated for each state object in the diagram.

V. RESULTS

We tested the strategy design pattern modeling and code
generation. First, a calculator that computes any 2-number
operations using the same chip area is considered. Figure 7
shows the components and the class diagram that models the
dynamic component.

The client is allocated into a processor and the calcula-
tor comp is allocated into an associated co-processor. It is
not important how many Calc classes we define, only one of
them is in the co-processor at any time.

The code generation tool replaces all calls to the setOp-
eration method from the client component by the reconfig
operation. From the calculator model, and following the design
flow, we generated 6 bitstreams, 1 for the full initial config-
uration and 5 partial bitstreams to fit the reconfigurable zone
(an empty one and one for each operation).

After validating the approach on this example, we also
applied it to a more complex system, an object tracking
application. Figure 8 shows the components of the application.
The application consists of a set of image processing opera-
tions in order to mark moving objects. We consider 4 opera-
tions to be performed in the image: background substitution,
morphological transformation, motion test and image update.
Each of these operations is modeled as a component and
allocated into a processor. Intensive computing parts of these
operations are modeled as separated components (threshold,
dilatation, erosion, reconstruction and labeling) and allocated
into co-processors. The threshold component is required to be
reconfigurable, as several threshold algorithms can be used,
not at the same time.

The implemented system contains 60 platform IPs, where
the threshold one is described by our dynamic component
modeling technique. The chip area used by the threshold was
about 2% of the total FPGA area (by LUT counting), a Xilinx
Virtex 2 Pro FPGA packaged in the Digilent XUP board [12].
We implemented two different threshold algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown how to enhance a co-
design UML based methodology in order to explore dynamic
and partial reconfiguration of modern FPGAs. We used a
reconfiguration service in order to abstract implementation
details to the designer and to not overcharge design activity.
Considering a fixed and well-defined reconfiguration service

BG subs
<< RtUnit >>

Morph trans
<< RtUnit >>

Motion test
<< RtUnit >>

Update
<< RtUnit >>

threshold

<< RtUnit >>

erosion
<< RtUnit >>

dilatation
<< RtUnit >>

reconstruction
<< RtUnit >>

labeling
<< RtUnit >><< Adaptive >>

Fig. 8. The object tracking application threshold component can be
implemented of several different ways.

with its associated support on the target platform, we build a
set of modeling methods.

We have tested our method within a co-design methodology
in order to validate the concepts. In the examples, we tested the
strategy design pattern modeling and code generation, and the
state design pattern will be validated soon. The same idea can
be re-used in any component-based modeling methodology in
order to achieve a dynamic system modeling. Our approach
speeds-up design time and facilitates model construction and
understanding.

Next step on this work concerns the modeling and imple-
mentation of an internal reconfiguration manager. The main
responsibility of the reconfiguration manager is to monitor
the system internal behavior in order to take the decision to
automatically reconfigure, e.g. change some algorithms due to
a network quality of service changing.

REFERENCES

[1] OMG, “Unified Modeling Language Specification,” Object Management
Group, Technical Report/2002-05-08, Specification formal/07-02-03,
february 2002. [Online]. Available: http://www.omg.org

[2] A. Koudri, D. Vojtsiek, P. Soulard, C. Moy, J. Champeau, J. Vidal, and
J.-c. Le lann, “Using marte in the mopcom soc/sopc methodology,” in
workshop MARTE, 03 2008.

[3] J. Dekeyser, P. Boulet, P. Marquet, and S. Meftali, “Model driven
engineering for soc co-design,” IEEE-NEWCAS Conference, 2005. The
3rd International, pp. 21–25, 2005.

[4] C.-H. Tseng and P.-A. Hsiung, “UML-Based Design Flow and Partition-
ing Methodology for Dynamically Reconfigurable Computing Systems.”
in EUC, 2005, pp. 479–488.

[5] Imran Rafiq Quadri, Samy Meftali, and Jean-Luc Dekeyser, “High level
modeling of dynamic reconfigurable FPGAs,” International Journal of
Reconfigurable Computing, vol. 2009, p. 15, 2009.

[6] F. WEST Team LIFL, Lille, “Graphical array specification for parallel
and distributed computing (gaspard-2),” 2005. [Online]. Available:
http://www2.lifl.fr/west/gaspard/

[7] P. Bomel, J. Crenne, L. Ye, J.-P. Diguet, and G. Gogniat, “Ultra-
fast downloading of partial bitstreams through ethernet,” in
ARCS, ser. Lecture Notes in Computer Science, M. Berekovic,
C. Müller-Schloer, C. Hochberger, and S. Wong, Eds., vol. 5455.
Springer, 2009, pp. 72–83.

[8] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet,
“A co-design approach for embedded system modeling and code
generation with uml and marte,” in DATE ’09: Proceedings of
the conference on Design, automation and test in Europe, 2009.

[9] J. Vidal, F. de Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard,
“Ip reuse in an mda mpsopc co-design approach,” in ICM’09:
Proceedings of the International Conference on Microeletronics,
2009.

[10] ——, “Uml design for dynamically reconfigurable multiproces-
sor embedded systems,” in DATE. IEEE, 2010, pp. 1195–1200.

[11] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[12] X. INC, “Xup development board.” [Online]. Available:
http://www.xilinx.com/products/devkits/XUPV2P.htm


