
Optimization of Stateful Hardware Acceleration
in Hybrid Architectures

Xiaotao Chang1, Yike Ma4, Hubertus Franke2, Kun Wang1, Rui Hou1, Hao Yu2, Terry Nelms3
1IBM Research-China, 2IBM Watson Research Center, 3IBM Software Group

4Institute of Computing Technology, Chinese Academy of Science
{changxt, wangkun, hourui}@cn.ibm.com, {frankeh, yuh, tnelms}@us.ibm.com, ykma@ict.ac.cn

Abstract—In many computing domains, hardware accelerators
can improve throughput and lower power consumption, instead
of executing functionally equivalent software on the general-
purpose micro-processors cores. While hardware accelerators
often are stateless, network processing exemplifies the need for
stateful hardware acceleration. The packet oriented streaming
nature of current networks enables data processing as soon
as packets arrive rather than when the data of the whole
network flow is available. Due to the concurrence of many
flows, an accelerator must maintain and switch contexts between
many states of the various accelerated streams embodied in the
flows, which increases overhead associated with acceleration. We
propose and evaluate dynamic reordering of requests of different
accelerated streams in a hybrid on-chip/memory based request
queue in order to reduce the associated overhead.

I. INTRODUCTION
Network-optimized applications are constrained by ingress

and egress data rates, latency and throughput requirements, and
the temporal or streaming nature of the data as the current link
rates are approaching 40Gb/s. To address the computational
and I/O demands of this domain, processor chips are increas-
ingly built as Systems on a Chip (SoC), integrating massively
multi threading cores with network interfaces and generic and
application specific accelerators onto a single chip [1].
Acceleration opportunities present themselves at various

points in packet processing. The first opportunity is when
a packet arrives. All packets that enter the system must
be buffered, parsed, and scheduled on hardware threads for
further processing. Accelerating these tasks can significantly
increase performance. Decryption is also an opportunity for
acceleration. Packets can be encrypted at any layer, but the
most common locations are at the internet layer (IPSec) and
at the application layer (SSL/TLS). Decryption algorithms can
typically be implemented more efficiently in hardware than in
software. Another acceleration opportunity is decompression.
Compressed data are usually found at the internet layer and at
the application layer. At the internet layer data are compressed
before being encrypted (IPSec). This is commonly used with
VPNs to reduce the required bandwidth for low-speed WAN
links. At the application layer, HTTP 1.1 allows compressed
content and is commonly used to reduce the bandwidth re-
quirements for pages that are referenced often. In addition,
large file transfers over email and the web are frequently com-
pressed. Lastly, regular expression pattern matching (RegX) is
commonly accelerated. Applications that use RegX regularly

978-3-9810801-7-9/DATE11/ C©2011 EDAA

(e.g., intrusion detection/prevention, data leakage prevention)
can experience a large performance boost when accelerated.
In many usage scenarios, acceleration typically works on

one whole block of data at the application level after the
data stream has been reassembled and different subsequent
acceleration requests do not share any state. This kind of
processing is referred to as stateless. Compared to stateless
accelerators, stateful accelerators do not need to wait for all
the packets of a flow to be reassembled. It can process any
packet of the flow as it arrives. For instance intrusion detection
systems emulate the application layers and there is a need
to perform this emulation on a packet by packet basis. As a
result, the high flow concurrency of network traffic extends
to the accelerator module, requiring it to be stateful, i.e. the
accelerator has to maintain a context for each accelerated
stream associated with a flow when processing a packet of that
flow. Stateful accelerator examples are all units that follow a
stream model. These include compression and decompression,
cryptography, RegX, and Extensible Markup Language (XML)
processing.
Dependent on the accelerator, frequent context switching

can introduce performance overhead, especially when the con-
text size is large. In general, requests are fetched from a queue
and processed by the accelerator in FIFO order. Our approach
to reducing this overhead is to focus on the acceleration
request queue and reordering requests to reduce the number
of required context switches. In particular, our contributions
are the reordering design of a hybrid on-chip/memory based
request queue with limited resources, and the simulation based
performance evaluation of this design.
The remainder of this paper is organized as follows: Section

2 describes the common design of a hardware request queue,
based on which, Section 3 presents the design methods to
optimize for stateful hardware acceleration. Section 4 presents
the experimental setup, followed by simulation results.

II. BACKGROUND
When through the processing of the network stack sufficient

data has accumulated to start an acceleration request (and this
can be on a per packet base), the processing thread creates a
coprocessor request block (CRB[1]) that in general includes
the source data address, the target address and the context
address. The context is a unique memory area, referred to as
context ID or CID, that is allocated by the software associ-
ated with the specific accelerator and where the accelerator



maintains its state for an accelerated stream. The thread then
dispatches the CRB to the accelerator to execute. The quasi
concurrent submission from many threads can lead to the
accelerator being busy and hence CRBs typically need to be
queued up. In addition, the thread can asynchronously submit
CRBs, which allows the thread to continue computation,
potentially leading to further CRBs.
We expect that dependent on the architecture, a hardware

request queue can potentially hold a thousand entries. How-
ever, due to limited on processor chip area, it is unfeasible to
maintain the entire request queue on chip. Since millions of
packets can arrive per second in current networks and due to
well known bursty network behavior, it is easy to temporarily
exhaust the on-chip queue capacity. Once the queue is full,
threads can no longer submit additional CRBs and instead
need to wait until previous CRBs completed. One solution is
to utilize an additional spill queue, which is located in off-chip
memory. Additional requests are spilled into this spill queue.
Once the spill queue technique is utilized for acceleration,

the entire queue (on-chip plus off-chip) can be regarded as an
infinite queue. According to queuing theory [2], this model is a
standardM/M/1 model. We will useM/M/1 models as trace
generators to conduct experiments in subsequent sections.
Due to the CRB interleaving of various streams, the network

workload forces the accelerator to maintain the context of each
stream for every CRB. In addition, due to the limited silicon
area of the processor chip and the large size of the context for
some accelerator (decompression needs 32KB of context), it is
neither an option to keep the contexts of all active streams in
hardware nor the entire context in some cases. Consequently,
main memory needs to be utilized to maintain the context.
However, frequent stream context switching can introduce

significant delays due to the memory wall. This presents
an opportunity for optimization that we explore in the next
section.

III. REQUEST REORDERING FOR STATEFUL HARDWARE
ACCELERATION

To reduce the number of accelerator context switching
and thus the overhead associated with the context save and
restore memory operations, we propose to dynamically reorder
the request queue in order to collocate pending requests of
the same stream. To facilitate this, we describe a request
reordering technique (ORR) for the on-chip queue and a
spill request lookup (SRL) technique for the spill queue. One
property that we must guarantee is that reordering maintains
stability, i.e. that CRBs within the same stream remain in the
same relative order.
The basic operation of ORR is described as follows: once a

new incoming CRB arrives, it will be compared to all pending
CRBs in the on-chip request queue based on the CID. If no
match exists, the new CRB is inserted at the tail of the queue.
If it matches any pending CRBs, it will be recorded in the
on-chip-request reorder table (ORT) as the last CRB of that
stream. The result is that when the accelerator finishes one
CRB and further CRBs are pending, it will continue fetching

the next CRB for the same stream utilizing the ORT, thus
eliminating the need for a context switch.
When the on-chip queue is exhausted due to overload, the

spill queue will be utilized to hold extra requests. Since the
ORR can only detect the on-chip requests, the requests in the
spill queue are always kept in submission order. However,
once these requests are fetched from memory, they can be re-
ordered based on ORT to reduce the overhead associated with
acceleration. Unfortunately, if a large number of concurrent
streams (CS) are in flight, there will be limited opportunities
to reorder. For instance, if CS is larger than the on-chip queue
size and the requests of each stream arrive to the queue in close
to alternate order, the ORT will be of very limited benefit. We
therefore propose another approach to reorder requests in the
spill queue.
If we regard the on-chip queue as a window, all CRBs in the

spill queue fall outside this window. Obviously, the larger the
window size, the more opportunities are present for reordering.
The ORR provides a limited opportunity to all pending on-
chip CRBs to be reordered due to its limited window size.
We therefore define an additional window that represents the
information that covers the spill queue. We extend the design
of the spill queue control block with CAM-based table, named
stream lookup table (SLT).First, the spill queue is partitioned
logically into many CRB groups, each of which has a fixed
number of CRB slots. All CRBs in the same group belong to
the same stream. Secondly, each entry in the SLT is comprised
of one CID, one group address for the CRB group in the spill
queue and one offset for the next empty request slot. Once
a new CRB arrives, its CID is compared to the CID field of
all valid SLT entries. If it matches one entry, this CRB will
be spilled to the empty slot of that CRB group. The empty
slot address can be obtained based on the group address and
the slot offset in the matched SLT entry. If the new incoming
CRB does not match any SLT entries, the SLT will allocate
and populate a new entry. Meanwhile, this CRB is spilled to
the first slot of that corresponding group.
Once one CRB finishes in the accelerator, the next CRB

from the on-chip queue is fetched to process. In the case of a
previously full on-chip queue, it leaves hence one empty entry
for the CRB located in the first slot of the oldest CRB group
of the spill queue to be fetched. Subsequently, all other CRB
in this group will be fetched one by one every time an on-chip
queue entry becomes available. When there is no more CRBs
in the current group, it will be freed. The number of context
switching can be reduced significantly since most successive
CRBs have been already merged to the same group.
The SRL further extends the reordering window size. As the

simulation results will demonstrate, the ORR can only provide
benefits to smaller case, while the SRL can provide benefits
in higher concurrency cases.

IV. EXPERIMENTAL RESULTS
To demonstrate the efficiency of the proposed mechanism,

we conduct a simulation based evaluation. We focus on a
detailed performance study on the decompression accelerator



and only present high level results for the other accelerators.
The performance study targets two aspects: throughput and
response time.
For our analysis we first obtain the approximate service

times that are based on acceleration and context switching cost.
We assume an average payload of 1200 bytes per packet, an
average compression ratio of factor 4.91 [5] and a context state
of 2.5KB (2KB history [5] and 0.5KB dynamic Huffman table)
that needs to be loaded when multiple CRBs per stream are
present. There is no cost associated with swapping out a state
because that is inherent in the cost of writing the history and
output buffer of average 5892B (1200B*4.91) per CRB. These
parameters were obtained through the Mambo Simulator for
the IBM WSP [1][4], a wire-speed processor, combining 16
multithreaded IBM PowerPC cores with special-purpose ded-
icated accelerators. Mambo is an IBM full-system simulator.
Both functional and cycle accurate simulation support for all
four accelerators mentioned in WSP processor is integrated in
Mambo.
The accelerator can decompress at approximately 1B/cycle

when neither load nor write stalls are present [4]. Therefore,
the cycles required for an acceleration request are estimated at
the maximum of 1200 cycles for acceleration. Since 8 cache
line (64B) stores takes 300 cycles in WSP, 3452 cycles will be
taken for writing back 5892B of output. For a context switch
in, we use 1464 cycles to load 2.5KB context. Following
common queuing theory ofM/M/1 with Poisson distribution,
we create request arrival traces with varying numbers of
concurrent streams (CS = 8) to (CS = 2048) and various
submission rates to simulate increasing load on the various
studied systems of FIFO and varying ORT sizes and SLT sizes.
Each trace contains 100K CRBs.

A. Throughput Optimization
We first statically analyze the traces with different window

sizes, from 1 entry (FIFO) to 128 entries, as shown in Figure 1,
to determine the number of reordering that took place. The
reordering count of default FIFO means the number of two
successive CRBs, which belong to the same stream. As the
CS increases, the reordering count will decrease in the same
window size. At the same time, the reordering count increases
as the window size increases. In some cases, the reordered
CRBs can be up to 90% of all CRBs, which can lead to
substantial performance optimization we analyze next.
Figure 2 shows the throughput optimization of the decom-

pression accelerator with ORR only. With the reorder table size
increasing, the throughput increases up to 26.7%. The worst
case (CS = 2048) of throughput increasing is 2% when the
CS is significantly larger than the window size.
We now evaluate the impact of SRL for the spill queue. We

configure the slot number in one CRB group to 10 and consider
SLT sizes of 128 and 512 entries. For the SLT scenarios, we
fix the ORT to 128 entries from here on. Figure 3 shows
the increased throughput obtained through the addition of
SRL, especially as the CS increases. As expected, as long
as CS is smaller equal than the underlying SLT size, this

�

��

��

��

��

���

� � �� �� �� ��� �	�

ORT Size

R
e

o
rd

e
r 

C
o

u
n

t 
(K

)

CS=8

CS=32

CS=128

CS=512

CS=2048

Fig. 1. Reorder Count with ORR

�

	

��

�	

��

�	

��

� �� �� �� ��� �	�

ORT Size

T
h
ro

u
g
h
p
u
t 
O

p
t 
(%

) CS=8

CS=32

CS=128

CS=512

CS=2048

Fig. 2. Decompress Throughput Improvement with ORR over FIFO

mechanism is quite effective leading to over 20% performance
improvements. Even as the concurrent streams are 4 fold
that of the SLT table we still obtain a 7.2% performance
improvements over FIFO.
Besides the decompression accelerator, we also conducted

the throughput analysis for the other accelerators in the
WSP processor based on their context size and based on
their estimated service time considering acceleration and con-
text switching overhead. Rather than presenting the detailed
analysis, we limit the results in Table I, which shows the
peak throughput gain respectively with utilizing the request
reordering.
The throughput improvement of cryptography acceleration

amounts to only 4%, due to its limited conctext size of 64
bytes. Consequently, its overhead for the context switching is
not time consuming compared to the processing time, which
limits its throughput improvement.

TABLE I
PEAK THROUGHPUT GAIN ON DIFFERENT ACCELERATORS

Accelerator Context Size Throughput
in IBM WSP (byte) Improvement (%)

Decompression 2500 26.7
XML 256 15.8
RegX 192 9.9

Cryptography 64 4.0



�

	

��

�	

��

�	

��

� �� ��� 	�� ����

Concurrent Stream

T
h

ro
u

g
h

p
u

t 
O

p
t(

%
)

ORT=128

SLT=128

SLT=512

Fig. 3. Decompress Throughput Improvement with SRL over FIFO

B. Response Time Optimization
In this section, we are evaluating the benefits of the request

reordering with respect to the response time. In many applica-
tions, response time is critical in achieving the function of the
application. As compared to the throughput analysis above, in
response time sensitive applications (e.g. intrusion detection
devices), we can not drive the accelerators to their maximum
service rate. Using the trace generation method described
earlier, we increase the request submission rate λ and measure
the average response times. We report the response times
as a function of the normalized load γ which is defined as
γ = λ

μ
F IF O

, i.e. normalized to the load under the FIFO service
rate.
We investigate the following concurrent stream scenarios,

namely 128, 512 and 2048 accelerated concurrent streams.
Figures 8(a), 8(b), 8(c) show the impact of increased normal-
ized load (γ) on the response time for those scenarios given
different window size configurations of the ORT and SLT.
Through these graphs we observe that in the low concurrent
stream scenario (CS = 128) there is essentially no benefits
to be observed until a normalized load of γ > 0.8 is reached,
after which increasing ORT and SLT sizes provides benefits.
For instance for γ = 0.95, ORT = 128 and all SLT configu-
rations provide a 50% response time reduction. The addition
of SLT provides additional benefits for γ > 1.0. At γ = 1.2,
SLT = 512 provides an additional 36% reduction in response
time over ORT = 128. For the medium concurrent stream
scenario (CS = 512), ORT alone is mostly ineffective even
though some response time reduction can be observed. With
γ > 1.05 we still observe a 12% reduction for SLT = 512.
Finally for the high concurrency case (CS = 2048) we see
no benefits for load case γ <= 0.95. At γ = 1.0 we see
a 31% reduction in response time for all ORTs and SLTs
configurations, for γ = 1.2 we observe a 10% reduction by
adding the SLT to ORT. The results demonstrate that if CS
is higher than the ORT or SLT sizes, then our approach is of
limited benefit.

REFERENCES
[1] H. Franke, T. Nelms, H. Yu, H. D. Achilles, and R. Salz, B; Exploiting

heterogeneous multicore-processor systems for high-performance net-
work processing, IBM J. R&D, vol. 54, no. 1, Paper 2:1-14, 2010

1

10

100

1000

10000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized Load [γ]

R
e

s
p

o
n

s
e

 T
im

e
 [

μs
e

c
]

FIFO

ORT=8

ORT=32

ORT=128

ORT=128,SLT=32

ORT=128,SLT=128

ORT=128,SLT=512

(a) CS = 128

1

10

100

1000

10000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized Load [γ]

R
e

s
p

o
n

s
e

 T
im

e
 [

μs
e

c
]

FIFO

ORT=8

ORT=32

ORT=128

ORT=128,SLT=32

ORT=128,SLT=128

ORT=128,SLT=512

(b) CS = 512

1

10

100

1000

10000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized Load [γ]

R
e

s
p

o
n

s
e

 T
im

e
 [

μs
e

c
]

FIFO

ORT=8

ORT=32

ORT=128

ORT=128,SLT=32

ORT=128,SLT=128

ORT=128,SLT=512

(c) CS = 2048

Fig. 4. Impact of γ on Response Time

[2] Robert B Cooper, Introduction to queueing theory (Second edition),
North Holland; 1981

[3] Kannikar Siriwong, Lester Lipsky, Reda Ammar; Study of Bursty Inter-
net Traffic, Sixth IEEE International Symposium on Network Computing
and Applications (NCA 2007), 2007, pp.53-60,

[4] C. Johnson, D. H. Allen, J. Brown, S. Vanderwiel, R. Hoover, H.
Achilles, C-Y. Cher, G. A. May, H. Franke, J. Xenedis, C. Basso; A
Wire-Speed PowerTM Processor: 2.3GHz 45nm SOI with 16 Cores and
64 Threads; 2010 IEEE Int. Solid-State Circuits Conf; pp.104-105

[5] H. Yu, H. Franke, G. Biran, A. Golander, T. Nelms, and B. Bass; Stateful
hardware decompression in networking environments, 4th ACM/IEEE
Symp. Archit. Netw. Commun. Syst.,San Jose, CA, 2008, pp.141-150.


