
Cost-Efficient Fault-Tolerant Decoder for
Hybrid Nanoelectronic Memories

Nor Zaidi Haron1,2 Said Hamdioui1
1Computer Engineering Laboratory, Delft University of Technology, The Netherlands

2Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
{N.Z.B.Haron1,2, S.Hamdioui1}@tudelft.nl, zaidi@utem.edu.my1,2

Abstract—Existing work on fault tolerance in hybrid nano-
electronic memories (hybrid memories) assumes that faults only
occur in the memory array and the encoder, not in the decoder.
However, as the decoder is structured using scaled CMOS devices,
it is also becoming vulnerable to faults. This paper presents a
cost-efficient fault-tolerant decoder for hybrid memories that
are impacted by a high degree of non-permanent clustered
faults. Fault-tolerant capability is achieved by combining partial
hardware redundancy scheme and on-line masking scheme based
on Muller C-gates. In addition, the cost-efficient implementation
of the decoder is realized by modifying the decoding sequence
and implementing it based on time redundancy. Experimental
results show that the proposed decoder is able to provide better
reliability of the overall hybrid memory system, yet requires
smaller area as compared to conventional decoder. For example,
when assuming the fault ratio between decoder and memory
array is 1:10 and at 10% fault rate, the proposed decoder
ensures 1% higher reliability of the overall hybrid memory
system. Moreover, the proposed decoder realizes 18.4% smaller
area overhead for 64-bit word hybrid memory.

I. INTRODUCTION

Recently, tremendous efforts have been made in exploring
new computing paradigm to enhance the performance of
memory chips. Referred to as hybrid nanoelectronic memories
(hereafter is referred to as hybrid memories), this emerging
paradigm shifts the functionality of data storage units to non-
CMOS devices, yet still relying on CMOS devices to provide
periphery tasks. Several research groups have proposed their
hybrid memories of which the memory array is structured
based on crossbar architecture [1]–[8]. The most prominent
advantage of hybrid memories is the potential to provide
1Tbit/cm2 chip area. On the other hand, hybrid memories are
expected to suffer from massive numbers of permanent and
non-permanent (transient and intermittent) faults leading to
serious yield and reliability issues [1]–[3].
To tackle the reliability issues, several literatures propose

to apply well-established fault tolerance schemes such as error
correction codes (ECCs) [1], [2],[9]–[14], sparing [9], [12], re-
configuration [1], [2], [11]. However, these literatures assume
that faults only occur in memory array and encoder but not in
decoder. This assumption does not hold for hybrid memories
because even at 130nm CMOS technology node, logic circuits
have already exhibited almost similar transient faults rate to
that of unprotected memories [15], [16]. Moreover, because of
technology scaling, manufacturing process variabilities arise
and might induces intermittent faults [17]. Therefore, it is

inevitable to apply fault tolerance scheme to decoder as well
to produce reliable hybrid memory system.
This paper presents a cost-efficient fault-tolerant decoder for

hybrid memories that are impacted by a high degree of non-
permanent clustered faults. The proposed decoder operates a
modified Redundant Residue Number System (RRNS) code
[14], which is implemented by combining partial hardware
redundancy and Muller C-gate to achieve fault tolerance.
Furthermore, to realize the cost-effectiveness, the decoding
sequence of the modified RRNS code is modified and imple-
mented based on time redundancy. Experimental results show
that the proposed decoder is able to provide better reliability
of the overall hybrid memory system, yet requires smaller
area and shorter decoding latency (for long memory word)
as compared to conventional decoder.
The rest of the paper is organized as follows. Section

II proposes the cost-efficient fault-tolerant decoder. Section
III presents the hardware implementation and experimental
results. Section IV concludes this paper.

II. COST-EFFICIENT FAULT-TOLERANT DECODER
This section describes the proposed cost-efficient fault-

tolerant decoder. First, it reviews the an architecture of hybrid
memories structured based on the modified RRNS code [14].
The architecture, referred to as D3R, assumes that no faults
occur in the decoder. Second, it discusses the extension of D3R
architecture by incorporating fault-tolerant decoder. Third,
it presents a modified decoding procedure realizing a cost-
efficient fault-tolerant decoder.

A. D3R Architecture
Figure 1 depicts the architecture of D3R hybrid memory

[14]. The top part of the figure shows the memory array
structured from non-CMOS devices, while the bottom part is
the peripheral circuitry structured from CMOS. This architec-
ture operates D3R codeword, a modified version of RRNS,
that comprises of two codeword parts: (i) the original the
codeword (C=DW+CW) and (ii) the duplicate codeword
(C ′=DW ′+CW ′), as illustrated in the memory array. These
D3R codeword parts are encoded based on low-cost moduli
set of m1=2

d

2 −1, m2=2
d

2
+1−1 and m3=2

d

2
+1 where d is

the width of the input data [19]. The D3R codeword length is
bD3R=b + b′=2×(�log2(m1)�+�log2(m2)�+�log3(m3)�). Be-
cause each D3R codeword part has a single checkword, it

978-3-9810801-7-9/DATE11/©2011 EDAA

�������	
������
�������
���
�

������ ���������

��������
�

�

�������
���
��

� ��
�

�����������	
���
����������

� �! �� �� ��! ���

�" �" �"� �"�

� ��

���� ��������� �����

� ��

Fig. 1. D3R hybrid memory architecture.

TABLE I
RESIDUE SET FOR EACH ITERATION OF D3R CORRECTION PHASE.

Swapping Residues
Iteration C C’

1 x′

1, x2, x3 x1, x′

2, x
′

3
2 x1, x′

2, x3 x′

1, x2, x′

3
3 x1, x2, x′

3 x′

1, x
′

2, x3

TABLE II
MULTIPLICATIVE INVERSES FOR CONVENTIONAL MRC.

Memory Moduli Multiplicative
Word d Inverses

m(i−u) mi g(i−u)i

16
m1=255 m2=511 g12=509
m1=255 m3=512 g13=255
m2=511 m3=512 g23=511

32
m1=65535 m2=131071 g12=131069
m1=65535 m3=131072 g13=65535
m2=131071 m3=131072 g23=131071

64
m1=4294967295 m2=8589934591 g12=8589934589
m1=4294967295 m3=8589934592 g13=4294967295
m2=8589934591 m3=8589934592 g23=8589934591

can detect a single erroneous residue. By duplicating them,
D3R codeword ensures a valid output data if any part is error-
free. Therefore, this code possesses error correction capability
t≤3 residues, which is better than that of conventional RRNS
code. Note that, conventional RRNS code that consists of six
residues (two-residue dataword k, and four-residue checkword
(n–k)) only posseses t≤�(n − k)/2�=�(6 − 2)/2�=2.
The architecture consist of a D3R encoder and a D3R

decoder. The D3R encoder consists of three modulo circuits
to encode a d-bit input to the corresponding residues x1, x2

and x3 simultaneously. The D3R decoder, referred to as Con-
ventional D3R (C-D3R) decoder, comprises of a buffer, two
detectors and a multiplexer. Note that the name Conventional
D3R (C-D3R) is to distinguish this decoder with the fault-
tolerant D3R proposed in this work. The two detectors operate
based on hardware redundancy where they decode the D3R
codeword parts (C and C ′) simultaneously (see Table I). All
required parameters for D3R decoding is given in Table II.
Literature [14] can be referred for more details.

��������

�	

��

�

�	

��

� ��

��

� ��

�������
��������
�������

�

��

���������
�������

���������
�������

�

��	������

�

����� ����� ����� ����� ����� ����������� ������ ������ ������ ������ ������

Fig. 2. Fault-tolerant DMR-D3R decoder.

B. Fault-Tolerant DMR-D3R Decoder

Figure 2 illustrates the block diagram of fault-tolerant
decoder proposed in this work; it is referred to as Double
Modular Redundancy-D3R (DMR-D3R). As opposed to C-
D3R decoder, DMR-D3R consists of two decoders: DMR-D3R
Decoder 1 and DMR-D3R Decoder 2. The output signals of
both DMR-D3R decoders are voted using inverted C-gates.
The C-gates are inverted to have the authentic output data
because the original one produces opposite logic value to the
input data when activated [18]. Because C-gates only change
their output if both inputs are identical, these asynchronous
logic gates are able to mask short period glitches. The possibil-
ity of two non-permanent faults to impact the same logic node
in two different DMR-D3R decoders simultaneously is very
low, i.e., 2×(1

d
)2 where d is input bit length. For example, for

64-bit decoders, the possibility is 2×(1
64)2=4.88×10−4. This

is where C-gate shows its superiority because even if there are
many glitches, as long as they occur at different time and/or
different logic nodes, the output is still unchanged.
Another difference of the proposed fault-tolerant DMR-D3R

decoder is that it is structured based on time redundancy
instead of hardware redundancy as in C-D3R. As shown
in Fig. 2, each DMR-D3R decoder comprises of a single
detector instead of two detectors in C-D3R [14]. The DMR-
D3R detector decodes the D3R codeword parts separately
(first C and then C ′). Each time it reads a three-residue
D3R codeword part (C or C ′), converts it to binary data and
compares it with the operating legitimate range 2d−1 where
d is input data length. If faults occur, the operation will be
iterated until the valid decoded data is found; each iteration
decodes the swapped residues given in Table I.
Because DMR-D3R operates based on time redundancy, it

might incurs smaller area yet operates slower as compared to
C-D3R that operates based on hardware redundancy. In order
to achieve a cost-efficient implementation in terms of both area
and time, a modification on the D3R decoding sequence has
been made. This will be explained in the next subsection.

TABLE III
MULTIPLICATIVE INVERSES FOR MODIFIED MRC.

Memory Moduli Multiplicative
Word d Inverses

mi m(i−u) gi(i−u)

16
m3=512 m2=511 g32=1
m3=512 m1=255 g31=128
m2=511 m1=255 g21=1

32
m3=131072 m2=131071 g32=1
m3=131072 m1=65535 g31=32768
m2=131071 m1=65535 g21=1

64
m3=8589934592 m2=8589934591 g32=1
m3=8589934592 m1=4294967295 g31=2147483648
m2=8589934591 m1=4294967295 g21=1

C. Modified Decoding Procedure
The key idea is to reverse the decoding sequence in such a

way that the decoder executes the residues of the codewords
in the opposite order as compared to that of the conventional.
In conventional RRNS, the decoding first executes the most
significant residue x1 and ends with the least significant
residues x3. However in this paper, it starts from the least
significant residues x3, and ends with the most significant
residue x1. This modification results in smaller decoding
parameters and in turns realizes simpler circuits (i.e., smaller
area and and faster decoding) than that of C-D3R.
Table III gives the parameters required for D3R decoding

including the modular multiplicative inverses gi(i−u) where i
and u are integers. It is interesting to note that the DMR-
D3R detector requires smaller modular multiplicative inverses
as compared to that of conventional decoding given in Table
II. The modified gi(i−u) comprise of g32=g21=1 regardless
the input data length and g31=2

d

2
−1 where d is the input

data length. Due to the nature of g31, the DMR-D3R de-
tector is realized with shifters instead of multipliers. This is
because g31 has the form of 100...02 (e.g., for 16-bit data
is 27=128=100000002), which can use shift operation to
accomplish a binary multiplication.
Figure 3 shows the functional units inside the proposed

DMR-D3R detector. It consists of shifters instead of multipli-
ers as in C-D3R. Also, x3 is connected directly to the adder,
while x2 and x1 are connected to their corresponding shifters.

�� �� ��

���	
��

���	
��

��

�� ��

��� �����

���
�����
�

���

��� ���

Fig. 3. Modified MRC-based DMR-D3R detector.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section gives the implementation and experimental
results of the proposed decoder. The focus will be on three
aspects, namely area overhead, time latency and reliability.

A. Setup

In this work the two decoders mentioned in Section II-A
and II-B were implemented. Note that C-D3R is based on the
conventional MRC algorithm and implemented using hardware
redundancy [14]. Contrarily, DMR-D3R decoder is based on
the modified MRC algorithm and implemented using time
redundancy (see Fig. 2 and 3). The implementation of the
encoder and decoder were done using VHDL on Xilinx ISE
and Synopsys Design Compiler tools.
Evaluation of the error correction capability was carried out

using Matlab simulation. A series of adjacent bits, each with
random length, that represent non-permanent clustered faults
were injected to the memories at various fault rates from 1%
up to 10%. At the same time, the faults were also injected to
the decoder with the ratio of 1:10 as compared to the faults
injected in the memory array. This ratio is set based on the
soft error rates between SRAM bit and logic for 90nm [15].

B. Results

Figure 4 illustrates the area overhead for the DMR-D3R
decoder as compared to C-D3R decoder. It shows that DMR-
D3R occupies substantial less area than C-D3R. E.g. for 64-bit
memory, the area for DMR-D3R is 18.4% smaller than that
for C-D3R. The difference increases linearly as the memory
word enlarges. Hence, it is expected that this benefit will be
more noticeable for larger memory word size, which is the
case for hybrid memories.
Figure 5 depicts the time latency for both decoders. It shows

that for smaller memory word size, C-D3R operates slightly
faster than DMR-D3R. However, as the memory word size
increases, this difference becomes insignificant. Moreover, for
memory word size bigger than 64-bit, DMR-D3R might oper-
ate faster than C-D3R. Taking the fact that hybrid memories
will be designed with longer memory word size, it can be
concluded that DMR-D3R suitable in terms of performance.

�
����
����
����
����
�����
�����
�����
�����
�����

�� �� ��
	

�����������

�
�
�
�
�
��
��
��
��
��
��

��
����
��� ����
�
��
����

���	 �	 ��� ����
�
��

�

Fig. 4. Area overhead of the implemented decoders.

�

�

�

�

�

��

��

��

��

�� �� ��
	

�����������

���
����	

�

�

�

�
����
�
��
���	

���� ������ ����
�
��

Fig. 5. Time latency of the implemented decoders.

� � � � � ��
��

�	

��

�

��

��

���

�������������

�
��
��
��
��
��
�
��

��
���
��
���

�

����� �!�"����#��$�%!�&%'��%��� ��
����� �!�"����#��$��&%'��%��� ��

Fig. 6. Correction capability of hybrid memories with both decoders.

Figure 6 shows the correction capability for 64-bit memory
decoded using the two decoders. It shows that DMR-D3R
decoder is able to correct better than C-D3R decoder
irrespective of the fault rate. The difference becomes larger
at higher fault rate, e.g., 10× greater at 10% fault rate
as compared to 1% fault rate. This result proves that the
DMR-D3R decoder improves the reliability of the hybrid
memory system especially at higher fault rates, which is the
case for hybrid memories.

To the best knowledge of the authors, no published work
has addressed this problem for hybrid memories except [13].
Besides of targeting random faults using bit-oriented ECC, the
decoder proposed by [13] is implemented using non-CMOS
devices. Contrarily, the decoder proposed in this work oper-
ates symbol-oriented ECC and is implemented using CMOS
devices. Nevertheless, the results from [13] will be used for
comparison.
The proposed DMR-D3R decoder can correct up to 50%

of clustered faults for 32-bit memory, while this is only 14%
for the decoder proposed in [13]. Moreover, the correction
capability of the former remains constant as the memory word
size increase, whereas the capability decreases in case of [13].
However, it is worth noting that the required memory array for
DMR-D3R is 1.5× larger than that of [13].

IV. CONCLUSION
This paper has presented a cost-efficient fault-tolerant de-

coder for hybrid nanoelectronic memories. The main objective
of this work is to improve the reliability of the entire hybrid
memory system by protecting the memory array as well as the
decoder. In order to achieve this objective, the advantages of
concurrent correction capability of ECC, simplistic feature of
hardware redundancy and rendezvous property of C-gate are
combined. Furthermore, by modifying the decoding sequence
of the RRNS-variant code and implementing it based on time
redundancy, the cost-efficient implementation of the fault-
tolerant decoder is realized. The proposed DMR-D3R decoder
offers smaller area overhead, faster operation and better overall
reliability when compared to the conventional C-D3R decoder
for large memory word size.

REFERENCES
[1] D. B. Strukov and K. K. Likharev, “Prospects for Terabit-Scale Nano-

electronic Memories”, J. Nanoscience and Nanotechnology, vol. 16, no.
1, pp. 137–148, 2005.

[2] D. B. Strukov and K. K. Likharev, “Defect-Tolerant Architectures for
Nanoelectronics Crossbar Memories”, J. Nanoscience and Nanotechnol-
ogy, vol. 7, no. 1, pp. 151–167, 2007.

[3] A. DeHon et al, “Nonphotolithographic Nanoscale Memory Density
Prospects”, IEEE Trans. on Nanotechnology, vol. 4, no. 2, pp. 215–228,
2005.

[4] M. A. Reed et al, “Molecular Random Access Memory Cell”, Applied
Physics Lett., vol. 78, no. 23, pp. 3735–3737, 2001.

[5] L. B. Kish and P. M. Ajayan, “TerraByte Flash Memory with Carbon
Nanotubes”, Applied Physics Letters, vol. 86, no. 9, pp. 1–2, 2005.

[6] R. J. Luyken and F. Hofmann, “Concept for Hybrid CMOS-Molecular
Non-volatile Memories”, J. Nanoscience and Nanotechnology, vol. 14,
no. 2, pp. 273–276, 2003.

[7] R. Waiser and M. Aono, “Nanoionics-based resistive switching memo-
ries”, Nature Materials, vol. 6, pp. 833–840, Nov. 2007.

[8] C. Kügeler et al, “High Density 3D Memory Architecture Based on the
Resistive Switching Effect”, J. Nanoscience and Nanotechnology, vol.
14, no. 2, pp. 273–276, 2003.

[9] C. M. Jeffery and R. J. O. Figueiredo, “Hierarchical Fault Tolerance for
Nanoscale Memories”, IEEE Trans. on Nanotechnology, vol. 5, no. 4,
pp. 407–414, 2006.

[10] S. Biswas et al, “A Pageable, Defect-Tolerant Nanoscale Memory
System”, in Proc. of IEEE Int’l Symp. on Nanoscale Architecture, pp.
85–92, 2007.

[11] F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System
Design for Hybrid CMOS/Nanodevice Digital Memories”, IEEE Trans.
on Nanotechnology, vol. 6, no. 3, pp. 341–351, 2007.

[12] N.Z. Haron et al, “Redundant Residue Number System Code for Fault-
Tolerant Hybrid Memories”, accepted for ACM Journal of Emerging
Technologies in Computer Systems (JETC), Oct 2010.

[13] H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoder for
NanoMemory Applications”, IEEE Trans. on Very Large Scale Inte-
gration (VLSI) Systems, vol. 17, no. 4, pp. 473–486, 2009.

[14] N. Z. Haron and S. Hamdioui, “A High Performance Cluster-Fault
Tolerance Scheme for Hybrid Nanoelectronic Memories”, in Proc. of
IEEE Int’l Symp. on Defect and Fault Tolerance of VLSI Systems, pp.
144–151, 2010.

[15] R. C. Baumann, “Radiation-Induced Soft Errors in Advanced Semicon-
ductor Technologies” IEEE Trans. on Device and Materials Reliability
vol. 5, no. 3, pp. 305–316, 2005.

[16] D. G. Mavis and P. H. Eaton, “Soft Error Rate Mitigation Techniques for
Modern Microcircuits”, in Proc. of 40th Int’l Reliability Physics Symp.,
pp. 216–225, 2002.

[17] C. Constantinescu, “Trends and Challenges in VLSI Circuit Reliability”,
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[18] D. E. Muller and W. S. Bartky, “A Theory of Asynchronous Circuits”,
in Int’l Symp. Theory of Switching, pp. 204-243, 1959.

[19] N. Szabo and R. Tanaka, Residue Arithmetic and its Application to
Computer Technology. New York: McGraw-Hill, 1967.

