
An efficient and scalable STA tool with direct path
estimation and exhaustive sensitization vector

exploration for optimal delay computation
Salvador Barceló, Xavier Gili, Sebastià Bota, Jaume Segura

University of Balearic Islands (UIB)
Palma de Mallorca, Spain

salva.barcelo@uib.es

Abstract— We present a STA tool based on a single-pass true path
computation that efficiently determines the critical path list. Given
that it does not rely on a two-step process it can be programmed to
find efficiently the N true paths from a circuit. We also report and
analyze the dependence of complex gates delay with the sensitization
vector and its variation (that gets up to 15% in 65nm technologies),
and consider such effect in the path delay estimation. Delay is
computed from a simple polynomial analytical description that
requires a one-time library parameter extraction process, making it
highly scalable. Results on combinational ISCAS synthesized for
three technologies (130nm, 90nm and 65nm) provide better results in
computation time, number of paths reported and delay estimation for
these paths compared to a commercial tool.

Keywords: delay-model, timing-analysis

I. INTRODUCTION

Timing analysis is a key step in the VLSI design flow whose
significance and complexity increases with technology scaling
due to new physical phenomena appearing in nanometer
technologies [1][2]. The yield of the manufacturing process can
increase considerably using a highly accurate timing analysis tool
capable of finding true critical paths, and identifying those gates
having higher sensibility to process variations and environmental
conditions [3].

When a circuit design is synthesized using standard cells,
CAD algorithms are designed to reduce circuit area, power
consumption and propagation delays in addition to optimizing
other parameters. To accomplish this goal synthesis tools use
complex gates, i.e. circuit structures that combine primitive logic
functions like NOT, AND, OR, NAND, NOR, in a single CMOS
structure that reduces the number of transistors required to
perform a given logic function. Typically, complex gates
comprise a combination of few primitive functions (as detailed in
Section II) although more complicated functions like full-adder
or multiplexer are also common. In the context of timing
analysis, a typical characteristic of complex gates vs. basic gates
is that, in general, it is possible to find a set of vectors that
sensitize each gate input while single gates have typically only
one sensitization vector [4]. In this work we show that the gate
delay when propagating a transition through a given input of a
complex gate may vary significantly depending on the input

vector used to sensitize such an input with the consequent impact
on the circuit-level timing computation.

In some works, complex gates are converted to primitive
gates prior to timing analysis thus applying the delay model to
basic gates [5]. This methodology may be a source of
inaccuracies since the circuit used for simulation has a topology
that differs from the actual circuit structure being finally
manufactured. Other works analyze the delay of complex gates
through a transistor-level approach providing good accuracy at
the cost of very complex expressions that result in a slow
computation time at the circuit level [6][7].

Most critical path algorithms operate in a two-step procedure
such that first look for structural paths and compute their delay,
and then try to sensitize iteratively the longest paths until the
longest true path is found [8]. In this way, the delay is computed
independently of the particular input vector used to sensitize each
complex gate, which may introduce a relatively large uncertainty
in overall delay estimations.

In this work we analyze the impact of the sensitization input
vector on the propagation delay for complex gates showing that
delay variations may get up to 20% depending on the technology
used. We provide an insight about the root causes of such
variations through a careful transistor level analysis. We
conclude that, given the delay variation observed depending on
the sensitization vector, timing analysis must be done considering
which sensitization vector is used.

The rest of the paper is organized as follows: In section 2 we
show two examples of input-vector-dependent delay and describe
its causes. Section 3 explains the method used for delay
estimation, while the results obtained with this method are
detailed in Section 4. Finally the conclusions and future work are
discussed in Section 5.

II. COMPLEX GATES DELAY VARIATION EXAMPLES

Without lose of generality, we illustrate the delay dependence
with the sensitization vector using two complex gates included in
almost all standard cell libraries. One of such gates is AO22
(referred to as AO2N in some technologies), being a four input
gate that implements the logic function in (1), and whose logic
symbol is shown in Fig. 1a. The other complex gate considered is

978-3-9810801-7-9/DATE11/©2011 EDAA

OA12 (AO7N in some technologies), being a three input gate for
which only one of its inputs has multiple input vectors to
sensitize the gate. The gate logic function is given by (2) and its
symbol is shown in Fig. 1b.

Gates AO22 and OA12, and in general all complex logic
cells, have more than one input vector that sensitizes each input
and allows propagating a transition through such input toward the
gate output. The sensitization vectors for each input are
computed easily from the gate logic function. For some gate
inputs, in some cases only one input vector allows propagating a
transition through such an input, but in most cases more than one
sensitization vector is found. Tables 1 and 2 list all sensitization
vectors for each complex gate input. The logic value "T",
represents a transition either rising or falling.

Table 1 shows that gate AO22 has three sensitization vectors
for each input, leading to a total of 12 different delay propagation
values. For gate OA12 only one input (input C) shows multiple
sensitization vectors as shown in Table 2.

We carried extensive electrical simulations to compute the
gate delays through each input for all the sensitization vectors for
three CMOS technologies (130nm, 90nm and 65nm) at nominal
supply voltage and 25ºC. Each gate was loaded with a gate of the
same type.

Table 3 shows the delay results obtained when propagating a
transition through input A for gate AO22 for its three
sensitization vectors, and Table 4 provides the results when
propagating a transition through input C for gate OA12. For each
gate the Case 1 delay is taken as a reference value to which the
delay of Cases 2 and 3 are referred.

Results in Tables 3 and 4 show propagation delay variations
with the input sensitization vector that reach up to 22%
depending on the gate structure and technology. For the 65nm

technology, delay variation may get to almost 12 % (Case 2 vs
Case 1 for gate AO22).

III. TRANSISTOR LEVEL ANALYSIS

We investigated the root cause of the delay variations with
the sensitization vector to get insight on this phenomenon
through a transistor-level analysis. The two complex gates
considered implement non-inverting functions, and require an
output inverter for a CMOS implementation. Such an inverter
does not influence the delay variation with the sensitization
vector and therefore it is not considered in the transistor-level
analysis. Fig. 2 shows the transistor-level analysis for gate AO22
and represents the three input vectors that propagate a falling
transition through input A. A non-dashed cross on a transistor
indicates that such device is OFF, while a non-dashed arrow
close to a device indicates that such transistor is on. A dashed
cross or arrow represents that such a transistor makes a transition
and indicates the final state once the switching input is at its final
state (i.e. a dashed arrow indicates a transistor that switched from
off to on, while a dashed cross indicates a transistor that changed
from OFF to ON).

Results in Table 3 show that Fig. 2a corresponds to the fastest
transition, while Fig. 2b corresponds to the slowest one. As
shown in the Figures, the current charging the output node must

a) Case 1 b) Case 2 c) Case 3
Figure 2. Gate AO22 transistor-level schematic and current paths for each

sensitization vector.

 a) AO22 b) OA12
Figure 1: Two examples of complex gates.

Table 2: Propagation table OA12

Table 1. Propagation table AO22

Table 3. AO22 Propagation delay (Input A) (delays in ps)

Table 4. OA12 Propagation delay (Input C) (delays in ps)

Case 1 Case 2 Case 3 %diff 2 %diff 3

130nm
In Rise 121,29 125,62 121,51 3,57% 0,18%

In Fall 131,45 157,25 149,15 19,63% 13,47%

90nm
In Rise 60,10 63,13 59,16 5,04% -1,56%

In Fall 76,37 92,86 85,71 21,59% 12,23%

65nm
In Rise 110,23 109,85 107,40 -0,35% -2,57%

In Fall 116,87 131,01 125,30 12,10% 7,21%
(1)
(2)Z=AB∗C

Z=A∗BC∗D

Case 1 Case 2 Case 3 %diff 2 %diff 3

130nm
In Rise 120,30 105,46 99,89 -12,33% -16,97%

In Fall 151,23 146,71 149,16 -2,99% -1,37%

90nm
In Rise 60,47 51,98 50,13 -14,05% -17,11%

In Fall 96,68 92,62 94,48 -4,20% -2,27%

65nm
In Rise 99,07 93,60 89,94 -5,53% -9,22%

In Fall 91,13 88,78 90,25 -2,57% -0,97%

A B C D Z

Case 1 T 1 0 0 T

Case 2 T 1 1 0 T

Case 3 T 1 0 1 T

Case 1 1 T 0 0 T

Case 2 1 T 1 0 T

Case 3 1 T 0 1 T

Case 1 0 0 T 1 T

Case 2 1 0 T 1 T

Case 3 0 1 T 1 T

Case 1 0 0 1 T T

Case 2 1 0 1 T T

Case 3 0 1 1 T T

A B C Z

Case 1 T 0 1 T

Case 1 0 T 1 T

Case 1 1 0 T T

Case 2 0 1 T T

Case 3 1 1 T T

pass through transistor pA. In the fastest case, both parallel
transistors pC and pD are ON, allowing a higher current to pass
through pA, leading to a quicker charging of the output node. In
the other two cases only one of the two top parallel transistors
(either pC or pD) is ON. The relative delay difference between
Case 2 and Case 3, is due to the transistor nC being ON in Case 2
and creating an additional current path to charge internal parasitic
capacitors. Such an additional current is taken from the current
coming from the pMOS devices that is therefore not contributing
to switch the output. As a result, the output transition is slower in
this case due to such a current component.

The behavior of gate OA12 is analogous to the AO22 case.
Fig. 3 shows the transistor-level diagram for each sensitization
vectors that pass a rising transition at input C toward the gate
output. Fig. 3c corresponds to the fastest transition. For this input
vector transistors nA and nB are both ON, increasing the current
available through nC with respect to the other two cases where
only nA or nB are ON. Case 2 (Fig. 3b) shows a delay slightly
larger than Case 1 (in both cases only one nMOS transistor is ON
in the parallel structure) since transistor pB is ON increasing the
amount of charge that must be drained from the output node
when charging the internal parasitic capacitors.

The analysis carried over in this section together with the
results shown in Tables 3 and 4 highlight that if a logic gate has
more than one sensitization vector for a given input it is
important to consider which input vector is actually applied to
sensitize such input to the gate when performing timing analysis.

IV. DELAY MODEL, HEURISTIC AND TOOL

We developed a timing analysis tool that combines a specific
delay model and algorithm to find true paths in a combinational
circuit. The delay model is analytical through a polynomial
expression similar to SPDM [9][10]. Such a polynomial model is
used to estimate both the gate propagation delay and the output
transition time, since the latter is required to compute the
propagation delay of the next gate within the path. The second
component of the timing analysis tool is the algorithm developed
to find true paths in a combinational circuit. Such an algorithm is
based on the RESIST algorithm [11], and was specifically
developed to consider the dependence of the delay with the input
vector for complex gates.

A. The delay model

The delay model includes multiple variables like input
transition time, output load, temperature and supply voltage, and
can be easily extended to accommodate additional variables. The
analytical nature of the model provides some advantages over the
widely used LUT (Look-Up Table) based approaches. The main
advantages are: a faster computation time due to interpolations
required by LUT methods, and less memory space required to
store the model data.

Equation (3) shows the basic form of the analytical model
used to compute propagation delay and output transition time of a
gate. Fo is the equivalent fanout (defined below), tin the input
transition time, T is the temperature and VDD the supply voltage.
The parameters of the model, represented by Pijkl in (3) are
obtained from electrical simulations of the cell.

(3)

The equivalent fanout (Fo) of a gate G, is the ratio between
the capacitance at the gate output Cout (considering all the actual
gates connected) vs. its input capacitance. Its value would
correspond to the number of gates of the same type than G that
should be connected to G output to obtain Cout. The equivalent
fanout is computed from the input capacitance of each gate type
estimated by integrating the input current during an input
transition. Such value divided by the supply voltage value
provides an estimation of the gate input capacitance. Electrical
simulations showed that this value is independent of input
transition time, temperature and supply voltage, but takes
different values for rising and falling edges.

The electrical simulations from which the model parameters
are obtained, are done automatically and systematically for a
given technology library, and consist of a set of iterative
simulations. Each iteration uses a different combination of values
for each variable considered, for which the propagation delay and
output transition time for rising and falling input transition are
determined. Such an iterative simulations are repeated for each
gate input and each input vector that sensitizes that input. This is
done to account for the dependence described in Section II.

Once the simulations are done, a recursive polynomial
regression procedure is applied to extract the model parameters.
The maximum order for each variable (indexes m, n, o, p in (3)),
are adjusted during the extraction process to provide the desired
accuracy in the estimation.

An application was developed to perform the whole process
automatically: determining all sensitization vectors for each gate
input, generating the scripts for the iterative electrical
simulations, and finally extracting the model parameters from
simulations.

B. The path finding algorithm

The second component of the STA tool is the algorithm that
finds all paths that propagate a transition from each input of a
combinational circuit to its output (i.e finds the true paths). Most

a) Case 1 b) Case 2 c) Case 3
Figure 3. Gate OA12 transistor-level schematic and current paths for each

sensitization vector.

f Fo , tin , T , V DD=∑
i=0

m

∑
j=0

n

∑
k=0

o

∑
l=0

p

P ijkl⋅Fo i⋅tin
j⋅T k⋅V DD

l

existing tools are based on a two-step procedure that first
identifies a set of structural paths without checking if they are
true paths and then compute their delay [8]. On a second step,
the tool verifies if the set of paths ordered from longest to
shortest are true paths, ending up with a list of ordered true paths.
Such procedure has the disadvantage of ignoring how many paths
must be included in the initial list to find a number N of slowest
true paths. Moreover, if the delay of each gate is estimated before
computing the sensitization vector, the gate delay value might be
incorrectly estimated contributing to an accumulative error in the
delay estimation process because of the delay dependence with
the sensitization vector reported in previous section.

In this work we develop a path finding algorithm that
sensitizes the path while computing its traverse through the
circuit. The algorithm preserves as different paths those having
the same course (i.e. traversing the same sequence of gates) but
using different sensitization vectors at any of the gates. In this
way, the information about the delay dependence with the
sensitization vector is maintained.

The algorithm starts at a circuit input and advances node to
node until an output is reached. If the node being analyzed has a
fanout greater than 1 (i.e. is a fanout stem), or the next gate has
multiple sensitization vectors, the process state is saved. The
algorithm tries to sensitize the next gate and justify the logic
values assigned until the inputs of the circuit are reach. If a logic
incompatibility is found, all the paths that sharing the current
sub-path are discarded and the algorithm jumps to the last saved
point. If no incompatibility is found, then the output node of the
sensitized gate becomes the new current node and the process is
repeated.

Once the algorithm reaches an output node, the path is saved,
and the algorithm returns to the last saved state and continues
sensitizing the next gate having current node as an input. If there
are no states saved, the process starts from the next circuit input
node until the last input node is analyzed. Each time that a logic
value is assigned to a node, such value is propagated through all
the gates having such node as an input. This procedure helps in
early detection of logic inconsistencies and improves the
algorithm performance because it is less complex than a
justification process [12].

To perform this logic propagation step efficiently, the
algorithm uses a logic system with semi-undetermined values
that allow identifying a logic incompatibility before all implied
nodes are set (e.g. a falling transition applied to input A of an
AND2 gate with an undetermined value to the B input, leads to a
state that starts with an unknown value, but ends with a logic 0,
this is a semi-undetermined logic value represented as “X0”)
[13]. Moreover, the logic system developed has the property of
considering simultaneously both transitions on a given node (i.e.
rising and falling), we call this dual value logic system. Using
this technique the algorithm computes simultaneously both
transitions through a given path the same step considering only
one stored value per node. This method leads to an increase in
the algorithm speed to trace all true paths, and avoids passing
twice through the same path (one for rising input transition and
another for falling input transition).

V. RESULTS

A. Test circuit

We first report initial results on a simple circuit shown in Fig.
4 to illustrate how the developed algorithm works compared to a
commercial tool. The critical path of the sample circuit in Fig. 4
passes through input A of an AO22 complex gate (shown in
dashed box). The easiest way to sensitize the complex gate leads
to the smaller propagation delay for this path, although it is also
possible to sensitize the gate with an input vector that provides a
larger delay. The commercial tool correctly provides the critical
path that propagates a falling edge through nodes N1-n10-n11-
n12-N20, as expected. The input vector used to sensitize the
critical path is:

N1=F N2=1 N3=1 N4=1 N5=1 N6=0 N7=X

corresponding to the easiest option that assigns a logic 0 to node
N6 and therefore doesn't require to assign n13 nor justifying its
value to an input node. Setting N6 to 0 leads to the shortest way
to sensitize the AO22 gate, but ignores another case having a
larger propagation delay for that path, that can be obtained
sensitizing gate AO22 with a vector that results in a larger delay.
This second vector requires a more complex justification process
to assign logic values until reaching an input node.

The tool developed provides two paths passing through the
same nodes and starting with a falling transition, each with
different input vector. One is the same vector provided by the
commercial tool, and the second one is:

N1=F N2=1 N3=1 N4=1 N5=1 N6=1 N7=0

Table 5 provides the delay obtained from electrical
simulations of the critical path for the two input vectors. It is
shown that the additional path provided by the tool developed
exhibits a delay increase of 7% with respect to the one given by
the commercial tool. Such an erroneous estimation is due to not
considering the multiple sensitization vectors of complex gates.
The tool proposed in this work identifies correctly the path with
larger delay.

Figure 4. Test circuit

Table 5. Delay vs Input vector for the simple circuit in Fig 4.

Input vector Delay (ps)

N1=F, N2=1, N3=1, N4=1, N5=1, N6=1, N7=0 387,553

N1=F, N2=1, N3=1, N4=1, N5=1, N6=0, N7=X 361,06

In this work we only consider steady logic values applied to
the inputs of complex gates, future versions of the tool are
currently developed to consider multiple simultaneous
transitions, as well as considering parameter variations on the
delay model. Given that the tool is designed to rely on analytical
delay descriptions only the delay model needs to be included.
This process is already designed.

B. ISCAS circuits

The proposed STA tool, composed by the critical path
algorithm and the delay estimation engine, was developed in C++
and ran on a Core2 Quad processor. The focus of this work is on
the delay variation with the input vector for complex gates, and
therefore results are focused on analyzing the delay of the paths
having more than one sensitization input vector due to complex
gates. We tested the tool developed using the ISCAS
combinational circuits synthesized on three CMOS technologies,
130nm, 90nm and 65nm.

To generate the results we first determined the paths having
more than one sensitization vector. Then the tool generated a
script for the commercial tool to explore these paths, and import
the report generated. With this information, we compared the
delay estimation and the input values assigned to the complex
gates within each path, to those generated by the developed tool
and the electrical simulations. Finally, we computed the
percentage of paths for which the commercial tool identifies
correctly the input vector that provides the larger delay. Each

path obtained was simulated electrically with Spectre to verify
that it was really a true path and to determine the input vector
providing the larger delay.

Table 6 shows the results about the ability to identify the
input vector that induces the worst-case delay for each path for
both the developed and commercial tool. The second column
gives the total number of input vectors reported by the developed
tool that can sensitize a true path, and the third column indicates
the number of paths having more than one sensitization vector,
being the paths of interest in this work. The fourth column is the
computation time in seconds required by the tool to find the paths
and the input vectors. The fifth column gives the backtrack limit
used in the commercial tool and the next column shows the cpu
time in seconds. Column “#Paths” gives the number of paths

Table 6. Technology independent critical path identification results

Table 7: 130nm delay comparison vs electrical simulation

c17 1,92% 4,61% 1,91% 5,26% 9,94% 21,16% 8,63% 24,16%

c432 1,24% 2,59% 6,02% 28,96% 6,76% 7,53% 17,22% 44,11%

c499 3,31% 5,20% 6,44% 32,47% 4,11% 4,12% 11,70% 25,37%

c880a 2,11% 7,38% 4,63% 68,03% 3,31% 7,11% 13,78% 64,13%

c1908 1,66% 3,65% 4,13% 26,67% 7,39% 8,71% 17,99% 61,60%

c2670 0,59% 1,08% 4,10% 29,09% 8,95% 27,89% 15,31% 306,95%

c3540 3,04% 5,63% 5,33% 20,05% 5,10% 5,10% 19,45% 109,07%

c5315 6,31% 7,41% 6,32% 29,38% 10,60% 13,59% 17,75% 53,62%

c6288 2,39% 7,86% 3,50% 31,99% 10,59% 22,66% 15,38% 82,24%

c7552 5,38% 9,67% 7,24% 22,35% 11,59% 21,17% 16,23% 58,45%

Developed tool Commercial tool

ISCAS
Circuit

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Table 9: 65nm delay comparison vs electrical simulation

c17 9,01% 12,71% 8,80% 16,59% 29,91% 59,99% 28,20% 59,99%

c432 7,82% 9,75% 9,29% 29,53% 29,09% 32,94% 31,56% 103,06%

c499 3,94% 5,91% 9,35% 35,27% 28,20% 33,99% 37,84% 248,47%

c880a 1,65% 3,79% 8,86% 30,87% 33,32% 99,43% 25,64% 129,93%

c1355 4,10% 7,01% 9,05% 32,68% 27,95% 34,82% 39,11% 136,04%

c1908 4,05% 5,96% 6,24% 21,16% 23,57% 31,39% 28,11% 156,99%

c2670 2,35% 6,81% 5,67% 16,34% 19,87% 29,60% 21,01% 49,58%

c3540 3,98% 7,61% 9,33% 30,07% 25,67% 40,12% 32,11% 77,43%

c5315 5,87% 10,04% 8,81% 22,34% 31,01% 57,64% 26,28% 81,42%

c6288 3,29% 8,75% 7,81% 20,14% 23,47% 62,37% 34,69% 64,58%

c7552 5,42% 11,01% 8,43% 19,68% 26,33% 42,11% 33,84% 67,12%

Developed tool Commercial tool

ISCAS
Circuit

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Table 8: 90nm delay comparison vs electrical simulation

c17 2,93% 5,12% 3,21% 7,28% 19,92% 40,58% 18,42% 42,08%

c432 4,87% 8,87% 8,76% 52,22% 17,92% 20,23% 24,39% 73,58%

c499 11,20% 26,70% 7,96% 41,26% 16,15% 19,05% 24,77% 136,92%

c880a 6,21% 9,67% 6,74% 49,45% 18,31% 53,27% 19,71% 97,03%

c1908 2,88% 5,33% 6,59% 29,67% 17,67% 21,76% 28,55% 98,82%

c2670 2,32% 3,52% 5,17% 25,12% 16,26% 29,64% 21,71% 231,97%

c3540 4,11% 6,87% 6,21% 26,14% 15,89% 31,45% 26,87% 66,88%

c5315 5,64% 9,13% 5,16% 27,19% 18,52% 28,79% 20,36% 60,09%

c6288 3,55% 8,61% 4,94% 18,46% 13,25% 23,74% 18,56% 58,34%

c7552 7,36% 12,04% 7,62% 17,58% 16,23% 39,25% 23,34% 61,87%

Developed tool Commercial tool

ISCAS
Circuit

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Mean
path
error

Max
path
error

Mean
gate
error

Max
gate
error

Developed tool Commercial tool

Input vectors #Paths #True paths #False paths

c17 32 8 < 1 1000 < 1 8 8 0 0 0,0% 62,5%

c432 10628 2018 15 1000 1000 680 62 258 32,0% 27,2%

c499 16752 4828 16,03 1000 7340 4828 593 0 4235 87,7% 56,7%

c880a 96172 5010 8,6 1000 23,4 1000 519 0 481 48,1% 10,0%

c1355 2120 0 3,667 -- -- -- -- -- -- -- --

c1908 10838 3128 2,59 1000 433 1000 234 85 681 76,6% 33,3%

c2670 137344 3472 66,25 1000 1397 1000 176 41 783 82,4% 4,2%

c3540 52348 8154 49,66 1000 2397 1000 266 8 726 73,5% 5,3%

c5315 773374 13082 161,63 1000 2315 1000 249 3 748 75,1% 0,0%

c6288 1154 54 111,04

1000 25,4 54 24 1 29 55,6% 75,0%

5000 77 54 28 1 25 48,1% 78,6%

10000 139 54 30 1 23 44,4% 80,0%

25000 320 54 33 1 20 38,9% 81,8%

c7552 87542 11632 126
1000 642 500 132 0 368 73,6% 25,0%

5000 1798 500 148 0 352 70,4% 22,3%

ISCAS
Circuit

MultiInput
Paths

CPU Time
(s)

Backtrack
limit

CPU Time
(s)

Backtrack
limited

False path
ratio

Worst delay
prediction ratio

explored, column “#True paths” shows how many of these paths
are identified as true paths by the commercial tool, and the
column “#False paths” corresponds to the number of paths that
the commercial tool misidentifies as false paths. The next column
gives the number of paths for which the tool arrives to the
backtrack limit without finding any input vector. The eleventh
column provides the ratio between the paths for which the
commercial tool is unable to find a sensitization input vector
versus the total number of paths explored. Finally, the last
column shows the percentage of paths for which the commercial
tool provides the input vector that actually corresponds to the
worst delay. Theses results show the inefficiency of not
considering the delay variation due to the sensitization vector for
complex gates. In many cases the commercial tool simply finds
the case for which the complex gate input assignations are easier
to justify instead of exploring all the possibilities. As shown in
Table 6, the proposed tool identifies correctly some paths that are
considered false by the commercial tool. In addition, the
computation time required to find the paths is considerably
shorter that the one required by the commercial tool.

The algorithm used in this work explores all possible input
vectors for each path, unlike the commercial tool that only gives
one input vector for each true path. Therefore, the tool proposed
identifies correctly the worst delay for each path. The results in
the last column of Table 6 show that if the delay variation with
the input vector is not considered, the estimation of the worst
delay for each path is quite poor, obtaining only a mean value of
40% of paths correctly estimated.

Tables 7, 8 and 9, provide the error in the delay estimation
given by the tool developed and the commercial tool, when
compared to electrical simulations. These tables contain the mean
and maximum delay error for the entire path and for an
individual gate. Results show that the delay model used to
estimate the gate propagation delay provides more accurate
results than the commercial tool considered.

In all the cases studied the polynomial model provides better
delay estimations than the look-up table model used by the
commercial tool, even using a first order model. The analytical
form of the model reduces considerably the computation time
leading to faster delay estimations.

VI. CONCLUSIONS

We have shown the importance of considering the input
vector used to sensitize a complex gate in the delay estimation
reporting delay variations up to 15% for a 65nm technology at
the gate level. A detailed transistor-level analysis has been
included to understand the root cause for such a variation
providing results from electrical simulations.

A specific delay tool based on analytical delay description
has been presented. It uses a single pass through the circuit to get
a list of true paths instead of the traditional two-pass scheme.
This allows the tool to account for all sensitization vectors in
each complex gate and compute the gate delay accurately.
Results from combinational ISCAS circuits show that the delay
model considered provides a good estimation of the delays, and

demonstrate the ability of the algorithm developed to find all
input vectors for a given path, identifying correctly the worst
input vector for each path. Such a feature is not supported in the
commercial tool that doest not account for multiple sensitization
vectors in complex gates and assigns the vector whose
justification is simpler. Results for all technologies considered
show that the tool developed provides better results than the
commercial tool as it reports more paths with a more accurate
delay requiring less computation time.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant BES-2006-11943
and by the European Regional Development Fund (ERDF) and
the Spanish Ministry of Science and Innovation under Project
TEC2008-04501/MIC.

REFERENCES

[1] I. Keller, K. Ho Tam and V. Kariat, “Challenges in Gate Level Modeling
for Delay and SI at 65nm and Below”, Design Automation Conference
(DAC), pp. 468-473, June 2008.

[2] S.R. Nassif, “Modeling and forecasting of manufacturing variations”,
Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 145-149, 2001.

[3] D. Blaauw, K. Chopra, A. Srivastava and L. Scheffer, “Statistical Timing
Analysis: From Basic Principles to State of the Art”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 589-607,
April 2008.

[4] T. El Motassadeq, V. Sarathi, S. Thameem and M. Nijam, “SPICE versus
STA tools: Challenges and tips for better correlation”, IEEE international
SOC Conference (SOCC), pp. 325-328, September 2009.

[5] H. Yaun-chung, C. Hsi-chuan, S. Shangzhi and D.H.C. Du, “Timing
Analysis of Combinational Circuits Containing Complex Gates”, In
proceedings of International Conference on Computer Design: VLSI in
Computers and Processors (ICCD), pp. 407-412, October 1998.

[6] C. Ting-Wei, C.Y.R. Chen and Wei-Yu Chen, “An Efficient Gate Delay
Model for VLSI Design”, 25th International Conference on Computer
Design (ICCD), pp. 450-455, October 2007.

[7] J. Xue, D. Al-Khalili and C.N. Rozon, “A Normalized Intrinsic Delay
Model of Static CMOS Complex Gates for Deep Submicron
Technologies”, Notheast Workshop on Circuits ans Systems (NEWCAS),
pp. 17-20, June 2004.

[8] Shihheng Tsai and Chung-Yang Haung, “A False-Path Aware Formal
Static Timing Analyzer Considering Simultaneous Input Transitions”,
Design Automation Conference (DAC), pp. 25-30, July 2009.

[9] S. Wen-Tsong and W. Wanalertlak, “An Advanced Cell Polynomial-Base
Modeling for Logic Synthesis”, IEEE international SOC Conference
(SOCC), pp. 393-396, September 2003.

[10] Feng Wang and Shir-Shen Chiang, “Scalable Polynomial Delay Model for
Logic and Physical Synthesis”, ICDA, August 2000.

[11] RESIST: a recursive test pattern generation algorithm for path delay faults
considering various test classes”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 13, pp. 1550-1562, August
2002.

[12] H. Fijiwara and T. Shimono, “On the Acceleration of Test Generation
Algorithms”, 25th International Symposium on Fault-Tolerant Computing,
pp. 350, June 1995.

[13] S. Bose, P. Agrawal and V.D. Agrawal, “ Deriving logic systems for path
delay test generation”, IEEE Transactions on Computers, pp. 829-846,
August 1998.

