
A fault-tolerant deadlock-free adaptive routing for
On Chip interconnects

Fabien Chaix
TIMA

Grenoble, France
Fabien.Chaix@imag.fr

Dimiter Avresky
IRIANC

Boston, USA
autonomic@irianc.com

Nacer-Eddine Zergainoh
TIMA

Grenoble, France
Nacer-Eddine.Zergainoh@imag.fr

Michael Nicolaidis
TIMA

Grenoble, France
Michael.Nicolaidis@imag.fr

Abstract—Future applications will require processors with
many cores communicating through a regular interconnection
network. Meanwhile, the Deep submicron technology foreshad-
ows highly defective chips era. In this context, not only fault-
tolerant designs become compulsory, but their performance
under failures gains importance.

In this paper, we present a deadlock-free fault-tolerant adap-
tive routing algorithm featuring Explicit Path Routing in order
to limit the latency degradation under failures. This is particu-
larly interesting for streaming applications, which transfer huge
amount of data between the same source-destination pairs.

The proposed routing algorithm is able to route messages in
the presence of any set of multiple nodes and links failures, as
long as a path exists, and does not use any routing table. It is
scalable and can be applied to multicore chips with a 2D mesh
core interconnect of any size. The algorithm is deadlock-free and
avoids infinite looping in fault-free and faulty 2D meshes.

We simulated the proposed algorithm using the worst case
scenario, with different failure rates. Experimentation results
confirmed that the algorithm tolerates multiple failures even in
the most extreme failure patterns. Additionally, we monitored
the interconnect traffic and average latency for faulty cases.
For 20x20 meshes, the proposed algorithm reduces the average
latency by up to 50%.

I. INTRODUCTION

As new applications require higher performance, the use of
multicore chips with hundreds and thousands cores and paral-
lel programming model are the current trend in the computer
industry. This new paradigm supports well the performance
scalability, but leads to new design challenges. Core inter-
connects become a "bottleneck" regarding scalability, power
consumption, chip performance and reliability.

In the same time, the Deep submicron technology enables
a lower silicon cost at the expense of significant reliability
concerns. In this context, failures in the Core Interconnect
are an important issue for the multicore chips. They may
cause anomalies (deadlocks, core isolation, message losses)
or degrade significantly the system performance (e.g. latency
increase).

Some related work is given in Section II. In III, the router
architecture is detailed. In IV, the novel routing algorithm
is presented. In V, some experimental results are given.
Section VI concludes the paper.

II. RELATED WORK

In the past years, the Network on Chip (NoC) has become a
very popular solution for interconnecting cores. Most common
implementations are based on the 2D Mesh topology, which
allows a simple planar layout. However, the NoC paradigm is
still in its infancy [1], because of exacerbated constraints such
as the power consumption or silicon cost.

In [2], a general purpose router architecture is proposed
based on Virtual Channels and Virtual Networks. The authors
present an adaptive routing that improves significantly the
average throughput over the XY algorithm.

On the other hand, as the technology scales down, failures
become more frequent. At a higher level, a fault-tolerant
routing algorithm is required for taking advantage of the
regularity and high redundancy of the interconnection network.
In effect, such routing algorithms allow messages to bypass
faulty links and nodes and effectively improve the system fault
tolerance [3]. In [4], the routes are discovered using broadcast,
which is generating a significant traffic. Afterwards, the source
node stores the route for following messages.

In addition to routers and links failures, designers face
deadlock issues [5]. For regular networks, the prohibition
of certain turns [6] during message routing guarantees the
deadlock freedom. However, ensuring both deadlock freedom
and fault tolerance often requires Virtual Channels.

In [7], the authors presented a fault-tolerant deadlock-free
routing algorithm that guaranteed the message delivery from
any source to any destination node, as long as a path existed,
for 2D mesh interconnects of any size.

Our paper presents a novel routing algorithm using the
algorithm proposed in [7]. This contribution leverages Explicit
Path to reduce the latency, and simplifies the router design.

III. ROUTER ARCHITECTURE

A. Context

We consider a Multicore chip using wormhole routing,
based on a 2D Mesh NoC, as shown on Fig.1-a. On each
node, a Network Interface Controller (NIC) converts processor
requests in flits and manages end-to-end flow control, alike
Acknowledgement (Ack) and message timeout.

The failure detection is not addressed in this paper, but many
solutions from the literature can be used. In the rest of this978-3-9810801-7-9/DATE11/ c©2011 EDAA



R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

R

NIC
Core(s)

W
es

t E
ast

So
ut

h
N

or
th

L
ocal

V
S

Crossbar

C
on

tr
ol

lo
gi

c

(a) 2D Mesh On-Chip interconnect (b) Router with Virtual Source

Figure 1. Generic 2D Mesh Interconnect and router architecture

article, we assume that link and node failures are detected and
neighbour nodes are notified instantly.

B. Virtual Channels and Virtual Networks

The router architecture shown in Fig.1-b is generic and is
based on [7]. Each router’s physical link is shared between
several Virtual Channels (VCs).

For our routing algorithm, Virtual Networks (VNs) are
defined as non overlapping groups of VCs, where messages are
propagated. In this paper, we use 4 Virtual Channels per port,
and 2 are assigned to each VN. The VN to use is chosen when
the message is injected in the interconnect. If the destination
is northern (resp. southern) of the source, South Last (resp.
North Last) VN will be chosen.

C. Virtual Source and Node Stamping

However, when there are faulty nodes and links, routing
messages between 2 nodes may take many turns. Some mes-
sages may even have no option but to break its Virtual Network
turn restriction. In such case, the message uses a Virtual Source
to continue towards its destination, as proposed in [8].

Definition 3.1 (Virtual Source): The Virtual Source is used
to swap safely messages from a VN to another, or simply
to break dependencies within the same VN. The complete
message is stored in the VS buffer shown in Fig.1-b, thus
eliminating the dependencies on previously visited buffers.
Then, it is re-emitted starting from this node.

Unfortunately, supporting fully-adaptive routing requires an
additional complexity for avoiding infinite looping. Therefore,
the Node Stamping has been introduced for the messages to
keep track of the traversed nodes, and avoid them in following
routing decisions.

Definition 3.2 (Node Stamping): Each node used by a mes-
sage m during routing is stored with it (i.e. stamped). When
computing a new hop, the router avoids the listed nodes. We
denote Vm(x) the list of the output ports of node x, which are
heading to nodes already visited by the message m.

D. Output hierarchy

The Output Hierarchy given in Def.3.4 leverages the inter-
connect regularity to route messages toward their destination
in the presence of multiple faulty nodes and links.

North

South

EastWest

1:East
2:North
3:South
4:West

1:West
2:North
3:South
4:East

1:East
2:South
3:North
4:West

1:West
2:South
3:North
4:East

1:North 2:West
3:South 4:East

1:South 2:East
3:North 4:West

1,2,3,4:Local

CS

CN

WS ES

WN EN

LOC

Figure 2. Output hierarchy depending on the destination node position
relative to the current node. When destination is on the same column, South
(CS), North (CN) or Local (LOC) output port is promoted

Definition 3.3 (Eligible output ports): We denote P (x) the
set that contains the direction of all output ports of node x
that can be used for forwarding a message, i.e. it exists and
is fault-free.

Definition 3.4 (Output Hierarchy): Given Q the set of eli-
gible output ports of the current node x, and d the message’s
destination node, Hierarchy(Q, x, d) returns the port of Q
the highest in the hierarchy presented in Fig.2.

E. Echo Mode

The Output Hierarchy alone is not sufficient to guarantee
0% message loss, even for low failure rates. In effect, because
the routers have only a partial knowledge of the interconnect
state, messages are trapped sometimes. In such circumstance,
the Echo Mode, introduced in [7], returns the message to the
previous node iteratively until another routing option is found.

Definition 3.5 (Echo mode): If there is no usable direction
to forward the message to the destination node, then the Echo
mode will be applied, according to Fig.4. Echo(m, x) returns
the output port through which the message m entered the node
x for the first time. Therefore, the Echo Mode enables the
message to rewind until it finds another path or reach the
source node.

IV. PROPOSED ROUTING ALGORITHM

A. Explicit Path Routing Mode

The major contribution to the latency reduction of the rout-
ing algorithm proposed in Fig.4 is based on the fact that the
path of messages can be stored on source and destination node.
This is particularly beneficial when messages have activated
Echo mode, as a consequence of failures. This will allow
throughput to be significantly improved and thus improve the
system efficiency. This is especially important for Streaming
applications that use repeatedly the same source- destination
node pairs with large amounts of data.

In order to use Explicit Path Routing, the Explicit Path is
extracted from the Node Stamping information after the first
message has been routed from a given source. The Explicit is
then stored at the destination node, according to Def.4.1. The
acknowledgment then follows the Explicit Path, and reaches
the source node with a copy of the Explicit Path. This allows
the source node to store its own copy, for future messages.



North

South

W
es

t

E
as

t

North

South
W

es
t

E
as

t

(a) South Last VN (b) North Last VN (c) Turn Restriction table

~N ~S ~E ~W
~N U T S S
~S T U N N
~E T T U T
~W T T T U

Output port

In
pu

t
po

rt

Figure 3. Turns restrictions, in dashed, for the South Last VN (a) and North
Last VN (b), and the associated table (c). Turns marked U are forbidden for
both VNs (U Turn are prohibited). North Last VN restrictions are marked N
and South Last VN restrictions are marked N. Other turns, including those
which source or destination is Local, are granted (marked T).

Because routes are stored in nodes’ memory, there is virtually
no limit to the Explicit Path storage.

Definition 4.1 (Explicit Path): For a given node s, and con-
sidering a destination node d, Rs→d is a valid path from s to
d, obtained after a message was received from node d by the
node s or a message from s to d was acknowledged.

Definition 4.2 (Explicit Path Routing Mode): When an Ex-
plicit Path Rs→d exists in node s, a message m from the node
s to the node d will store the Explicit Path as a list of output
ports Rm, starting from the source node s. Afterwards routers
will read directly the route Rm, skipping Hierarchy and Echo
Mode, according to the algorithm in Fig.4.

B. Virtual Network Turn Restriction

In [7], the deadlock freedom of each VN was guaranteed by
channel numbering, where flits had to use channel (i.e. links)
only in ascending order. This provided a solid theoretical back-
ground for the deadlock freedom of the proposed algorithms.
However, this scheme is relatively expensive to implement,
because channel numbers must be compared at each step and
the last numbering embedded in the flits.

In this article, we suggest to use turn restrictions as de-
scribed in Def 4.3. This approach is equivalent to the channel
numbering regarding the prohibited turns as shown in Fig.3-
a,b, but is much more economical. In effect, it takes only a
4x4 table to check if the Virtual Network forbids a given turn,
as shown on Fig.3-c.

Definition 4.3 (Virtual Network Turn Restriction):
According to Virtual Network Turn Restrictions table
shown in Fig.3-c, the boolean V Nm(pin, pout) is set to true
if and only if the message m can be forwarded from input
port pin to output port pout without breaking the restrictions
of the VN used by m.

C. Presentation and example

The main novelty of the proposed algorithm is that it
uses Explicit Path Routing to improves average latency, while
guaranteeing deadlock freedom and fault tolerance.

According to Fig.4, the proposed routing algorithm consists
of 3 different modes. As we are assuming that the chip failure
rate will be acceptable, the Hierarchy Mode is used in most
cases, and is based on the Output Hierarchy. If the message is

1 pin: input port of message m
2 pout: output port to route m to
3 x: current node for message m
4 Q: set of eligible output ports
5 start:if Rm 6= ∅ (Explicit Path Routing mode)
6 Pop the first element of Rm to pout

7 else
8 Set Q to P (x) \ Vm(x)
9 if Q 6= ∅ (Hierarchy mode)

10 Set pout to Hierarchy(Q, x, d)
11 Add x to the nodes visited by m
12 else (Echo mode)
13 Set pout to Echo(m, x)
14 endif
15 endif
16 send: if ¬ V Nm(pin, pout)
17 Use Virtual Source
18 end: Route message to output port pout

Figure 4. Proposed novel routing algorithm with Explicit path routing for a
message m from the source node s to the destination d at node x

Message before Echo Echo Message after Echo

Acknowledgment Faulty node Faulty link

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

S

D

Figure 5. The proposed algorithm requires Echo Mode to route the message
from source node S to destination node D, but not for the acknowledgment,
thanks to the Explicit Path Routing Mode

trapped, the Echo Mode takes over and guarantees the safety
properties stated in Section IV-D. At last, the router enables
Explicit Path Routing Mode for messages and Acks, which
improves significantly the average latency.

For example, consider the routing of the message from
the node S to node D in Fig.5. Based on the hierarchy, the
message will be routed to the East straight to the node (2, 3).
Eventually, the message will be trapped in node (3, 0) and
start Echo mode. The message returns to the node (2, 1), and
tries another direction. First, the router starts by examining
the hierarchy, as given in Fig.2. As the destination node (0, 3)
is East North, we have {East, North, South, West}. East has
already been used, so it is necessary to shift to the following
direction, North. Because the node is fault-free, it can be used
to reach the destination node D.

If the interconnect were partitioned, the Echo Mode would
eventually return the message to its source node’s Local port,
allowing the source node to detect the partitioning.

Afterwards, the acknowledgment of the message from S to
D is routed using Explicit Path Routing, using the Explicit
Path from the acknowledged message, as defined in Def.4.1.
Therefore, instead of choosing the East direction at node (0, 2)
based on the output hierarchy, the acknowledgement directly



uses a shorter route and reaches the source node S. Any
subsequent message from the node S to the node D and
reverse will follow directly this Explicit Path too, improved
substantially the traffic and average latency in case of failures.

D. Algorithm properties

The presented routing algorithm has several important prop-
erties, relying on the properties on the Variant C algorithm
presented in [7]. First, it does not use any routing table.
Second, we claim that the proposed algorithm is safe. In
effect, it is deadlock-free, does not generate message cycles
and always terminates. Finally, the algorithm guarantees that
the destination is always reached if a path exists, otherwise
network partitioning is detected.

The described properties have been validated by means of
simulation of different sizes of mesh and worst case failure
scenarios. Furthermore, the properties have been proved for-
mally, based on [7], but omitted because of space restriction.

V. EXPERIMENTAL RESULTS

In [7], a simulation model has been built with a focus on
fault tolerance, using SocLib [9] and SystemC libraries.

We simulated the proposed routing algorithm for different
sizes of meshes (10x10 and 20x20). Our contribution was
compared against the Variant C routing algorithm presented
in [7]. For each configuration, we simulated the transfer of
100 messages in 50 interconnects with random non partitioned
failure patterns induced during the start-up. We considered
Node failures sets, Link failure sets and Mixed sets where
nodes and link failures occur at half the nominal rate each.

As a statement, we observed no deadlock, no message lost
and no infinite looping, even for 20x20 meshes under 40%
failure rate. In Fig.6, we show the performances of different
routing algorithms for mesh sizes of 10x10 and 20x20, under
different failure sets.

As expected, there is little difference between the Variant C
and the proposed algorithm for low failure rates, regarding
the average route length (6-a) and traffic per message (6-
b). However, one can see that the proposed algorithm clearly
improves the average route length and traffic for failure rates
starting from 20%. Finally, Fig.6-c shows that the proposed
algorithm provides lower latency than Variant C, especially in
the 20x20 mesh.

VI. CONCLUSION

The proposed Explicit Path Routing algorithm does not uti-
lize routing tables, which will have a big impact on scalability
and power consumption of extremely complex multicore chips
consisting of more that 1000 cores.

Deadlock freedom of the solution is guaranteed by the use
of 2 Virtual Networks and Turn Prohibition; while the Virtual
Source Routing offers sufficient adaptability to support the
high fault tolerance. Finally, the Echo Mode guarantees that a
path will be discovered, even under complex failure patterns.

In addition, the figures show that the average latency tends
to increase with the interconnect size and the failure rate. For

Explicit Path (10x10) Variant C (10x10)
Explicit Path (20x20) Variant C (20x20)

0

50

100

150

(a) Average route length in hops

0 20 40 0 20 40 0 20 40
Failure
rate in %

Node Failure Link Failure Mixed Failure

0

400

(b) Average traffic per message in hops

0 20 40 0 20 40 0 20 40
Failure
rate in %

Node Failure Link Failure Mixed Failure

0

10

20

(c) Two way average latency in µs

0 20 40 0 20 40 0 20 40
Failure
rate in %

Node Failure Link Failure Mixed Failure

Figure 6. Comparison between the proposed algorithm with Explicit Path
Routing Mode and the Variant C algorithm presented in [7] under Node, Link
and Mixed failures

streaming applications, which require large messages between
few different source - destination node sets, the Explicit Path
Routing Mode limits traffic increase in case of failures. Thus,
the average latency is improved significantly, based on the
proposed deadlock-free fault-tolerant adaptive routing.

REFERENCES

[1] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and Y. Hoskote, “Out-
standing Research Problems in NoC Design: System, Microarchitecture,
and Circuit Perspectives,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 1, p. 3–21, Jan. 2009.

[2] M. Azimi, D. Dai, A. Kumar, A. Mejia, D. Park, R. Saharoy, and
A. Vaidya, “Flexible and adaptive On-Chip interconnect for Tera-scale
architectures,” Intel Technology Journal, vol. 13, no. 4, 2009.

[3] T. Dumitras, S. Kerner, and R. Marculescu, “Towards On-Chip Fault-
Tolerant Communication,” in Proc. Asia & South Pacific Design Automa-
tion Conf. (ASP-DAC), January 2003.

[4] Y. B. Kim and Y.-B. Kim, “Fault Tolerant Source Routing for Network-
on-chip,” IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems, p. 12–20, Sept. 2007.

[5] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks . Elsiever, 2004.

[6] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A Highly Resilient Routing Algorithm for Fault-Tolerant NoCs,” in
Design, Automation and Test in Europe, no. 2.2, April 2009.

[7] F. Chaix, D. Avresky, N. Zergainoh, and M. Nicolaidis, “ Fault-tolerant
deadlock-free adaptive routing for any set of link and node failures in
Multi-Cores systems,” in IEEE International Symposium on Network
Computing and Applications, july 2010.

[8] D.R. Avresky, C.M. Cunningham, and H. Ravichandran, “Fault-tolerant
adaptive routing for two-dimensional meshes,” Int. Journal of Computer
Systems Science and Engineering, vol. 14, no. 6, november 1999.

[9] SocLib library. [Online]. Available: http://www.soclib.fr/


