
Determining the Minimal Number of Lines
for Large Reversible Circuits

Robert Wille Oliver Keszöcze Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{rwille, keszocze, drechsle}@informatik.uni-bremen.de

Abstract—Synthesis of reversible circuits is an active research
area motivated by its applications e.g. in quantum computation
or low-power design. The number of used circuit lines is
thereby a crucial criterion. In this paper, we introduce several
methods (including a theoretical upper bound) for the efficient
computation or at least approximation of the minimal number of
lines needed to realize a given function in reversible logic. While
the proposed exact approach requires a significant amount of
run-time (exponential in the worst case), the heuristic methods
lead to very precise approximations in very short run-time. Using
this, it can be shown that current synthesis approaches for large
functions are still far away from producing optimal circuits with
respect to the number of lines.

I. INTRODUCTION

Reversible circuits realize functions with the same number
of inputs and outputs, whereby each input pattern is mapped
to a unique output pattern (i.e. bijections are realized). While
conventional (irreversible) circuit technologies more and more
suffer e.g. from shrinking transistor sizes and power dissi-
pation, reversible circuits offer some promising applications,
e.g. in quantum computation [1] and low-power design [2].

Accordingly, how to efficiently synthesize reversible circuits
has been studied intensely in the last years. Starting with ap-
proaches based on truth table-like descriptions of the function
to be synthesized (see e.g. [3], [4], [5]), today approaches
are available, which can handle more compact function de-
scriptions [6] or even hardware description languages [7]. The
number of used circuit lines is thereby a crucial criterion.
In particular, in the domain of quantum computation, circuit
lines are represented by so called qubits – a limited resource.
Furthermore, the number of lines has a close relation to the
reliability of the circuit. Thus, it is well-accepted that the
number of circuit lines in reversible circuits should be kept
small.

For small functions to be synthesized (i.e. for functions
given in terms of a truth table), keeping the number of circuit
lines small is easily possible [8]. In fact, most of the respective
approaches (e.g. [3], [4], [5]) generate circuits with a minimal
number of circuit lines. In contrast, no approach is known so
far, which synthesizes reversible circuits with minimal number
of lines for larger functions (i.e. for functions, which cannot be
represented in terms of a truth table any longer). Instead, only
heuristic approaches (e.g. [6]) are available. But, it is unclear
how far away the resulting circuits are from the (theoretical)
optimum.

In this paper, the question how to determine the minimal
number of lines in a reversible circuit is addressed. Therefore,
we propose methods for the efficient computation or the
approximation of the minimal number of lines needed to
realize a given function in reversible logic. More precisely,
a theoretical upper bound is presented followed by a heuristic
approach. Both methods approximate the minimal number of

circuit lines, but already give a very close indication of the
actual minimum. Afterwards, an exact approach is presented.
In contrast to the approximations, this requires significantly
more run-time (in the worst case exponential), but leads to
the exact results.

Experiments show that with the proposed approaches, the
minimal number of lines for some functions can be computed
for the first time. But, due to the exponential worst case
behavior, the exact method reaches its limits quite early.
However, the additionally proposed theoretical bound and the
heuristic approach provide a very precise approximation in
very short run-time. Using this, it can be shown that current
synthesis approaches for large functions are still far away from
the optimum with respect to the number of lines.

The remainder of this paper is organized as follows: Sec-
tion II provides the background on reversible functions and
the number of circuit lines in the corresponding circuits.
Then, the heuristic approaches (including the theoretical upper
bound) and the exact approach are proposed in Section III and
Section IV, respectively. Finally, the experiments are discussed
in Section V and conclusions are drawn in Section VI.

II. MINIMAL NUMBER OF LINES
IN REVERSIBLE CIRCUITS

In this section, reversible logic is introduced and the ad-
dressed problem is motivated, respectively. The introduction
is thereby kept brief. For a more detailed treatement, we refer
to the respective literature (e.g. [1]).

A Boolean function f : Bn → Bm is reversible iff
• its number of inputs is equal to the number of outputs

(i.e. n = m) and
• it maps each input pattern to a unique output pattern.
Reversible functions are realized by reversible circuits. A

reversible circuit G is a cascade of reversible gates, where
fanout and feedback are not directly allowed [1]. In the
literature, reversible circuits composed of Toffoli gates are
frequently used. Each variable of the function f is thereby
represented by a circuit line, i.e. a signal through the whole
cascade structure on which the respective computation is
performed.

In order to synthesize compact reversible circuits, the num-
ber of used circuit lines is crucial – in particular for appli-
cations in the domain of quantum computation. Here, each
circuit line corresponds to a qubit – a limited resource. Besides
that, a large number of lines may decrease the reliability of
the resulting system. For this, the number of circuit lines (or
qubits, respectively) has to be kept as small as possible.

The following observations are thereby applied: If the
function f : Bn → Bn to be synthesized is reversible,
then obviously only n circuit lines are needed. In contrast, if
irreversible functions are synthesized, additional lines might
be required as the following example shows.978-3-9810801-7-9/DATE11/ c©2011 EDAA

TABLE I
BOOLEAN FUNCTIONS

(a) Irrev. (Adder)
x1 x2 x3 f1 f2
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(b) Incompl. embedding
x1 x2 x3 f1 f2
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 ?
1 0 1 1 0 1
1 1 0 1 0 ?
1 1 1 1 1 1

(c) Complete embedding
0 x1 x2 x3 f1 f2 – –
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0

. . .

Example 1. Consider the adder function from Table I(a).
The adder obviously is irreversible, since (1) the number of
inputs differs from the number of outputs and (2) there is
no unique input-output mapping. Even adding an additional
output to the function (leading to the same number of inputs
and outputs) would not make the function reversible. Then,
without loss of generality, the first four lines of the truth table
can be embedded with respect to reversibility as shown in
the rightmost column of Table I(b). However, since f1 = 0
and f2 = 1 already appeared two times (marked bold), no
unique embedding for the fifth line is possible any longer. The
same also holds for the lines shown in italic. Hence, additional
outputs are needed. This may lead to more circuit lines.

In general, at least dlog2(µ)e additional outputs (also called
garbage outputs) are required to make an irreversible function
reversible [8], whereby µ is the maximal number of times an
output pattern is repeated in the truth table. Thus, to realize
an irreversible function f : Bn → Bm, at least m+ dlog2(µ)e
circuit lines are required. The resulting circuit then would
have n primary inputs, m+ dlog2(µ)e−n constant inputs, m
primary outputs, and dlog2(µ)e garbage outputs1. The values
of the constant inputs and the garbage outputs can thereby be
chosen arbitrarily as long as they ensure a unique input/output
mapping.

Example 1 (cont.). In case of the adder function,
dlog2(3)e = 2 additional outputs are required, since at most
three output patterns are repeated, i.e. µ = 3. Thus, beside
the 3 primary inputs and 2 primary outputs, a reversible
realization of an adder must consist of at least 1 constant
input and 2 garbage outputs. A possible assignment to the
newly added values is depicted in Table I(c) (the original adder
function is highlighted in bold).

However, all approaches proposed in the past in order to
determine µ consider the truth table of the function to be
synthesized. Due to the exponential blow-up of truth table
specifications, this is affordable for small functions only. In
contrast, minimality with respect to the number of circuit
lines has not been shown for large functions so far. Moreover,
all existing synthesis approaches that can handle such large
functions (e.g. [6]), make extensive use of additional circuit
lines. First approaches exist aiming at the reduction of this
amount [9]. But, how far away these results are from the
theoretical optimum is an open problem. This is addressed
in this work.

More precisely, theoretical results and practical methods for
this purpose are introduced. The aim is thereby to determine or
to approximate the value µ, respectively, without considering
the whole truth table. Heuristic results (i.e. approximations of
the minimal number of circuit lines) as well as exact results
(i.e. minimal values) are obtained. Having these results, it can

1Note that if the number of primary inputs n is larger than m+dlog2(µ)e,
of course at least n circuit lines are needed to realize the function.

be shown that current synthesis approaches for large functions
lead to circuits whose number of lines is far away from the
optimum.

III. HEURISTIC COMPUTATION

In this section, heuristic methods are presented, i.e. ap-
proaches that approximate the minimal number of circuit lines
very fast, but do not guarantee minimality. A theoretical result
is presented first, which can be exploited for this purpose.
Afterwards, an alternative is introduced, which works on a
two-level description of the given function.

A. Theoretical Consideration

Having a function to be synthesized available, an upper
bound for the number of required circuit lines can be deter-
mined using the following lemma.

Lemma 1 (Upper Bound). Given a function f : Bn → Bm.
To realize f as a reversible circuit, at most m + n lines are
needed.

Proof: The minimal number of lines needed to realize the
function f as a reversible circuit is m + dlog2(µ)e, where µ
is the maximal number of times an output pattern is repeated.
In the worst case, the maximal value of µ is 2n. This is
the case, if f is a constant function, i.e. all 2n possible
input pattern map to the same output pattern. This leads to
m+ dlog2(2n)e = m+ n.

Example 2. Again, consider the adder function shown in
Table I(a). This function has n = 3 primary inputs and m = 2
primary outputs. Thus, in order to realize this adder at most
3 + 2 = 5 circuit lines are needed.

As shown by the example, Lemma 1 only is an approxima-
tion (more precisely, an upper bound) of the minimum. The
exact minimal number of circuit lines needed for the adder
function is 4 instead of 5 (see Example 1 and Table I(c),
respectively). However, as also confirmed by the experiments
in Section V, this upper bound already gives a very close
approximation of the exact value. Additionally, the bound is
easy to determine, since only the number of primary inputs
and the number of primary outputs have to be summed up.

B. Exploiting Two-Level Descriptions

In order to avoid the (exponentially large) truth table,
Boolean functions are often represented by two-level descrip-
tions, like Sum of Products (SoPs). Here, the function is
defined by a disjunction of conjunctions, which allows a more
compact specification in many cases.

As an example, consider the function given in the table in
Fig. 1. The column on the left-hand side gives the respective
conjunctions of the primary inputs, where a “1” on the ith

position denotes a positive literal (i.e. xi) and a “0” denotes
a negative literal (i.e. xi), respectively. A “-” denotes that
the respective variable is not included in the conjuntion. The
right-hand side gives the respective primary output patterns.
The disjunction of all rows leads to the overall function.
Thus, instead of 25 = 32 truth table lines, the function can
be represented by 6 lines only. This kind of description is
frequently used in logic synthesis. In particular, the PLA
format (used e.g. by Espresso [10]) relies on that.

Having such a description, the minimal number of lines
needed to realize the function as a reversible circuit can be
approximated as illustrated by the following example.

H
� 4+8=12

H
� 4+2=6

x1 x2 x3 x4 x5 f1 f2 f3
1 - - 0 - 1 0 0 8
0 0 - - - 0 1 0 8
1 1 - - 1 0 0 1 4
- 1 0 - - 0 0 1 8
1 0 - 1 - 1 0 1 4
1 1 - 1 0 1 0 1 2
Fig. 1. Two-level description of a Boolean function

Example 3. Consider the function given in Fig. 1. The
maximal number µ of times an output pattern is repeated
can be approximated from this two-level description. For
example, it can be seen that the conjunction of x1, x2,
and x5 (represented by 11--1) lead to the output pattern 001.
Since x2 and x3 are not part of the conjunction, this results
in 22 = 4 input patterns. Additionally, also the conjunction
of x2 and x3 (represented by -10--) lead to 001, resulting
in further 23 = 8 input patterns for this case. Thus, about
4 + 8 = 12 input patterns lead to 001 – more than any
other output pattern in the SoP-description (see right-hand
side of Fig. 1). As a result, µ approximately is 12, i.e. about
3 + dlog2(12)e = 3 + 4 = 7 lines are needed to realize this
function as a reversible circuit.

The determined value is still an approximation, since over-
laps of the respective conjunctions are not considered. For
example, the two conjunctions discussed in Example 3 share
some equal input patterns, i.e. the determined number of 12 oc-
currences of the output pattern 001 is an over-approximation.
Furthermore, in the case of an overlap, the output values may
be subject to a disjunction leading to different patterns and
therewith a different value for µ. Excluding all overlaps is a
(computational) hard task, which in the worst case would lead
to the exponential specification in terms of a truth table. This
is discussed in the next section. However, many SoP speci-
fications have very few overlaps. Thus, as the upper bound
introduced in the previous section, also this approximation is
quite close to the exact minimum in many cases.

IV. EXACT COMPUTATION

As discussed in the previous section, two-level descriptions
provide a good starting point to determine the maximal num-
ber µ of times an output pattern is repeated. However, in order
to achieve exact results (in contrast to an approximation), all
overlaps in the given description have to be removed.

One way to do so is shown by the algorithm given in
Fig. 2. The general flow is as follows: The original set OC
of all conjunctions given by the SoP-description is traversed.
The first conjunction cfirst of OC is thereby assumed to
be overlapping-free and, thus, added to a new set NC of
overlapping-free conjunctions (Line 1/2). Then, for all remain-
ing conjunctions c (Line 3), the following steps are performed:
• The conjunction c is compared to all conjunctions c′

already added to NC (Line 4).
• If c and c′ have no overlaps (Line 5), then canBeAdded is

assigned to true (Line 6). If this holds for all remaining
conjunctions c′ of NC, then c is overlapping-free and,
thus, can simply be added to NC (Line 13/14).

• If in contrast, c and c′ do have overlaps (Line 7), c cannot
simply be added to NC (i.e. canBeAdded is assigned
to false; Line 8). Instead, the respective conjunctions
are subject to a special treatment (Lines 9-11). More
precisely, conjunctions covering the input patterns of c
but excluding the input patterns covered by c′ are added
to OC (this is denoted by c − c′ in Fig. 2). These

Input : OC (set of all conjunctions given by the SoP)
Output: NC (overlapping-free set of all conjunctions)
OC ← OC \ {cfirst}, whereby cfirst ∈ OC1
NC ← {cfirst}2
foreach c ∈ OC do3

foreach c′ ∈ NC do4
if c ∧ c′ = 0 then5

// c and c′ do not overlap
canBeAdded ← true6

else7
// c and c′ overlap
canBeAdded ← false8
OC ← OC ∪ {c− c′}9
NC ← (NC \ {c′})10
NC ← NC ∪ {c′ − c} ∪ {(c ∧ c′)OR}11
break12

if canBeAdded then13
NC ← NC ∪ {c}14

return NC15

Fig. 2. Removing overlaps in SoP descriptions

Inp. Out.
1--0- 100
00--- 010
11--1 001
-10-- 001
10-1- 101
11-10 101

(a) Given SoP

Inp. Out.
I 00--- 010
11--1 001
-10-- 001
10-1- 101
11-10 101

OC

Inp. Out.
1--0- 100

NC

(b) Initialization

Inp. Out.
00--- 010

I 11--1 001
-10-- 001
10-1- 101
11-10 101

OC

Inp. Out.
1--0- 100
00--- 010

NC

(c) After first iteration

Inp. Out.
00--- 010
11--1 001

I -10-- 001
10-1- 101
11-10 101
11-11 001

OC

Inp. Out.
00--- 100
11-00 100
10-0- 100
11-01 101

NC

(d) After second iteration
Fig. 3. Application of the exact algorithm

conjunctions will be considered later in the following
iterations. In contrast, conjunctions covering all remain-
ing input patterns are added to NL. These conjunctions
are replacing c′. Note that c and c′ may have different
outputs. In this case, a bit-wise OR is performed on the
output patterns of the overlapping conjunctions (denoted
by (c ∧ c′)OR in Fig. 2) in order to stay conform with
the SoP definition.

Example 4. The described algorithm is applied to the SoP
specification shown in Fig. 3(a). According to the first two
lines of the algorithm, the sets OC and NC are initialized
as depicted in Fig. 3(b). Afterwards, the set OC is traversed,
starting with the conjunction c represented by 00---. Since c
has no overlap with any conjunction in NC, c is added
to NC (highlighted bold in Fig. 3(c)). Next, the conjunction c
represented by 11--1 is considered. Here, an overlap with
the conjunction c′ ∈ NC represented by 1--0- is identified.
As a result, a conjunction covering the input patterns of c
but excluding the input patterns covered by c′ (i.e. 11-11) is
added to OC. In contrast, conjunctions covering all remaining
input patterns (i.e. 11-00, 10-0-, and 11-01) are added
to NL. Since the conjunction 11-01 represents thereby the
actual overlap, the respective output patterns are ORed in this

TABLE II
EXPERIMENTAL RESULTS

Function Number of Circuit Lines
|PI| |PO| BDD [6] Lemma 1 Heur. Alg. Exact Alg.

apex2 39 3 498 42 43 – (TO)
apex5 117 88 1147 205 207 – (TO)
cordic 23 2 52 25 28 – (TO)
cps 24 109 930 133 135 – (TO)
e64 65 65 195 130 129 129 (314.51s)
ex5p 8 63 206 71 68 68 (0.07s)
pdc 16 40 619 56 61 55 (1.26s)
seq 41 35 1617 76 76 – (TO)
spla 16 46 489 62 65 61 (1.51s)
xor5 5 1 6 6 5 5 (0.07s)

case. The resulting assignments of the two sets are depicted in
Fig. 3(d). Analogously, this process continues until the set OC
has completely been traversed.

Note that this approach can analogously be applied for
other two-level descriptions. For example, if Exclusive Sum
of Products (ESoPs) are used, only the respective treatment
of the output patterns has to be adjusted (instead of ORing,
the outputs have to be EXORed). Furthermore, note that the
conjunctions leading to the output pattern 0...0 (i.e. all
outputs assigned to 0), are often not explicitly given in a
two-level description. However, the number of times this
particular output is generated can easily be concluded since
the occurrences of all other output patterns are available.

Applying this algorithm, an overlapping-free set of all
conjunctions is computed. From this, the maximal value µ
of times an output pattern is repeated can be extracted. In the
worst case, the whole truth table will thereby be unfolded. That
is, in this case the approach remains exponential. However,
the presented algorithm tries to avoid this by traversing the
respective conjunctions and terminating as soon as all overlaps
have been removed. In doing so, for certain functions the
minimal number of lines can be determined, which would not
be possible with a truth table description.

V. EXPERIMENTAL EVALUATION

Using the approaches introduced in the previous sections,
the number of lines for a set of functions has been ap-
proximated or explicitly determined, respectively. The pro-
posed algorithms have been implemented in C++ on top of
RevKit [11] and evaluated using an AMD Dual-Core 2.8 GHz
with 32 GB of memory. The timeout (denoted by TO) was set
to 5000 CPU seconds. For comparison, the results obtained by
the BDD-based synthesis approach from [6] are considered.
As benchmarks commonly used functions taken from the
LGSynth package have been used.

The resulting data is summarized in Table II. The first
columns provide the name of the function, the number of
primary inputs (denoted by |PI|), and the number of primary
outputs (denoted by |PO|). The next column gives the number
of lines of the circuits generated by the BDD-based approach.
Afterwards, the heuristic results obtained by both, Lemma 1
and the approach introduced in Section III-B, are reported
(denoted by Lemma 1 and Heur. Alg., respectively). Finally,
the exact results obtained by the algorithm introduced in
Section IV are given (denoted by Exact Alg.). All results
have been obtained in negligible run-time, except for the
exact approaches, where the run-times (in CPU seconds) are
provided in brackets.

So far, synthesis of reversible circuits for large functions
is only possible with hierarchical approaches, like the BDD-
based approach. As can be seen, this leads to a significant
amount of additional circuit lines. For example, the BDD-
circuit for the function pdc with its 16 primary inputs and
40 primary outputs includes more than 600 circuit lines. In

contrast, as shown by the exact computation, not more than
55 lines are needed to realize this function. Hence, there is still
a huge gap between the results obtained by current synthesis
approaches for large functions and the actual minimum of
circuit lines. This clearly emphasizes the need for efficient
algorithms determining or at least approximating the minimal
number of lines in reversible circuits.

As expected, the proposed exact approach reaches thereby
its limits due to long run-times quite early. Nevertheless, for
some cases the minimum can be achieved within the given
timeout (e.g. for the first time, the minimum was obtained
for the function e64 with its 65 primary inputs). However, for
the majority of benchmarks, this is not possible due to the
exponential worst case behavior. But, as can be seen e.g. for
e64, ex5p, pdc, spla, and xor5, the heuristic results (shown
in Column Lemma 1 and Heur. Alg.) provide a very good
approximation. In fact, the heuristic results differ by at most
a value of 6 from the exact result. Considering that these
heuristic results are determined in nearly no run-time, this
is a very good approximation, which in particular can be
used to evaluate state-of-the-art synthesis approaches for large
functions. For example, with the heuristic result, it can be
shown that the number of circuit lines of the BDD-circuit for
the function apex2 is still far away from the upper bound
obtained by Lemma 1.

VI. CONCLUSION
Synthesis of reversible circuits is an active research area

for emerging technologies with promising applications. The
number of circuit lines is thereby a crucial criterion, since they
e.g. represent the number of qubits in quantum applications or
have a close relation to the reliability of the circuit, respec-
tively. In this paper, we presented several methods (including
a theoretical upper bound) for efficient computation or at
least approximation of the minimal number of lines needed to
realize a given function in reversible logic. The results showed
that current synthesis approaches for large function are still far
away from the optimum with respect to the number of lines.
This clearly motivates further research on improving synthesis
of reversible circuits for large functions.

ACKNOWLEDGMENT
This work was supported by the German Research Founda-

tion (DFG) (DR 287/20-1).
REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[3] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[4] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[5] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[6] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[7] R. Wille, S. Offermann, and R. Drechsler, “SyReC: A programming
language for synthesis of reversible circuits,” in Forum on Specification
and Design Languages, 2010.

[8] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[9] R. Wille, M. Soeken, and R. Drechsler, “Reducing the number of lines
in reversible circuits,” in Design Automation Conf., 2010, pp. 647–652.

[10] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[11] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” in Workshop on Reversible Computation,
2010, RevKit is available at http://www.revkit.org.

