

Temporal Parallel Simulation: A Fast Gate-level HDL
Simulation Using Higher Level Models

Dusung Kim1 Maciej Ciesielski1 Kyuho Shim2 Seiyang Yang2
1Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA 01003
{dukim, ciesiel}@ecs.umass.edu

2Department of Computer Engineering
Pusan National University, Busan, Korea, 609-735

{capnemo,syyang}@pusan.ac.kr

Abstract—Simulation speedup offered by distributed parallel
event-driven simulation is known to be seriously limited by the
synchronization and communication overhead. These limiting
factors are particularly severe in gate-level timing simulation.
This paper describes a radically different approach to gate-level
simulation based on a concept of temporal rather than
conventional spatial parallelism. The proposed method partitions
the entire simulation run into simulation slices in temporal
domain and each slice is simulated separately. With each slice
being independent from each other, an almost linear speedup is
achievable with a large number of simulation nodes. This concept
naturally enables “correct by simulation” methodology that
explicitly maintains the consistency between the reference and
the target specifications. Experimental results clearly show a
significant simulation speed-up.

Keywords : Event-driven simulation; parallel simulation;
verilog simulation; Gate-level simulation.

I. INTRODUCTION
Event-driven hardware simulation remains the most widely

used technique for functional and timing verification, owing to
its many advantages, and it will remain such for a foreseeable
future. However, HDL simulation suffers from very low
runtime performance, dictated by its inherently sequential
nature. There have been several approaches to address this
deficiency, such as modeling design at higher abstraction level,
performing hardware-assisted simulation acceleration, or
distributed parallel simulation. Even though some of the
techniques have been successfully employed in industry, it is
still hard to achieve a sufficiently high simulation speed to
handle current complex large designs. In gate-level (GL)
timing simulation, the problem is particularly severe. With the
interest in gate-level timing simulation fueled by designs
fabricated in nanometer device technology, there are many
indications that industry will see gate-level timing simulation
rampant [1].

To improve performance of gate-level timing simulation we
introduce a new, radically different approach to parallel HDL
simulation. The proposed method addresses some of the
deficiencies of current distributed simulation. One of them is
the design partitioning, which should minimize the inter-
module communication and synchronization. Such a
partitioning, which must work universally well for any design,

is a known intractable problem, and a suboptimal partition
strongly affects the performance of distributed simulation.

In contrast, the proposed method does not require design
partitioning, so there is no communication and synchronization
overhead imposed on simulation. The method consists of two
major steps: (1) Fast reference simulation that runs on a higher
(reference) level design model and collects the necessary
information about the design state (i.e., register values and
memory print); and (2) target simulation, running on a lower
(target) design level, distributed to individual simulators. The
entire simulation run is divided into slices, each to be executed
on an independent simulator. For this reason, we refer to this
technique as temporal parallel simulation (TPSim) in contrast
to the spatial parallel simulation (a.k.a. conventional distributed
parallel simulation). The basic idea of this approach and
preliminary results for special cases were introduced in [2]. In
this paper we describe a solution to some unresolved problems
and generalize this approach to an arbitrary large design,
resulting in a much better simulation performance.

After reviewing the state-of-the-art in this field, we outline
the basic concept of our approach and discuss several practical
issues. The experimental results demonstrate that our approach
provides a dramatic performance improvement compared to the
conventional simulation.

II. STATE OF THE ART
In order to increase performance of the simulation based

verification some designers resorted to hardware-assisted
simulation acceleration; in this approach the synthesizable
portion of the design under verification (DUV) is emulated in
hardware (HW), while stimulus is applied from the software
HDL simulator [3]. In practice, however, performance of such
HW-accelerated simulation is severely limited by overhead
introduced by the testbench and the communication overhead
between the testbench (residing in the simulator) and the design
(emulated in hardware). As a result, HW-accelerated
simulation can achieve at best a 10 fold speedup for complex
designs when using signal-level testbench. In addition to high
cost and a complicated hardware setup, this solution also
suffers from long hardware compilation time, limited signal
visibility and poor controllability of internal design points -
something that is naturally supported by software HDL
simulators.

978-3-9810801-7-9/DATE11/©2011 EDAA

Other approach to simulation is to use a more abstract
design model, such as cycle-based simulation or transaction-
level simulation based on transaction-level models (TLM) [4].
There are also attempts to translate the initial (RTL) design
specification into C and simulate the design on that level using
standard C compilers [5]. Designers use it in conjunction with
formal verification, such as equivalence checking and model
checking, which can verify certain design properties globally.
However, because of large complexity of the underlying
mathematical models, formal methods are still limited to
relatively small portions of design or to specific design
domains. Furthermore, neither hardware acceleration nor
formal verification can efficiently solve the gate-level timing
simulation.

Other methods rely on distributed parallel simulation,
which partitions the design into separate modules and
performs concurrent simulation using multiple HDL
simulators [7]. A rich body of literature exists in the area of
parallel simulation, known as Parallel Discrete Event
Simulation (PDES) [6]. Chamberlain [8] discussed several
issues related to this concept, such as partitioning,
synchronization, and granularity. Fujimoto [6] and Nicol [9]
intensively researched rollback-based and lock-step based
synchronization in PDES.

Bagrodia et. al. [10] developed a parallel gate-level circuit
simulator in the MAISIE simulation language and
implemented it on both the distributed memory and shared
memory parallel architectures, achieving speedup of 2-3× on
eight processors. Lungeanu [11] proposed a “dynamic”
approach, which combines conservative and optimistic
approaches by switching between the two protocols depending
on the amount of rollback. They demonstrated speedup of up
to 11× on 16 processors on a circuit with 14k gates.

Li et. al. [12] claim to have developed the first Verilog
distributed simulator even though they failed to get the desired
performance improvement. Zhu et. al. [13] achieved a
considerable speed up improvement with a large gate-level
decoder design. However, such a design is a special case that
provides almost ideal partitioning, which is generally not
achievable.

Most of the results in this area have been demonstrated only
on small to moderate-size, single-clock designs that can be
partitioned without incurring significant inter-module
communication and synchronization. Therefore, only a few
commercial products have been developed, including
SimCluster [7] and MP-Sim [14], the latter one requiring a
proprietary simulator. However, they have not attracted the
expected attention of designers, due to their limited
performance and scalability. Most recently, the parallel gate-
level simulation methods using GPU [15] have been proposed,
but they are confined to gate-level with zero delay only.
Furthermore, their performance strongly depends on the type of
design being simulated.

III. TEMPORAL PARALLEL SIMULATION

A. Basic Idea
The temporal parallel simulation partitions the simulation

run in time, by cutting the entire simulation period into a

number of independent simulation slices. It consists of two
major steps:

• Fast reference simulation, performed on a high-level
abstraction of the design to store essential state
information at selected checkpoints. This simulation is
done on single processor.

• Detailed, fine-grain target simulation, performed on a
lower level (gate-level) model. It is applied in parallel to
each simulation slice, distributed to the individual
simulators.

Fig. 1 illustrates the basic idea. For this approach to work, the
initial design state for each slice of the target simulation must
be first captured and saved during the first (reference) run.

This is accomplished at predetermined checkpoints, determined
by the number of processors available for parallel simulation.
The design state consists of the state of all internal registers and
memory print of the design. By restoring the design states, each
slice can be made independent of each other. As a result, target
simulation can run concurrently and independently for each
slice.

The performance of this method, measured in total
simulation time T, can be estimated as follows:

 T = TSs (i)
i=1

n

! +TRsim +max[TTsim (i)+TSr (i)] :1" i " n (1)

where TSs (i) is the state saving time for slice i; TRsim is the
conventional simulation time for the reference model; and
TTsim (i) and TSr (i) are the conventional simulation time and the
state restoring time for one slice for the target model,
respectively.

Since the overhead for state saving TSs (i) and restoring TSr (i)
is considerably small, reducing TRsim is key to make this
concept practical. For GL timing simulation, RTL model is a
natural candidate for the reference simulation since the
simulation of such model is more than 100 times faster than
the corresponding GL timing simulation.

We should note that TRsim might not be counted towards the
total simulation time (T) if such a simulation is mandatory
and is carried out at the higher abstraction level during the
common design implementation/verification flow. That is, the

!"#$%&'&
!"#$%&(&

!"#$%&)&
!"#$%&*+,&

!"#$%&*+(&

state 0 state 1 state 2 state n-2 state n-1

Fast reference simulation

Slow target simulation
Figure 1. Concept of temporal parallel simulation

simulation performed during the higher-level model
verification, can serve as a reference simulation for temporal
parallel simulation at a lower level, without additional
overhead. Experimental results are shown in Section IV.

B. Difficulties in Generalization of Temporal Parallelism
1) Multiple Asynchronous Clocks

Contrary to a popular view, GL simulation for multiple-
clock design may not be 100% cycle-by-cycle consistent with
the RTL simulation, even if there is no timing violation. Fig. 2
illustrates this case with an example of typical two-phase
handshaking logic.

In Fig. 2(a), two synchronizers are used for Req and Ack

signals, respectively. No synchronizer is used for Data because
the signal values in data bus are maintained at the same value
for sufficiently long time so that the receiving flip-flop can
sample stable values. Fig. 2(b) shows timing inconsistency
between RTL simulation and gate level timing simulation. In
this case, flip-flop Sync1 in gate level simulation cannot
sample value 1 on Req, which can be sampled in the
corresponding cycle in RTL simulation. This is because the
delay of Req makes the value change from 0 to 1 happen after
the rising edge of ClkB. As a result, the sampling signal value
of Req is delayed for one cycle. This inconsistency causes our
approach to produce, in general, different simulation result
from the conventional gate level timing simulation. Therefore,
a simple state saving from RTL simulation and restoring into
GL timing simulation does not work for designs having
multiple asynchronous clocks

2) State Checkpointing in Event-driven Simulation
In cycle-based simulation, the checkpoints can be assigned

at the end of any cycle period without causing any discrepancy

between the reference and target simulation. In an event-driven
simulation, however, finding correct placement for checkpoints
is more difficult because of arbitrary delay between the event
edges.

To illustrate this issue let us consider a fragment of Verilog
code in Fig. 3, which is a part of the reference RTL model in
TPSim. It has #1 (one unit) delay at the right hand side of the
non-blocking assignments. This #1 delay models the clock-to-
Q delay of the corresponding flipflops. In fact, there are many
reasons that designers use such delays in their Verilog codes,
e.g., for debugging convenience, mixed RTL/gate-level
simulation, etc. [16]. The right side in Fig. 3 is a waveform
from the actual simulation of the code. If the checkpointing is
made at 300,001 nsec (CP2) of the simulation time, the correct
value, 1, is saved and is restored later for target simulation.
This is the correct behavior. However, if the checkpointing is
made at 300,000 nsec (CP1), the incorrect value, 0, is saved
instead. The wrong value is restored at the corresponding
flipflop in the target simulation, providing a wrong starting
point for the (target) simulation. Hence, the resulting
simulation is incorrect. One possible solution is to ignore all
delays that appear in the high-level abstraction of the design to
be simulated for the reference simulation. But ignoring such
delays in the high-level abstraction of the design may also
result in an incorrect checkpointing, especially for designs with
multiple asynchronous clocks.

3) State Matching

Besides the timing issues mentioned above, one must
maintain functional correctness of the restored target state. This
in turn requires matching of the states in the RTL design with
those in the GL design. While the states in RTL and GL models
are represented by state registers, finding direct relationship
between the registers is not always possible. This is because
during synthesis the design undergoes a number of logic
transformations, such as combinational and sequential logic
optimization, retiming, and algebraic transformations. A
promising preliminary work in state matching has recently
been published in [17]. In current version of TPSim, such
sequential transformations are not considered. We assume that
there is either a direct one-to-one register relationship or other
trivial relationships between RTL and GL registers (caused, for
example, by bit truncation, removal of duplicated registers,
etc.). Handling retimed design using technique introduced in
[17] is planned as future work.

4) Handling testbench
While the design state of the DUT can be stored at any

point during the reference simulation, the state of the testbench
cannot be similarly captured, and the stimulus generated by the
testbench cannot be restarted arbitrarily. This is because
testbench is a sequential process that has no hardware “states”,
so it cannot be restarted at an arbitrary point of time.

always	 @(posedge	 clk)	
begin	
	 	 	 if(!rst_n)	 q	 <=	 #1	 0;	
	 	 	 else	 	 	 	 	 	 	 	 	 q	 <=	 #1	 d;	
end	
Figure 3. Example code showing problems arising in state
checkpointing.

(a) Two-Phase Handshaking Logic

 (b) Timing mismatch in CDC

Figure 2. Two-Phase Handshaking Logic.

C. Proposed Solutions for Temporal Parallel Simulation
In this section, we describe solutions and implementation

issues to address the problems mentioned in section III.B.

As the design state is saved during the functional reference
simulation (using e.g. RTL) and restored for the timing target
simulation, timing discrepancies may appear at the beginning
of each target slice in TPSim. An example of such a situation is
given in Fig 4(a). The correct value of register R1 at the
checkpoint is 0 in timing simulation. However, corresponding
saved value is 1, which is incorrect.

To address this issue, an overlap is created between two
consecutive slices, as shown in Fig. 4(b). Consecutive slices,
(n-1 and n), are allowed to overlap by the value equal to the
longest delay in the design. The correct timing simulation result
for the overlap interval is generated from slice n-1. Every slice
eventually must produce correct timing simulation result
because the timing discrepancies cannot propagate across the
clock cycle boundary.

For a design having multiple asynchronous clocks, we
employ an abstract delay annotation method on top of the
overlap approach. It is because such designs may not maintain
the cycle-by-cycle consistency, as explained in section III.B.1.
Fig. 5(a) explains this concept.

After analyzing the structure of Clock Domain Crossing
(CDC), the delay information for the CDC boundary can be
obtained from the Standard Delay Format (SDF) file. The
information is recalculated and simplified in order to fit the
RTL model. The new abstract delay is a function of the
propagation delay for CDC boundary and clock skew between
two asynchronous clocks, as given by the following equation.

Drel (CDC) = Dabs (Clksend)!Dabs (Clkrecv)+Dabs (CDC) (2)

Where Dabs is the absolute delay described in the SDF file;
Drel is the delay to be applied on CDC path only for the
reference simulation; Clksend is the clock for upstream Common
Clock Domain (CCD); and Clkrecv is the clock for downstream
CCD.

Fig. 5(b) shows that RTL.Req signal is also properly
delayed after imposing proper abstract delay annotation. After
annotating abstract delay to RTL design, the RTL reference
simulation and gate level target simulation should be cycle-by-
cycle consistent even in multiple-clock designs. Therefore, our
approach produces identical result as conventional simulator
unless there is a timing violation in the DUT. If there is timing
violation, TPSim detects it efficiently by extending the overlap
period beyond the overlap area, as explained in Fig 4. Such an
extended overlap period is useful in detecting potential timing
bugs. Since the simulation results for extended overlap period
between consecutive slices should be identical if there is no
timing violation, any inconsistency among those slices in that
period clearly indicate potential timing bugs (e.g. set-up/hold
time violation, glitches due to multiple combinational paths on
CDC boundary). This is a very powerful feature, especially for
the verification of multiple-clock design.

Generalizing this feature, the model at the higher
abstraction level naturally plays a role of the reference model.
Therefore, our method can automatically determine whether
the design to be simulated is consistent with the model at the
higher level of abstraction. Possible simulation mismatches
between the model at the higher abstraction level and the model
at the lower level can be automatically detected and reported to
the designer or verification engineer for the possible
investigation and debugging. Therefore, we believe that our
temporal parallel simulation method naturally provides “correct
by simulation” methodology that explicitly maintains the
consistency among the models at the different levels of
abstraction through the whole design process, once the first
design model has met the specification.

To address checkpointing issues discussed in Section
III.B.2, we define a checkpoint window as an interval dedicated
to saving and restoring design state. The size of the checkpoint
window is one clock-cycle equivalent. The three dotted boxes

in Fig 6. represent the possible checkpoint windows for the
case in Fig. 3. For every case, the correct value for Q could be
reliably obtained at the end of each window because all signal
transitions inside of each window (for a clock cycle) are
reproduced during the state restoration in target simulation.
Note that overlap period must be increased accordingly so that
it contains the entire target checkpoint window.

The last issue that needs attention is handling the state of
the testbench, as described in section III.B.4. Unlike in DUT, to
recover the state at the restoring checkpoint, the testbench must

!

"#$%&'()*+,

"-.,

/0,1/2-3,

/0,145)*63,

173,

!,

"#$%&'()*+,

89)%$,*:0, 89)%$,*,
1;3,

<=$>97',

Figure 4. Initial state mismatch and slice overlapping

CCD :
Common Clock Domain

functional
model

 GL timing
model

CCD
Block

2

CCD
Block

1

CCD
Block

1

CCD
Block

2

CDC boundary

Abstracted CDC delay
annotation

(a) Abstract delay annotation (b) Result for Abstract delay annotation

Figure 5. Abstract Delay Annotation

!

Figure 6. Checkpoint window

be simulated (executed) from the simulation time 0. In our
implementation, we perform a fast testbench-only simulation to
reach the target testbench state. We refer to this process as
testbench forwarding.

Testbench forwarding is implemented as follows. The
values of output ports of DUT, saved continuously during the
reference simulation, serve as stimulus provider (a dummy
DUT) for testbench simulation. The testbench is simulated with
this stimulus from time 0 up to the starting point of the
simulation slice in question. At this point the design state is
restored form the data stored at the checkpoint, and the dummy
DUT is replaced by the original DUT; each slice is then
simulated normally and independently of the other slices. The
experimental results in section IV show the the overhead for
testbench forwarding is relatively small, compared to the total
simulation overhead.

IV. EXPERIMENTAL RESULTS
TPSim has been implemented with PLI as a plug-in for

Cadence NC-Sim simulator. This made it possible to directly
compare the simulation performance of the TPSim and
conventional simulation. In the experiments TPSim was run
with Cadence NC-Sim 8.2 simulator on an Intel T7500 CPU
equipped computer. The target designs were synthesized by
Design Compiler with TSMC 65nm technology library.

Experiment 1 – JPEG Encoder

In this experiment, we used JPEG Encoder design from
OpenCores [18]. Total gate count of GL design is 0.9M. Table
1 shows the performance of TPSim for this design.

Table 1. Experimental results for JPEG Encoder

Design	 Simulation	 Time	 (sec)	 Ratio	
RTL	 184	 1	

GL	 timing	 47192	 X256	

(a) Performance gap between RTL and GL timing simulation
	

#	 of	 slices	 	 10	 50	 100	 500	 1000	
Ref.	 Sim	

(sec)	 246	 249	 255	 269	 291	
	 Best	 Worst	 Best	 Worst	 Best	 Worst	 Best	 Worst	 Best	 Worst	

Target	 Sim	
(sec)	 7142	 7191	 1456	 1508	 737	 791	 145	 198	 78	 135	

Total	
(Ref.	 +	 Target)	

(sec)	
7388	 7437	 1705	 1757	 992	 1046	 414	 467	 369	 426	

Speed	 up	 6.38	 6.35	 27.7	 26.9	 47.6	 45.12	 114	 101.05	 127.9	 110.78	
TB	 f/w	 (Worst	 case)	 (sec)	 56	 State	 saving	 (sec)	 <	 0.5	

(b) Performance of TPSim

Conventional GL timing simulation of JPEG Encoder is
256 times slower than RTL simulation. Under this condition,
we were able to achieve speedup ranging from 6.35 to 110.78
times, depending on the number of simulation slices. Note that
the worst-case target simulation refers to the simulation of the
last slice, as it includes the longest testbench forwarding
period. The speedup was based on the worst-case simulation as
stated in equation (1).

As shown in Fig 7(a), TPSim has a linear speedup up to 100
slices and continues at a lower rate up to 500 slices. Beyond
that point, the improvement tends to saturate but is still
significant at 1000 slices. This is generally not possible with a
conventional parallel simulation. We anticipate that a longer
total simulation period with the same number of slices will
delay the saturation point. This is because the target simulation
period for the simulation run with 100 slices, shown in Fig
7(a), is too short, so that the reference simulation and testbench
forwarding become dominating factors in the total overhead.

Experiment 2 – AES

In this experiment, we used AES design obtained from
OpenCores. Total gate count of GL design is 25K.

Table 2. Experimental results TPSim for AES

Design	 Simulation	 Time	 (sec)	 Ratio	
RTL	 110	 1	

GL	 timing	 18669	 X169	

(a) Performance gap between RTL and GL timing simulation	
	

#	 of	 slices	 10	 50	 100	 500	
Ref.	 Sim	 (sec)	 426	 431	 442	 453	

	 Best	 Worst	 Best	 Worst	 Best	 Worst	 Best	 Worst	

Target	 Sim	
(sec)	 2634	 2916	 498	 940	 233	 670	 43	 469	

Total	
(Ref.	 +	 Target)	

(sec)	
3060	 3342	 929	 1371	 675	 1112	 496	 922	

Speed	 up	 6.1	 5.59	 20.1	 13.62	 27.66	 16.79	 37.64	 20.25	
TB	 f/w	

(Worst	 case)	 (sec)	
HDD	 Exclude	 I/O	

424	 81	
State	 saving	 (sec)	 <	 1	

(b) Performance of TPSim	

Table 2 shows that GL timing simulation of this design is
169 times slower than RTL simulation. In this case, the
speedup ranges from 5.59 to 20.25 times. Fig. 8 shows a sub-
linear speedup up to 70 slices. And the performance
improvement continues up to 500 slices. However, considering

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

'$!!!"

'%!!!"

'&!!!"

#!!!!"

()*+,*-.+/" '!" 0!" '!!" 0!!"

!"
#
$%
&'

()
*'
#
+*
,-
+.
/*

0$#1+2*(3*-%".+-*

()*+,*-.+/"
1/2)3/+45"6.78*7,9+:";-*2)"2-94/<"
1*7:/)"(9=";3/2)<"
>/6?"(9="

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

!" $!!" %!!" &!!" '!!" #!!" (!!"

!"
##
$%
&"

%

'&()#*%+,%-./0#-%

)*+,"-.+*"
/01+,"-.+*"

 (a) Simulation time in TPSim (b) Speedup in TPSim

Figure 8. Performance of TPSim for AES

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

&#!!!"

'!!!!"

'#!!!"

#!!!!"

()*+,*-.+/" $!" #!" $!!" #!!" $!!!"

!"
#
$%
&'

()
*'
#
+*
,-
+.
/*

0$#1+2*(3*-%".+-*

()*+,*-.+/"
0/1)2/+34"5.67*6,8+9":-*1)"1-83/;"
0*69/)"(8<":2/1);"
=/5>"(8<"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

!" #!!" $!!" %!!" &!!" '!!!" '#!!"

!"
##
$%
&"

%

'&()#*%+,%-./0#-%

()*+",-*)"
./0*+",-*)"

 (a) Simulation time in TPSim (b) Speedup in TPSim

Figure 7. Performance of TPSim for JPEG encoder

a large speed gap between the RTL and GL simulation, the
overall speedup is lower than we would expect. In this case,
however, the speed gap between RTL and GL simulation is
small, because of the small size and low complexity of the
DUV. Therefore, testbench forwarding overhead becomes
relatively high. Fig. 8(a) shows that such factors dominate the
entire overhead for the simulation with 50 slices. The optimum
number of parallel nodes during this simulation period is 50.
Table 2(b) also shows that reducing disk I/O overhead, by
compressing data and using faster storage devices, will provide
better results.

These two experiments demonstrate that TPSim offers
higher performance improvement for designs having complex
simulation data structure, longer simulation period and a large
amount of event activities. Therefore, we anticipate that our
approach will provide significant impact in dynamic
verification of large-scale designs.

Experiment 3 – Cycle inconsistency in CDC path

Cycle inconsistency on some CDC paths between RTL and
gate level requires abstract delay annotation for correct
temporal parallel simulation (See Section III.C).

Figure 9. Cycle inconsistency on CDC path between RTL and GL

simulation in two-phase handshaking logic in Fig. 2.

Fig. 9 illustrates the frequency of cycle inconsistency in
two-phase handshaking logic in Fig. 2. The inconsistency on
CDC paths between RTL and gate level simulation heavily
depends on the clock phase relation and the frequency of Req
signal. This is also true for other CDC logic. Therefore,
providing an abstract delay annotation is important in TPSim
for multiple-clock designs in order to handle the CDC problem
so that RTL reference simulation and gate level target timing
simulation become completely cycle consistent.

V. CONCLUSIONS
A radical solution to completely eliminate communication

and synchronization overhead in a distributed parallel
simulation environment for full timing gate level simulation is
presented. This is accomplished by performing temporal
partitioning of the simulation period, instead of spatial
partitioning of the design. For long simulation runs a linear
speedup can be obtained; this is something that is not
achievable in traditional (spatial) parallel simulation, due to an

inherent overhead imposed by the inter-simulator
communication and synchronization.

In addition, a helpful feature of our approach, is that it
naturally provides reference comparison during the simulation,
which is helpful in design debugging. Therefore, our approach
provides not only significant performance improvement but
also a smarter method for simulation-based verification.

ACKNOWLEDGMENT
This work was supported in part by the US National Science
Foundation, award no. CCF 0702506 and CCF 1017530.

REFERENCES
[1] “Design Automation: Gate-level Timing Simulation Revs Up”, Mar. 19,

2007. EETimes, < http://www.eetimes.com/showArticle.jhtml;jsessionid
=U4GAX2JQT0AVUQSNDLOSKH0CJUNN2JVN?articleID=1980009
26>

[2] D. Kim, M. Ciesielski, K. Shim and S. Yang, “ Temporal parallel gate-
level timing simulation”, Proc. High Level Design Validation and Test
Workshop (HLDVT), pp. 111–116, 2008

[3] Bauer, J. et al., “A Reconfigurable Logic Machine for Fast Event-driven
Simulation,”, Proc. ACM/IEEE DAC, pp. 668-671, June 1998.

[4] Ghenassia, F., “Transaction Level Modeling with SystemC”, Springer,
Dordrecht, Netherlands, 2005.

[5] Model Studio datasheet, Carbon. <http://carbondesignsystems.com>
[6] R.M. Fujimoto, "Parallel Discrete Event Simulation," Communication of

the ACM, Vol. 33, No. 10, pp. 30-53, Oct. 1990.
[7] SimCluster datasheet, Avery Design Automation <http://www.avery-

design.com>
[8] Roger D. Chamberlain, “Parallel Logic Simulation of VLSI Systems.”,

Proc. 32nd ACM/IEEE Conference on Design Automation, pp. 139-143,
1995.

[9] Nicol, David M. Principles of conservative parallel simulation. Proc. of
the 28th Winter Simulation Conference, pp. 128-135, 1996.

[10] R. Bagrodia, Y. Chen, V. Jha, and N. Sonpar. “Parallel gate-level circuit
sim- ulation on shared memory architectures.” Proc. of Computer Aided
Design of High Performance Network Wireless Networked Systems, pp.
170–174, 1995.

[11] Lungeanu, D., and Shi., C.J.R. “Parallel and distributed vhdl
simulation.” Proc. Design, Automation and Test in Europe (DATE00),
pp. 658-662, Mar. 2000.

[12] L. Li, H. Huang and C. Tropper, “DVS: An Object-Oriented Framework
for Distributed Verilog Simulation”, Proc. of the 17th Workshop on
Parallel and Distributed Simulation (PADS’03), 2003.

[13] L. Zhu, G. Chen, B.K. Szymanski, C. Tropper, Tong Zhang “Parallel
Logic Simulation of Million-Gate VLSI Circuits” Proc. 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems - MASCOTS '05, 2005.

[14] MP-Sim datasheet, Axiom Design Automation <http://www.axiom-
da.com>

[15] Debapriya Chatterjee, Andrew DeOrio and Valeria Bertacco, "Event-
Driven Gate-Level Simulation with GP-GPUs," Proc. ACM/IEEE
Design Automation Conference (DAC’09), San Francisco, pp. 557-562,
July 2009.

[16] Cummings, C. “Verilog nonblocking assignments with delays, myths
and mysteries.”, Proc. Synopsys User Group Meeting (SNUG), 2002.

[17] D. Kim, D. Gomez, S. Yang and M. Ciesielski “Computing state
matching in sequential circuits in application to temporal parallel
simulation.”. Proc. International Workshop on Logic and Synthesis
(IWLS). pp. 171-177, June 2010.

[18] OpenCores, <www.opencores.org>

