
Multi-level Attacks: an Emerging Security Concern
for Cryptographic Hardware

Sk. Subidh Ali∗, Rajat Subhra Chakraborty∗, Debdeep Mukhopadhyay∗ and Swarup Bhunia†
∗Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur, West Bengal–721302, India
Email: {subidh,rschakraborty,debdeep}@cse.iitkgp.ernet.in
†Department of Electrical Engineering and Computer Science
Case Western Reserve University, Cleveland, OH–44106, USA

Email: skb21@case.edu

Abstract—Modern hardware and software implementations of
cryptographic algorithms are subject to multiple sophisticated
attacks, such as differential power analysis (DPA) and fault-
based attacks. In addition, modern integrated circuit (IC) design
and manufacturing follows a horizontal business model where
different third-party vendors provide hardware, software and
manufacturing services, thus making it difficult to ensure the
trustworthiness of the entire process. Such business practices
make the designs vulnerable to hard-to-detect malicious modifi-
cations by an adversary, termed as “Hardware Trojans”. In this
paper, we show that malicious nexus between multiple parties
at different stages of the design, manufacturing and deployment
makes the attacks on cryptographic hardware more potent. We
describe the general model of such an attack, which we refer
to as Multi-level Attack, and provide an example of it on the
hardware implementation of the Advanced Encryption Standard
(AES) algorithm, where a hardware Trojan is embedded in the
design. We then analytically show that the resultant attack poses
a significantly stronger threat than that from a Trojan attack
by a single adversary. We validate our theoretical analysis using
power simulation results as well as hardware measurement and
emulation on a FPGA platform.

I. INTRODUCTION

To ease the computational burden of implementing complex
cryptographic algorithms in security-sensitive applications,
VLSI hardware ICs (crypto-chips) or highly optimized soft-
ware routines (crypto-libraries) are commonly used. Normally,
the crypto-algorithms are mathematically secure. However,
based on the process of information leakage due to imple-
mentation issues, several sophisticated attacks [1]–[3] have
been devised to break a crypto-system by discovering the
secret key. Attacks based on analysis of the transient power
of the crypto-circuit (“Differential Power Analysis”) [1] or
inducing faults in the circuit (“Fault Attacks”) [2], [3] have
been shown to be potent threats. Among these, the fault-attacks
are particularly interesting since they require relatively less
computational effort and are easy to launch. In recent years,
the computational complexity of deducing the secret key by
analysis of a single faulty cipher-text of the 128-bit version
of the Advanced Encryption Standard (AES) cryptographic

978-3-9810801-7-9/DATE11/ c©2011 EDAA

algorithm has been reduced to a brute-force search 232 pos-
sibilities [3], which can be performed in a few minutes on
standard modern desktops.

Side-by-side, economic reasons dictate the widespread out-
sourcing of design and manufacturing services to physically
remote third-parties. Often, the design house procures pre-
verified, ready-made components of their design from third-
party vendors in the form of hardware intellectual property
(“Hardware IP”) modules. Besides, modern complex IC de-
sign is dependant largely on the availability of sophisticated
computer-aided design (CAD) tools from software vendors.
Finally, most semiconductor companies are now-a-days fol-
lowing a “fabless model” in which the design database is
sent to remote fabrication facilities (“fabs”) for manufacturing.
All these reasons make a design vulnerable to malicious
modifications, commonly referred to as hardware Trojans
[6], [8]. These hardware Trojans are typically stealthy in
nature such that they can easily evade conventional post-
manufacturing testing. Once deployed in-field, they trigger and
cause catastrophic system failure or leak secret information.
Recent research has widely addressed the modeling and de-
tection of these hardware Trojans [8].

Recent research has also focused on threats that result from
specific nexus between parties associated with the design,
manufacturing and deployment of cryptographic hardware.
One such example is [4], where an inserted Trojan circuitry
leaks information through a covert side-channel that allows
conspiring malicious parties to discover the encryption key.
Another example is [7], where with the help of focused
ion beams an inserted dormant Trojan is connected to the
functional unit in the fab. Such nexus poses serious threat to
cryptographic applications, by combining established powerful
attacks on cryptographic hardware, with malicious hardware
Trojans that enable or facilitate these attacks for parties who
are part of the nexus. Often, these hardware Trojans can be
specifically enabled by only the malicious parties; hence, it
becomes extremely difficult to detect them.

Although some specific instances of multi-level attack
(MLA) have been explored in diverse contexts, in this paper



(a) Multi-level threat for an IP-based cryptographic
IC design and manufacturing flow

(b) Multi-level threat for an IP-based FPGA
design flow

Fig. 1. Example of multi-level attacks for both ASIC and FPGA realizations
of cryptographic hardware.

we examine it in its general form as an issue arising out
of modern design and manufacturing practices. As far as we
know, this is the first work that presents the general model
of multi-level attacks, gives an example of such an attack,
analyses its effectiveness theoretically as well as through
experimental validation. We show that multi-level attacks
pose stronger threat in terms of evading existing defence
mechanisms than the attacks involving a single party with
access to a single level of IC life-cycle.

The rest of the paper is organized as follows. In Section
II, we elucidate the concept of multi-level attacks with an
example of an attack on a hardware implementation of AES.
We present simulation and experimental validation results in
Section III. We conclude in Section IV.

II. MULTI-LEVEL ATTACKS: A CASE STUDY

A. General Model

Fig. 1 shows possible nexus that might exist between
different parties associated with the design, manufacturing
and deployment in the life-cycle of IP-based cryptographic
hardware. Fig. 1(a) and 1(b) consider the hardware life-cycle
for Application Specific Integrated Circuit (ASIC) and field
programmable gate array (FPGA) realization, respectively.
Nexus between two or more stages can be leveraged to
mount extremely strong attacks, leading to IP piracy, post-
deployment malfunction or information leakage. Due to the
distributed nature of these attacks, they can easily evade
security verification at individual stages.

B. Attack on AES Hardware

Consider an iterative implementation of the Advanced En-
cryption Standard (AES) algorithm as shown in Fig. 2(a).
A typical AES encryption consists of ten rounds of a series
of operations - AddRoundKey, SubBytes, ShiftRows and Mix-
Columns, with the tenth round replacing the MixColumns step
with an extra AddRoundKey step. This particular implementa-
tion of AES takes ten clock cycles to complete the encryption
of a single 128-bit block of plain-text.

Let us assume that the malicious adversary is the designer
of the AES hardware herself, who wants to know the secret

(a) AES hardware with Trojan

(b) Timing diagram of the Trojan signals

Fig. 2. Example of a designer embedded Trojan in the hardware implemen-
tation of the AES cryptographic hardware.

encryption key after the hardware has been deployed. For this,
the malicious designer develops a nexus with the person in
charge of deploying the encryption hardware in-field. Typi-
cally, such encryption hardware is designed in the form of
hardware intellectual property cores (IP cores) in hardware
description language (HDL), which can be directly synthesized
and either used as a building block in a cryptographic IC or
mapped on a FPGA. The person in charge of deployment
would allow an AES IP core infected with a Trojan to
be included. The encryption key is usually hard-coded in a
tamper-resistant non-volatile memory module on the circuit
board, hence the deployer cannot directly access the key. Since
multiple parties are involved here in trying to discover some
secret information, this is an example of a multi-level attack.

The knowledge of how the hardware Trojan might be
triggered is a secret shared only between the two co-operating
malicious parties. The structure of the inserted Trojan circuit
is shown in Fig. 2(a) and the associated timing diagram of
the Trojan signals is shown in Fig. 2(b). The hardware Trojan
is triggered (activated) by the application of three consecutive
patterns (denoted by P1, P2, P3 in Fig. 2(b)) at chosen bit
positions of the input plain-text, which are easily controllable
by the in-field adversary. The probability of triggering such
a Trojan accidentally by non-motivated application of plain-
text is extremely small. To see this, consider that the Trojan is
triggered by the occurrence of consecutively three different bit
patterns each of length thirty at thirty different bit positions of
the plain-text. Then, the probability of successfully applying
one of the patterns is 1

230 . Since the choices of the patterns are



independent of each other, the probability of successfully ap-
plying all the three patterns in correct sequence and triggering
the Trojan is given by:

Ptrigger =
(

1
230

)3

=
1

290
≈ 10−27 (1)

which is minuscule. Hence, we can safely assume that only
the deployer can trigger the Trojan by a “chosen plain-text”
attack, by controlling the plain-text input to the encrypter.

The Trojan activates after detecting this sequence of patterns
through a sequence detector. The Trojan also includes a
delay-based glitch generator circuitry which generates glitches
(FAULT GLITCH) by XOR-ing the system clock with a
delayed version of itself, as shown in Fig. 2(a). On activating,
the Trojan waits for seven clock cycles before enabling a
multiplexor through the CLK SEL signal that lets a narrow
glitch (FAULT GLITCH) being applied at the clock input
instead of the system-clock. This causes a setup time violation
in the input flip-flops when the seventh round cipher-text
is fed-back to the input of the encryption hardware to start
the eighth round encryption [5]. Thus, the inserted Trojan
hardware injects a fault in the AES circuit at the beginning
of the eighth round during encryption. It has been shown [3]
that by analyzing two faulty cipher-texts corresponding to two
known plain-texts, the 128-bit AES key can be deduced exactly
without any brute-force search. If only one plain-text cipher-
text pair is known, the key can be deduced exactly by a brute-
force search of the order of 232.

The adversaries want that only they and no other party
would be able to deduce the secret key from the faulty
cipher-text. To achieve this, she can mask the cipher-text by
adding a Linear Feedback Shift Register (LFSR) to the design.
The LFSR remains active for the time taken to encrypt a
single plain-text by the AES hardware. The state transitions
of the LFSR is controlled by the EN LFSR signal which
is synchronized with the event of multiple successful pattern
matches. This concept takes its motivation from the type of
information leakage Trojan described in [4]. The infeasibility
of recovering the key with a modified faulty cipher-text is
shown in Sec. II-C.

C. Difficulty of Recovering Encryption Key from Modified
Faulty Cipher-text

Let us assume that the output cipher byte ci is being masked
by XOR-ing with eight selected output bits of the LFSR.
Therefore ci must be part of one of the four ninth round
system of equation proposed in paper [3]. Let us assume the
corresponding quartet of key bytes are {kp, kq, kr, ks} and the
corresponding system of equations is:

2δ = S−1(x1 ⊕ kp)⊕ S−1(x′1 ⊕ kp)

δ = S−1(x2 ⊕ kq)⊕ S−1(x′2 ⊕ kq)

δ = S−1(x3 ⊕ kr)⊕ S−1(x′3 ⊕ kr)

3δ = S−1(x4 ⊕ ks)⊕ S−1(x′4 ⊕ ks)

where x1, x2, x3, x4 are the actual cipher-text, and
x′1, x

′
2, x
′
3, x
′
4 are the corresponding faulty cipher-text values.

Here δ ∈ {0, . . . , 255} and S−1 represents the InverseSubByte
operation of AES. We now prove by contradiction that the
masked output cipher-text will not reveal the secret key.

Let us assume that the masked cipher reveals the actual key
and x1 in above equation represents ci and the corresponding
faulty cipher byte and the masked faulty cipher bytes are x′1
and x′1 ⊕ α, where α is a non-zero masked value generated
by the LFSR. Therefore, the above equation should give same
quartet of key bytes {kp, kq, kr, ks} with the masked value.
In that case only the first equation changes and the rest of the
equations remain unchanged. Hence, from the first equation
we can write,

S−1(x1 ⊕ kp)⊕ S−1(x′1 ⊕ α⊕ kp)

= S−1(x1 ⊕ kp)⊕ S−1(x′1 ⊕ kp)

which implies

S−1(x′1 ⊕ α⊕ kp) = S−1(x′1 ⊕ kp)

which implies x′1 = x′1⊕α and α = 0 , since the S−1 mapping
is bijective. This conclusion contradicts our assumption.

D. Effectiveness of Multi-level Attacks

We now try to quantitatively estimate the effectiveness of an
attack based on the nexus between multiple parties at different
levels. Consider the example given above. In this case, note
that it is not fruitful to consider whether the nexus between
the designer and the deployer makes it easier for either party
to launch an attack. It would be generally infeasible (even for
the deployer) to launch a fault-attack on the AES encrypter by
suddenly increasing the clock frequency to the encrypter. The
effectiveness of the attack can be realized by estimating the
difficulty in discovering the inserted hardware Trojan, and then
using it to retrieve the encryption key, for somebody who is not
part of the nexus. To discover the scheme, a third-party (who
is not part of the nexus) must perform two tasks successfully:
• Activate the inserted Trojan by applying the three correct

patterns (P1, P2 and P3), and,
• Identify the bit positions of the output cipher-text whose

values have been inverted by the Trojan LFSR.
In general, if each of the Trojan activation sequence vectors

is M -bit long and the length of the initialization sequence is
N , the complexity of activating the Trojan by a brute-force
method is O(2M ·N ). To perform the second task successfully
by brute force (since a third-party has no way of knowing this
information), P bit positions out of 128 bits AES cipher-text
must be chosen, and corresponding to each of the assumed
choices, an average of 232 operations must be performed to
calculate the key. Only one of these operations of overall com-

plexity O

((
128
P

)
· 232

)
will yield the correct key. Hence,

for a third-party to actually launch a successful fault-attack
on the above hardware will require brute-force operations

of complexity O

(
2M ·N

(
128
P

)
· 232

)
. For example, with

M = 10, N = 3, P = 15 (i.e. fifteen bits of the output
cipher-text were flipped), the above complexity is ≈ 2126,



TABLE I
SIMULATED INCREASE IN AVERAGE POWER

Design Average Power % Increase
(mW) (w.r.t. golden)

AES without Trojan (golden) 120.60 0.00
AES with Trojan (LFSR inactive) 120.68 0.07
AES with Trojan (LFSR active) 120.86 0.22

TABLE II
HARDWARE OVERHEAD

Design Slices Slice Flip-flops 4-input LUTs
AES without Trojan (golden) 3229 2437 5835

AES with Trojan 3260 2487 5898

Overhead (%) 0.96 2.05 1.08

which is comparable to the complexity of finding an 128-bit
AES encryption key by a brute-force search.

III. RESULTS

The iterative AES encryption core infected with a length-
3, 10-bit pattern detector and a 32-bit LFSR-based hardware
Trojan as described in Section II was implemented in Verilog
and simulated using ModelSim. The design was synthesized
using Xilinx ISE to map it to a Xilinx Spartan-3E FPGA
board. Xilinx XPower was used to simulate the transient power
trace of the circuit. Fig. 3 shows the simulated power traces
of the circuit with and without Trojan. Table I shows the
percentage increase in the average power consumption of the
infected design as compared to the golden design, and Table
II shows the hardware overhead. As is evident from these
two tables, the Trojan is small relative to the original circuit
and has negligible effect on the average power consumption,
and is thus extremely difficult to detect using side-channel
techniques which are commonly affected by experimental
noise and process variation effects.

To show the effectiveness of the above multi-level attack
scenario, a fault attack was launched using a glitch as shown

(a) Power trace of circuit without Trojan

(b) Power trace of circuit with Trojan

Fig. 3. Power traces of circuits with and without Trojan.

Fig. 4. Experimental setup to simulate multi-level attack.

in Fig. 4. When the effect of the masking by the output of
the LFSR was not considered, the fault analysis technique
described in [3] yielded an incorrect key, which was different
in all the sixteen bytes compared to the original key. When
the effect of the masking was taken into consideration, the
correct key was recovered through the fault analysis attack, as
expected.

IV. CONCLUSIONS

In this paper we have analyzed and exemplified a new class
of hardware attacks on cryptographic algorithms arising out
of the nexus between different parties. This attack utilizes the
nexus to preferentially launch a fault-attack, and enables only
the malicious parties, who are part of the nexus to retrieve the
cipher key. We have shown that such an attack can be realized
using minimal hardware overhead, and has negligible effect on
the power consumption, which makes its detection extremely
challenging. We have demonstrated the greater potency of such
multi-level attack compared to single-level attacks through
analysis, simulations and FPGA emulations.

ACKNOWLEDGEMENT

The authors would like to thank Bodhisatwa Mazumdar for
his help in analyzing the FPGA power traces.

REFERENCES

[1] P. Kocher, J. Jaffe and B. Jun, “Differential power analysis”, Lecture
Notes on Computer Science, vol. 1666, pp. 388–397, 1999.

[2] F. Amiel, C. Clavier and M. Tunstall, “Fault analysis of DPA-resistant
algorithms”, Lecture Notes on Computer Science, vol. 4236, pp. 223–236,
2006.

[3] D. Mukhopadhyay, “An improved fault based attack of the Advanced
Encryption Standard”, Lecture Notes on Computer Science, vol. 5580,
pp. 421–434, 2009.

[4] L. Lin, W. Burleson and C. Parr, “MOLES: malicious off-chip leakage
enabled by side-channels”, Proceedings of the International Conference
on CAD, pp. 117–122, 2009.

[5] N. Salmane, S. Guilley and J. Danger, “Practical setup time violation
attacks on AES”, Proceedings of the European Dependable Computing
Conference, pp. 91–96, 2008.

[6] DARPA, “TRUST in Integrated Circuits (TIC)”. 2007. [Online].
Available: http://www.darpa.mil/MTO/solicitations/baa07-24.

[7] Miron Abramovici, “Protecting integrated circuits from silicon Trojan
horses”, Military Embedded Systems, Jan–Feb, 2009. [Online]. Available:
http://www.mil-embedded.com/articles/id/?3748.

[8] R. S. Chakraborty, S. Narasimhan and S. Bhunia, “Hardware Trojan:
threats and emerging solutions”, Proceedings of the IEEE International
High Level Design Validation and Test Workshop, pp. 166–171, 2009.


