
DynOAA - Dynamic Offset Adaptation Algorithm
for Improving Response Times of CAN Systems

Tobias Ziermann and Jürgen Teich
University of Erlangen-Nuremberg

Germany

Zoran Salcic
The University of Auckland

New Zealand

Abstract—CAN bus systems are used in many industrial
control applications, particularly automotive. Due to growing
system and functional requirements, the low capacity of the CAN
bus and usually strict conditions under which it is used in real-
time applications, applicability of CAN bus is severely limited.
The paper presents an approach for achieving high utilization
and breathes new life to CAN bus based systems by proposing
a dynamic offset adaptation algorithm for scheduling messages
and improving message response times without any changes to
a standard CAN bus. This simple algorithm, which runs on all
nodes of the system, results in excellent average response times at
all loads and makes the approach particularly attractive for soft
real-time systems. We demonstrate the performance improvement
of the proposed approach by comparisons to other approaches
and introduce a new performance measure in the form of a rating
function.

Index Terms—WCRT, Controller Area Network, CAN, re-
sponse time, distributed embedded systems

I. INTRODUCTION AND MOTIVATION

Many distributed embedded systems use a communication
bus for communication between their components, usually
called electronic control units (ECUs) or nodes. Examples of
such distributed embedded systems are found in automotive
and control applications. The communication bus has lim-
ited nominal capacity and bandwidth, and, in addition, the
simultaneous accesses to the bus by multiple nodes result in
conflicts that increase the response time of messages. In order
to address this problem, a usual approach is to use the bus with
a low load and utilization and, hence, reduce the likelihood of
simultaneous accesses and conflicts.

Today, the most common bus for distributed real-time
control systems is the controller area network (CAN) bus [2].
The CAN bus has not only the low bandwidth (maximum 1
Mb/s), but also potentially big latency, because messages with
low priority get the access denied.

The primary motivation for our work is how to increase
the utilization and at the same time reduce average response
times of the CAN bus in automotive applicatision by adding
more intelligence to the scheduling of messages. The proposed
approach for message scheduling specifically targets soft real-
time systems in which satisfying timing constraints is im-
portant, but missing the deadlines once in a while will not
lead the overall system to malfunction. Current techniques for
calculating the response times on priority-based serial buses
are very pessimistic [3] and result in low bus utilization. The
question we are trying to answer is: How can the existing bus
resources be better utilized by software modifications on the
nodes while keeping the bus intact?

A solution we propose is to distribute accesses from dif-
ferent nodes and application tasks to the bus in time and
thus minimize the probability of simultaneous accesses and
conflicts by taking into account the recent bus traffic history.
The distribution in time is achieved by setting different offsets
to message release times using software without changes
in the message format and with no hardware modifications.
The problem becomes more difficult due to the asynchronous
nature of the distributed system and the lack of reference clock.
Current approaches assign statically calculated fixed offsets to
messages that are assumed to be synchronous by using off-
line heuristics [6] that results in improved response times.
However, they do not consider the dynamics of the system. In
this paper, we propose a new method of dynamic adaptation
of offsets based on monitoring of the network traffic, where
each task that releases messages changes offsets on-line.

The rest of the paper is organized as follows. In Section II,
we define the problem and place it into the context of related
work. Section III gives the details of the dynamic offset
adaptation algorithm and illustrates its operation on examples.
Section IV compares the proposed approach with other ap-
proaches to message scheduling on CAN bus and introduces a
new rating function as a measure for the quality of scheduling.
Conclusions and future work are given in Section V.

II. PROBLEM DEFINITION AND RELATED WORK

In CAN [2], a message-oriented approach is chosen in the
data link layer. Four different types of frames are used to
transfer messages. We only consider the data frame, which
is used for data exchange. Each data frame has its unique
identifier. This identifier defines the message priority by which
the bus access is granted. After sending the identifier, only the
message with the highest priority is left and has exclusive bus
access.

...

 CAN Bus

CAN
Node 1

CAN
Node 2

CAN
Node n

s
1

s
2

s
3

s
k

m
1

m
1

m
1

m
2

m
3

m
k

t

response time

Task
3

Task
1

Task
2

Task
k

Figure 1. CAN-Bus based system model
978-3-9810801-7-9/DATE11/ c©2011 EDAA

The system we target can be described by a set of nodes
communicating over the bus as shown in Fig. 1. One or more
tasks on each node periodically initiate the communication,
i.e., release messages. The system as the whole is assumed to
behave asynchronously, without a common time reference for
the tasks on different nodes.

In our model, we abstract the tasks by considering only
the mechanism used to release messages called a stream.
A stream si can be characterized by a tuple (Np, Ti, Oi)
with 0 ≤ Oi ≤ Ti, that is, by a node Np the stream is
running on, a period Ti (time between any two consecutive
messages generated by stream si) and an offset Oi. The offset
is relative to a global time reference. It can therefore drift
over time, because the local time reference can differ from the
global one. The hyper-period P is the least common multiple
of all periods lcm{T1, T2, ..., Tk}. Assuming a synchronous
system, the schedule is finally periodic with the hyper-period.
A scenario consists of k streams. The priority by which access
is granted to the bus is given by the numbering of the streams.
A stream with a lower index, stream si, has higher priority than
stream with a higher index si+1. We assume the priorities are
set by the designer, typically according to the stream period
so that a rate monotonic scheduling is achieved.

A message is a single release or CAN frame of the stream.
The time between a message release and the start of its
uninterrupted transfer over the bus is the response time of
the message. In Figure 1 for example, the response time of
message m2 is three time slots, because it is delayed by the
running message m1. The worst case response time (WCRT) of
a stream during a certain time interval is the largest response
time of any message of the stream recorded during that time
interval. If no time interval is specified, the WCRT is of the
whole system lifetime, which is infinite, or of the simulation
time in the case of simulation runs used to simulate system
operation. In our model, we assume a discrete time with
a minimal system time resolution defined in advance. All
stream characteristic times are multiples of this minimal time
resolution. Therefore, the messages can potentially occur at
the same time, which results in larger response times. In our
analysis, we assume an offset free system as defined in [4].
This means the offsets of individual streams are not bound by
any constraints, but rather can freely be set by the designer.
This approach potentially offers the avoidance of conflicts by
setting the offsets appropriately in advance, before the system
starts the operation such as in [5].

Offset-based approaches calculate offsets off-line prior to
the system initialization. This is only valid if a common time
reference is available and the traffic has repetitive behavior,
the assumptions that do not hold for distributed systems.
Algorithms to find the optimal static offsets are known to
have exponential run-time [4], but near-optimal heuristics
with reasonable run-time exist: Dissimilar Offset Assignment
(DOA) [5]. In distributed systems, only the tasks and therefore
also the streams on the same node are synchronous. In [6],
the authors take advantage of this fact and propose an off-
line offset assignment algorithm (OOA). The basic idea of the
algorithm is to spread the release of messages by streams as far
as possible each from the other on each node. According to the
resulting schedule, the offsets are assigned to each stream, and

WCRTs for the streams are reduced compared to the worst-
case scenario, where all offsets are zero.

In our approach, we propose a dynamic adaptation of
offsets, which change over time as the traffic on the CAN bus
changes based on traffic monitoring carried out by individual
nodes (streams). The adaptation of offsets is done by a simple
algorithm, which does not require any significant computation,
which we call the dynamic offset adaptation algorithm or
simply DynOAA. The details of the algorithm as well as
examples of its operation are presented in Section III.

III. DYNAMIC OFFSET ADAPTATION ALGORITHM
(DYNOAA)

In addition to the system model from Section II, we make
some further assumptions. First, the DynOAA is targeted
and analyzed for automotive scenarios, particularly those as
described in [1]. Also, it does not deal with response times
during system initialization.

b b b bbbb bb bb

time

offset adaptations

released messages

monitor

longest_idle_time

longest busy
period

b b b

idle slot

busy slot

delay

busy_idle_list:

last_message
0 10 2 3 4 5 6 7 8 9

next_position

...

Figure 2. DynOAA illustration - timing diagram and busy_idle_list on a
single node

Because our algorithm considers the entire distributed sys-
tem with all message generating streams, the fact that one or
more streams are on the same node can be abstracted and
we will assume only one stream per node, which does not
affect the generality of the presented results. The DynOAA
is run on each node independently and periodically at certain
instances of time that will be discussed in Section III-B. An
illustration of the operation of the DynOAA for one stream
is shown in Figure 2. In the upper part of the figure, on the
top of the time line, the periodically released messages of the
stream are indicated by small arrows. The larger arrows on
the bottom of the time line indicate the instances when the
adaptations start or when DynOAA is run, which includes a
period of traffic monitoring. In Section III-A, we will first
look into how the adaptation (new offset calculation) is done
and in Section III-B, we will explain the adaptation triggering
process.

A. Adaptation

Before the adaptation takes place, the bus is monitored by
each stream for the time equal to the maximum period of all
streams in order to have enough time to characterize the recent
traffic on the bus. A list, from now on called busy_idle_list,
is created. An example of it is shown in the lower part of
Figure 2. It contains for each time slot during the monitoring
an idle element if the bus is idle and a busy element if the bus
is busy. The length of a time slot is in the first instance the
transmission time of one bit. From the busy_idle_list, we can
find the longest_idle_time and longest_busy_time, which are
the maximum continuous intervals when the bus was idle or
busy, respectively. When finding these intervals, we consider

the busy_idle_list as a circular list (by considering the first and
the last time slot adjacent). The variable last_message denotes
the amount of time passed between the current time and the
time the last message was released for this particular stream.
This value is needed to calculate when the next message would
be released. The next_position is the time that indicates when
in the next cycle a message should be scheduled. It is chosen in
the middle of the longest_idle_time interval. The next message
of the stream is then delayed, i.e. the offset is adjusted, so that
a message is released at the time specified by next_position.

A pseudocode that describes the adaptation of the offsets is
shown in Algorithm 1.

Algorithm 1 Offset adaptation
1: monitor_time = 0
2: while (monitor_time 6= max_period - 1) do
3: if (current_timeslot = busy) then
4: busy_idle_list.add(busy)
5: else
6: busy_idle_list.add(idle)
7: end if
8: monitor_time = monitor_time + 1
9: end while

10: if (first busy slot of LBP (see Section III-B)) then
11: next_position = position in the middle of the

longest_idle_time
12: delay = (next_position + last_message) mod pe-

riod
13: else
14: delay = 0
15: end if

B. Time of Adaptation
In distributed systems, all streams are considered indepen-

dent each from the other. If more than one stream starts
to execute the adaptation simultaneously, there is a high
probability that the value of the next_position at more than
one stream will be identical. Instead of spreading, the message
release times would in that case be clustered around the same
time instance. Therefore, we need to ensure only one stream is
adapting its offsets at the same time. Ensuring that only one
node is adapting is achieved if all nodes make the decision
whether to adapt or not based on a unique criterion based
on the same information, the traffic on the bus in this case.
The criterion we use is to select the stream belonging to the
first busy slot of the longest busy period (LBP). The LBP is
the longest interval of adjacent continuous busy slots without
any idle slots. The idea is that this stream causes the biggest
delay, because it potentially could have delayed all subsequent
messages in the busy period and therefore should be moved
first. If there are more than one LBP of equal length, the
first one is chosen. If the monitoring phases of all nodes are
synchronized, this mechanism ensures that all nodes choose
the same stream.

IV. RESULTS

Figure 3 shows WCRTs for all streams of a typical vehicle
body CAN for different synchronicity assumptions. A descrip-
tion of scenario 1 is given in Section IV-A. Assuming that

0 50 100 150
0

50

100

150

200

CAN streams sorted by decreasing priority order

W
o
rs

t
c
a
s
e
 a

n
d
 w

o
rs

t
fo

u
n
d

re
s
p
o
n
s
e
 t
im

e
s
 i
n
 m

s

fully asynchronous [3]

synchronous/asynchronous, offsets by DOA [6, 7].

synchronous, random offsets, maximum

synchronous, random offsets, average

Figure 3. Worst case response times and worst observed response times for
different synchronism approaches for scenario 1

all streams are mutually asynchronous results in the highest
WCRTs. Assuming that the streams on the same nodes are
synchronous and their offsets are set by the DOA algorithm
statically improves the WCRTs. The plots synchronous show
the results for the WCRTs that are measured by a synchronous
simulation. To simulate the asynchronous nature, 1000 differ-
ent random offset values were run. This comparison shows
a large overestimation gap when asynchronous assumption
is applied. On the other hand, as the simulated results are
obtained within a finite simulation time, there is no guarantee
for the WCRTs to be upper bounds when obtained by simu-
lation. However, we will demonstrate that DynOAA assigns
the offsets so that it avoids reaching the WCRTs in typical
automotive scenarios. Also, it most often finds optimal offsets,
i.e. the response times of all streams are reduced to zero.

A. Simulator

In order to evaluate the quality of our approach, we de-
veloped and used our own CAN bus simulator because the
existing simulators are not capable of describing scenarios
we used and extract the required properties. Our simulator
is event-driven with the simulation step equal to one CAN
bit. The full CAN protocol is reproduced by assuming worst-
case bit-stuffing and the error-free case. We can only simulate
the synchronous case, where all nodes have the same time
base. This means if the offsets are fixed, the schedule repeats
after time equal to the hyper-period. The asynchronous case
is simulated by using different random initial offsets.

The scenarios we use for our experiments can be split into
two groups. The first group consists of three close to real-
world scenarios from the automotive domain, see Table I.

scenario speed
(kbits)

no of
streams

mean workload max
period

source

1 125 145 0.51 2s [8]
2 500 85 0.51 1s [8]
3 500 56 0.48 2s [7]

Table I
CLOSE TO REAL-WORLD SCENARIOS USED FOR THE EXPERIMENTS

The second group consists of synthetic scenarios generated
by the Netcarbench [1] typical for the automotive domain with
the bus load that can be freely adjusted. For this group of
scenarios, we will always use a bus speed of 125 kbits with
different average load generated by the streams.

B. Rating Function
In this paper, we propose the following rating function: r =∑k
i=1

WCRTi

Ti
, where WCRTi is the worst case response time

of the stream i or the worst response time found in simulations
for the stream i, and Ti is the stream’s i period. This function
takes into account that streams with the large periods are more
sensitive to large response times. As an example, the rating
function for the motivating case in Figure 3 are shown in
Table II.

scenario r

fully asynchronous 26.52
synchronous/asynchrous 12.13
synchronous, maximum 4.35
synchronous, average 0.49

optimal 0

Table II
RATING FUNCTION VALUES FOR APPROACHES FROM FIGURE 3

C. Discussion
Figure 4 and 5 show the rating function over time for

different scenarios. The experiments were always run with 10
different random offset initializations. The continuous lines in
the plots represent the average of these 10 runs, while the
vertical error bars indicate the maximum and minimum value
of the rating function at that instance of time.

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

time (min)

ra
ti
n
g
 f

u
n
c
ti
o
n

90% load

80% load

70% load

60% load

scenario 1

Figure 4. Rating function as a function of time for different application
scenarios - maximal response times observed during the entire simulation

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5

time (min)

ra
ti
n
g
 f
u
n
c
ti
o
n

90% load

80% load

70% load

60% load

scenario 1

Figure 5. Rating function as a function of time for different application
scenarios - response times of the last adaptation interval taken into account

Figure 4 shows the rating function that uses the maximal
response time recorded since the start of the simulation. These
values are comparable to the WCRTs of an analytical analysis
[3], [6]. The rating function values for their analysis as shown
in Table III are significantly worse. Even though we cannot
prove that the response times have reached their real worst
values, the experiments by simulations show that the rating

function is increasing very slowly over time for a reasonable
amount of simulated time (1400 min ≈ 1 day).

Scenario 1 2 3 60% 70% 80% 90%
Analytical [3] 26 13.5 7.3 41 55 94 130

DynOAA (entire sim) 1 1.5 1.2 3 4.5 7.5 14.5
DynOAA (last interval) 0 0 0 0.2 0.4 0.8 2

Table III
ANALYTICAL AND MAXIMUM DYNOAA RATING FUNCTION FOR

DIFFERENT SCENARIOS

Figure 5 shows the rating function only for the last adap-
tation interval (2s in this case). We can see that it converges
very fast to a stable value. The plot also shows that we are
always improving compared to no adaptation case which is
represented by the rating values at time zero. If we are dealing
with a soft real-time system, where a few long response times
can be tolerated, our method offers outstanding performance.

V. CONCLUSION AND FUTURE WORK

We propose a new approach to scheduling messages on
a CAN bus that results in improved utilization of the bus
and reduction of message average response times and as
such particularly suited for soft real-time applications. The
approach is based on dynamic adaptation of offsets used for
message scheduling, which is done by each node (stream)
independently. The assumptions of our modeling, particularly
of asynchronous nature of nodes/streams on the CAN bus,
are more realistic than those used in previous approaches.
The proposed approach results in much better performance
under all bus loads, shown by simulation. Those reduced,
and sometimes optimal, response times are achieved without
the need for specific prior knowledge. The approach also
offers flexibility of network configuration change as it adapts
message offsets on-line, based on the observed traffic on the
bus. Our future work includes analysis of selective offset
adaptation on a subset of nodes, taking into account system
initialization as a part of the fully automated scheduling
approach, exploring other rating functions for comparison and
measurement of quality of the scheduling and the extension
of the approach to the other types of networks beyond CAN.

ACKNOWLEDGMENT
Supported in part by the German Research Foundation

(DFG) under contract TE 163/15-1.
REFERENCES

[1] C. Braun, L. Havet, and N. Navet. NETCARBENCH: A benchmark for
techniques and tools used in the design of automotive communication
systems. In 7th IFAC International Conference on Fieldbuses and
Networks in Industrial and Embedded Systems. Citeseer, 2007.

[2] CAN. Controller Area Network. http://www.can.bosch.com/.
[3] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller Area Network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 35(3):239–272, 2007.

[4] J. Goossens. Scheduling of offset free systems. Real-Time Systems,
24(2):239–258, 2003.

[5] M. Grenier, J. Goossens, N. Navet, et al. Near-optimal fixed priority
preemptive scheduling of offset free systems. In 14th International
Conference on Real-time and Network Systems. Citeseer, 2006.

[6] M. Grenier, L. Havet, and N. Navet. Pushing the limits of CAN-
scheduling frames with offsets provides a major performance boost. In
Proc. of the 4th European Congress Embedded Real Time Software (ERTS
2008), Toulouse, France. Citeseer, 2008.

[7] T. Herpel, K.S. Hielscher, U. Klehmet, and R. German. Stochastic and
deterministic performance evaluation of automotive CAN communication.
Computer Networks, 53(8):1171–1185, 2009.

[8] RTaW-Sim. Real-time at Work CAN Simulator.
http://www.realtimeatwork.com/.

