
Formal Reset Recovery Slack Calculation
at the Register Transfer Level

Chih-Neng Chung
GIEE

National Taiwan University
Taipei, Taiwan

Chia-Wei Chang
Department of EE

National Central University
Jhongli, Taiwan

Kai-Hui Chang
Avery Design Systems, Inc.

Andover, MA, USA

Sy-Yen Kuo
GIEE

National Taiwan University
Taipei, Taiwan

Email: sykuo@cc.ee.ntu.edu.tw

Abstract—Reset is one of the most important signals in many
designs. Since reset is typically not timing critical, it is handled
at late physical design stages. However, the large fanout of reset
and the lack of routing resources at these stages can create
variant delays on different targets of the reset signal, creating
reset recovery problems. Traditional approaches address this
problem using physical design methods such as buffer insertion
or rerouting. However, these methods may invalidate previous
optimization efforts, making timing closure difficult. In this work
we propose a formal method to calculate reset recovery slacks
for registers at the register transfer level. Designers and physical
design tools can then utilize this information throughout the
design flow to reduce reset problems at later design stages.

I. INTRODUCTION

Reset brings a chip into a known state so that the chip can
function properly. Although this signal is important, it is used
infrequently and is typically not timing critical. Therefore,
this signal is often routed after most physical design process
is done. However, routing resource may be scarce at this
point, forcing reset nets to take long detours that can create
propagation delays which may be large enough for registers
to have their reset de-asserted at different cycles. This can
create incorrect reset states and can render the chip useless.
One way to address this problem is to resort to physical
design practices such as buffer insertion or rerouting of some
nets. However, doing so may create perturbations significant
enough to invalidate previous timing-optimization efforts. In
practice we have seen physical design teams spending weeks
trying to solve this problem but ended up removing the reset
to some registers. To this end, techniques that automate the
reset removal process have been proposed [7]. However, the
scalability of such techniques is an issue.

In this work we take a different approach by calculating
“reset recovery slacks”, or “reset slacks”, at the Register
Transfer Level (RTL). The reset slack of a register is the
number of cycles that its reset de-assert event can be delayed
without affecting the correctness of the reset sequence. Our
approach is based on symbolic simulation [3], [4] and supports
both fixed as well as flexible reset sequences. Therefore, it can
be applied to various types of designs and reset schemes. By
utilizing the flexibility provided by reset slacks, better circuit
optimization and faster timing closure can be achieved.

II. BACKGROUND

In this section, we explain the concept of Boolean quantifi-
cation and then review existing solutions for the reset problem.
A. Boolean Quantification

Quantification is an operation that eliminates variables in
a Boolean formula. There are two types of quantifications:
universal (∀) and existential (∃). We only use the latter in this
work and it is defined as follows. Given a function F and
inputs x1...xn. Suppose xj is existentially quantified, then:
∃xj : F (x1, x2, ...xj ...xn) = F (x1, x2, ...0, ...xn) ∨ F (x1, x2, ...1, ...xn)

Quantification is used to handle flexible inputs so that all
possible values are considered during reset slack calculation.
B. Reset Problems and Existing Solutions

Two excellent introductions of different reset schemes and
the associated problems can be found from [8], [9]. In
particular, reset recovery delays due to long reset nets can
cause registers to enter metastable states and corrupt reset
correctness. One solution is to use physical design methods but
doing so can perturb existing timing optimizations [5]. Another
solution is to reset only part of the registers [7]. However, such
an approach may suffer reset nondeterminism problems [6].
Alternatively, circuits designed specifically to solve the reset
problem have been proposed, such as [2] and [10].

III. RESET SLACK CALCULATION

In this section we first formulate the reset recovery slack
calculation problem, and then propose two algorithms to solve
the problem: one for fixed inputs and one for flexible inputs.

A. Problem Formulation

In this work we focus on the RTL and consider reset
recovery delay based on clock cycles. We illustrate the reset
recovery slack calculation problem using an example shown
in Figure 1. There are three registers in the example: “Reg1”,
“Reg2” and “State Reg”. “State Reg” is a register whose
value must be correct after reset. We call such registers “key
registers” in this work and assume that they are given.

To model reset propagation delay to “State Reg”, we intro-
duce “reset cutpoints” as the “Delay” block in the figure shows
for delay insertion. The original reset signal is named “Reset”
and the delayed version is named “Reset2” after the cutpoint.
In this work we inject a symbol to model arbitrary delay and
use symbolic simulation [3] to analyze its effect. From the978-3-9810801-7-9/DATE11/ c©2011 EDAA

timing diagram on the left of Figure 1, we can see that due
to the delay, reset recovery (or de-assert) time for “State Reg”
is one cycle later than Reg1 or Reg2. If this circuit can still
work correctly even though reset recovery is 1 to N cycles
late for a reset cutpoint, then we say that the registers after
the cutpoint have reset slack N . The goal of this work is to
find slacks for all reset cutpoints.

Fig. 1. Example for illustrating reset recovery slacks.

Formally, the problem for deriving reset recovery slack
can be formulated as follows. Given a circuit, a set of reset
cutpoints and the maximum reset recovery delay, find the
maximum slack for each reset cutpoint (up to the maximum
reset recovery delay) so that no matter what the delays are
for those cutpoints, as long as the delays are within the slacks
then the design will still be reset correctly. In this work, “reset
correctly” means the reset state when delays exist matches
the state when no delay exists. Note that we do not consider
reset assert delay problems by assuming all registers are reset
simultaneously at some point during the reset sequence — this
clears pre-reset nondeterminism.

B. Reset Slack Calculation — Fixed Inputs
Our reset slack calculation algorithm for fixed inputs is

shown in Figure 2. Its inputs are a set of key registers regs and
the maximum allowed slack m. Its output is the slack of each
register, which is saved in the register’s slack field. In our
approach, we first inject delay symbols into reset cutpoints to
model reset recovery delay. From line 2 to line 7 we perform
symbolic simulation for m cycles using the given fixed input
patterns. At each cycle, we check the symbolic trace of each
register reg that is still in the regs to see if its symbolic trace
is a constant. If so, the register has a slack at least as large
as cycle and can remain in regs. Otherwise, the maximum
slack of the register is cycle − 1 and is removed from regs.
After symbolic simulation finishes, if there are still registers
in regs, then their slacks are at least m. Therefore, on lines
8-9 we assign m as the slacks of those registers.

To implement function strace check constant, we build
a SAT instance from the symbolic trace and then use a SAT
solver to check if the trace can have different output values.

The reason why a constant symbolic trace at cycle cycle
represents a reset slack at the cycle is because it means the
value of the register is not affected by the symbols we injected
to model reset recovery delays. In other words, the reset state
will not be affected no matter what the delays are. Once the
slack for each register is known, the slack for a design block
can be calculated by finding the minimal slack among all the
block’s registers. This algorithm can be applied to designs

procedure fixed input slack calculation(regs, m)
1 inject reset recovery delay symbols;
2 for (cycle= 1; cycle ≤ m; cycle++)
3 symbolic simulate one cycle;
4 foreach (reg ∈ regs)
5 if (strace check const(reg.strace) == false)
6 reg.slack = cycle− 1;
7 regs = regs \ reg;
8 foreach (reg ∈ regs)
9 reg.slack = m;
10 return;

Fig. 2. Reset slack calculation for known and fixed inputs.

where reset sequences are known and are found to be scalable
because only a few symbols are injected.

C. Reset Slack Calculation — Flexible Inputs
In this section we propose an algorithm to handle reset

sequences that contain flexible (unknown) inputs by building a
Boolean function, called reset checker, to check whether or
not there will be reset problems. Its inputs are circuit stimulus
and real recovery delays at circuit operation time, and the
output is “1” if there are reset problems. We then show how
to use this function to calculate the reset slack for each register
based on existential quantification.

1) Building Reset Correctness Checker: Reset checker ex-
amines whether values in key registers when reset recovery
delays exist match those when no delays exist. In this work
we assume that the constrained-random testbench generates
all possible inputs that the design can have during reset and
the slack period. The algorithm for building reset checker is
shown in Figure 3. We use subscript tb to represent symbols
injected for the random variables to model all possible primary
input values, and we use subscript delay to represent symbols
that model reset recovery delay. The inputs to the algorithm
are the testbench (tbench), the design with reset recovery
delay inserted (dutdelay), the reference design without delay
(dutref), and the number of reset + slack cycles to be checked
(m). The testbench generates input patterns for both dutdelay

and dutref . We denote a register reg in dutdelay using
regdelay and the same register in dutref with regref . The
strace field of the register saves the register’s symbolic trace.

As shown in the algorithm, we use a design without any
reset recovery delays as the golden design to obtain the correct
states at each cycle. Given that the scalar values returned by
$random in the testbench are replaced with symbols in our
algorithm, the registers may have symbolic traces instead of
scalar values. On line 1 we inject reset recovery delay symbols
into dut delay and then symbolically simulate the testbench
and two designs for m cycles on lines 2-3. During symbolic
simulation, whenever a $random is encountered for a variable
v, we replace the scalar value returned by v with a symbol
vtb. Since a symbol represents all possible inputs, we use
the symbol to model all the inputs that can be generated by
the testbench. On lines 4-5 we build a miter using the XOR
operation to check whether the symbolic traces of registers in
dutdelay and the corresponding ones in dutref are the same.
The built Boolean function is saved in reset checker, which
is returned on line 6 when the algorithm finishes.

procedure build reset checker(dutdelay, dutref , tbench, m)
1 inject reset recovery delay symbols;
2 for (cycle= 1; cycle ≤ m; cycle++)
3 symbolic simulate tbench, dutdelay and dutref one cycle

while replacing $random for variable v with symbol vtb;
4 foreach (reg ∈ dut.registers)
5 reset checker |= regdelay.strace∧regref .strace;
6 return reset checker;

Fig. 3. Algorithm to build the reset checker function.

The first way to use the reset checker function is after
the reset recovery delays are known, we can feed design
inputs and reset recovery delays to this function to determine
whether this particular set of input patterns will cause reset
problems. Another way to use to the function is to perform
existential quantification on all symbols from testbench (i.e.,
vtb). If the Boolean function is not constant “1” after all
the quantifications, then there exists at least one combination
of reset recovery delays that will not cause reset problems.
One can then use a SAT solver to enumerate all the delays
that make the function “0” — these are all the possible safe
reset recovery delays. The reason why existential instead of
universal quantifications are used is to make sure when the
output of the function is “0”, the states in dutdelay will match
the reference model. Since the function after existentially
quantifying a variable v is “0” only when both v = 0 and
v = 1 are “0”, variable v can be safely eliminated without
creating an incorrect checker function.

2) Calculating Reset Slacks: Although one may think that
reset slacks can be calculated easily by performing existential
quantification on the delay symbols, this is not true due to the
binary encoding of delay symbols. For example, if bit 2 can
be successfully quantified without making the checker function
constant “1”, it means the reset recovery delay is either 0 or 4
(assume the least significant bit is 0). However, it is not clear
whether delays between 1 to 3 are acceptable. To address this
problem, we need a new encoding so that a continuous range
of slacks can be derived whenever one symbol bit is quantified.

To achieve this goal, we introduce a new symbol, sd, for
each delay symbol delay. The bit-length of sd is the same as
the maximum allowed slack for delay. The range of delay
is controlled by sd so that if bit n of sd (denoted as sd[n])
can be successfully quantified, then the register has slack up
to n + 1 (the slack is 0 if none of the bits can be quantified).

procedure delay encoding(delay, sd, m)
1 for (n=m-1; n ≥ 0; n- -)
2 if (sd[n] == 1 && delay > n + 1)
3 delay= 0;
4 if (sd == 0)
5 delay= 0;
6 return delay;

Fig. 4. Algorithm to generate the delay encoding function for quantification.

This can be achieved by the algorithm shown in Figure
4. The inputs to the algorithm are the original delay symbol
delay, a new symbol sd, and the maximum allowed slack
m. The function that we need will be returned as the output.
Such a function can be generated using a symbolic simulator
to simulate the pseudo code in the algorithm. The symbolic

trace of delay returned in line 6 is the required function.
With this encoding, we can calculate the reset slacks

of registers much more easily, and the algorithm is shown
in Figure 5. The inputs to this algorithm are the maxi-
mum slack m and the reset checker generated from algo-
rithm build reset checker with delays injected in line 1
of the algorithm replaced with the ones encoded using the
delay encoding algorithm. The outputs of the algorithm are
the bits of the sd symbols that can be successfully quantified
for each reset cutpoint. If the maximum bit of sd that can be
quantified is n, then the corresponding reset has slack n + 1.
In the algorithm, checker.sds is a set that contains all the sd
symbols generated due to our encoding of delays.

procedure flexible input slack calculation(checker)
1 checker=existentially quantify all delay and tb symbols

in checker;
2 foreach (bit ∈ bit of(checker.sds))
3 checker2 = existential quantify(checker, bit);
4 if (checker2 is not constant “1”)
5 checker = checker2;
6 succeed sds = succeed sds ∪ bit;
7 return succeed sds;

Fig. 5. Reset slack calculation algorithm for flexible inputs.

In the algorithm we first quantify all the symbols injected
to model delays and $random in the testbench. Next, we
iteratively quantify each bit of the checker’s sd symbols in
lines 2-3, and then check whether the the quantified function,
checker2, becomes constant “1”. If not, then checker is
replaced by checker2 and the bit is added to the set of success-
fully quantified sd set (succeed sds). Finally, succeed sds is
returned in line 7. In the algorithm, lines 2-6 are based on a
greedy approach where we try a potential slack range at a time
and discard the range that creates reset problems.

Note that the solution we found is neither optimal nor
unique. Depending on the order of quantification, slacks can
be moved from one reset cutpoint to another. If one would like
to have more slacks for a certain blocks, then the sd symbols
for the reset of those blocks should be quantified first.

IV. EXPERIMENTAL RESULTS

To evaluate our methods, we applied our techniques to
two processors, DLX and Alpha, from [12]. Both processors
are 5-stage pipelined and run the MIPS-lite and a subset of
the Alpha instruction set, respectively. The number of key
registers is 55 for DLX and 60 for Alpha, and the total number
of bits for those registers are 1153 for DLX and 1251 for
Alpha. We conducted our experiments on a Linux machine
running Ubuntu 8.04 with AMD Phenom II x4 940 CPU and
8G memory. Our implementation is based on a commercial
symbolic simulator [13] and the ABC package [14].

A. Results for Fixed Inputs

In our first set of experiments we applied fixed inputs to the
processors. We introduced one reset cutpoint for each register
to obtain the slack for each register. The maximum reset slack
for our analysis was six. We used two sets of inputs in this
experiment. The first set contained only NOP (no-operation)

TABLE I
DISTRIBUTION OF RESET SLACKS FOR THE DESIGNS.

Design Runtime Memory RS=0 RS=1 RS=2 RS=3 RS=4 RS=5 RS=6 Total
DLX(NOPs) 1.21s 6.5M 3 2 1 1 1 0 47 55
DLX(ADDs) 27.9s 14.6M 3 3 2 4 2 1 40 55
Alpha(NOPs) 1.67s 6.9M 5 4 1 2 0 0 48 60
Alpha(ADDs) 103.06s 35.7M 8 8 1 6 0 0 37 60

instructions, and the second set contained only ADD (addition)
instructions. The results are summarized in Table I. In the
table, column “RS=N” shows the number of registers with
maximum slack equal to N . The runtime and memory usage
are also included in the table.

From the results, we can see that our algorithm can find
reset slacks for most registers. In fact, many of the registers
have slack equal to six. The major reason is that the applied
instructions only exercised a small portion of the design. As
a result, many key registers did not have value changes at all
and could have large reset slacks. This observation is supported
by comparing the results with different input instruction sets:
when ADDs were used instead of NOPs, the slacks for several
registers reduced. The reason is that when ADDs were used,
a larger portion of the design was exercised, thus reducing the
slacks for some registers. In practice, since reset sequences are
known for most designs and those sequences typically do not
exercise the designs much, one can expect that most registers
will posses some reset slacks.

B. Results for Flexible Inputs

In the second set of experiments we applied our algorithm
to calculate reset slacks in DLX when inputs are flexible.
The inputs were from a constrained-random testbench. In
this experiment, we applied m NOPs followed by n flexible
instructions after the main reset was de-asserted and varied
these numbers to evaluate the performance of our algorithm.
The total number of symbolic simulation cycles was m + n.
In the DLX design, there were 19 implicitly grouped internal
reset signals to its registers and sub-modules. We regrouped
these reset signals into five domains according to their stages
in the pipeline and inserted a reset cutpoint for each domain.
Each reset cutpoint had two inputs: delay and sd. Symbols
were injected into these inputs according to the algorithm in
Section III-C.

The results are summarized in Table II. In the table we show
the runtime of our algorithm, memory usage, number of vari-
ables to quantify for each input sequence (#Var), the maximum
number of AIG nodes during quantification (#Node), and the
slack we calculated for each reset cutpoint (Sk1-5). From the
results, we can see that our algorithm could find reset slacks
effectively and efficiently: reset slacks were found for most
reset domains and runtime was within 1 minute. The only
reset domain with 0 slack was domain 1, which contained the
program counter. Since the address saved in the counter begins
to advance right after reset is de-asserted, it is expected to have
0 reset slack. The results also show that when a larger number
of flexible inputs was allowed, the reset slacks reduced. This
is because a larger portion of the design was exercised by the
flexible inputs which will change the values of some registers.

TABLE II
RESET SLACK ANALYSIS RESULT FOR FLEXIBLE INPUTS.

Input seq Runtime Mem. usage #Var. #Node Sk1 Sk2 Sk3 Sk4 Sk5
m=0, n=3 57.14s 48.4M 119 19752 0 1 2 3 1
m=4, n=0 0.29s 13.6M 28 116 0 1 2 3 4
m=1, n=3 56.49s 43.6M 183 6282 0 1 2 3 2
m=4, n=1 0.37s 18.3M 40 205 0 1 2 3 4
m=2, n=3 24.06s 43.2M 188 6528 0 1 2 3 3

From the results, we also found that our runtime was short
but it highly depended on the number of variables to quantify
and the maximum number of AIG nodes during quantification.
This suggests that Boolean quantification played an important
role in our algorithm. Research on finding good quantification
order exists [1], [11], and this is our future work.

V. CONCLUSION

Reset is one of the most important signals for many circuits.
However, since it is used infrequently, it is often routed at late
design stages. Due to the lack of routing resources, long wires
may be necessary, which create reset recovery issues that can
render the circuit useless. In this work we propose several reset
slack calculation techniques that can obtain the reset recovery
delay tolerance for design registers. This information gives
designers more flexibility to arrange the reset signals and allow
physical design tools to perform better optimizations. Our
empirical results show that our methods can effectively and
efficiently calculate the reset slacks for two processor designs

ACKNOWLEDGMENT

The authors want to thank Juergen Dirks (LSI Corporation,
Germany) for motivating this work. This research was sup-
ported by National Science Council, Taiwan, under Grant NSC
97-2221-E-002-216-MY3.

REFERENCES
[1] P. A. Abdulla, P. Bjesse and N. Eén, “Symbolic Reachability Analysis

Based on SAT-Solvers,” TACAS’00, pp. 411-425
[2] M. Bazes,“Circuitry and Method for Reset Discrimination,” US Patent,

5442310, Aug. 15, 1995
[3] V. Bertacco, “Scalable Hardware Verification with Symbolic Simulation,”

Springer, 2005
[4] R. E. Bryant, “Symbolic Simulation – Techniques and Applications,”

DAC’90, pp. 517-521
[5] K.-H. Chang, I. L. Markov, V. Bertacco, “SafeResynth: A New Technique

for Physical Synthesis,” Integration: the VLSI Journal, Jul. 2008, pp. 544-
556

[6] H.-Z. Chou, H. Yu, K.-H. Chang, D. Dobbyn, S.-Y. Kuo, “Finding Reset
Nondeterminism in RTL Designs – Scalable X-Analysis Methodology
and Case Study,” DATE‘10, pp. 1494-1499

[7] H.-Z. Chou, K.-H. Chang and S.-Y. Kuo, “Accurately Handle Don’t-
Care Conditions in High-Level Designs and Application for Reducing
Initialized Registers,” IEEE Trans. on CAD, Apr. 2010, pp. 646-651

[8] C. E. Cummings and D. Mills, “Synchronous Resets? Asynchronous
Resets? I Am So Confused! How Will I Ever Know Which to Use?”
SNUG, 2002

[9] C. E. Cummings, D. Mills and S. Golson “Asynchronous & Synchronous
Reset Design Techniques-Part Deux,” SNUG, 2003

[10] D. M. Gilday and P. L. Harrod, “Reset Synchronisation,” US Patent
Application, 20100138640 A1, Jun. 3, 2010

[11] F. Pigorsch, C. Scholl, and S. Disch, “Advanced Unbounded Model
Checking Based on AIGs, BDD Sweeping, And Quantifier Scheduling,”
FMCAD’06, pp. 89-96

[12] Bug UnderGround, http://bug.eecs.umich.edu
[13] Avery Design Systems Inc., http://www.avery-design.com
[14] Berkeley Logic Synthesis and Verification Group, ABC: A System for

Sequential Synthesis and Verification,
http://www.eecs.berkeley.edu /∼alanmi/abc/abc.htm

