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Abstract—This paper introduces the first available tool flow
for Dynamic Partial Reconfiguration on the Spartan-6 family.
In addition, the paper proposes a new configuration method
called Fast Start-up targeting modern FPGA architectures, where
the FPGA is configured in two-steps, instead of using a single
(monolithic) full device configuration. In this novel approach,
only the timing-critical modules are loaded at power-up using
the first high-priority bitstream, while the non-timing critical
modules are loaded afterwards. This two-step or prioritized
FPGA start-up is used in order to meet the extremely tight start-
up timing specifications found in many modern applications, like
PCI-express or automotive applications. Finally, the developed
tool flow and methods for Fast Start-up have been used and
tested to implement a CAN-based automotive ECU on a Spartan-
6 evaluation board (i.e., SP605). By using this novel approach, it
was possible to decrease the initial bitstream size and hence,
achieve a configuration time speed-up of up to 4.5x, when
compared to a standard configuration solution.

I. INTRODUCTION

In many of modern applications, electronic embedded sys-
tems have to meet extremely tight timing specifications. One
of these timing requirements is the start-up time, i.e., time the
electronic system has to be operative after power-up. Examples
of electronic systems with such a start-up timing specification
are PCI-express systems or CAN-based Electronic Control
Units (ECU) in automotive applications. In both of these
examples, the electronic system has to be up and running
within 100ms after system power-up. Otherwise, in the case
of PCI-express, the system will not be recognized by the root
complex [1], or, the system might miss important communi-
cation messages in the case of CAN-based automotive ECU’s.

The technology trend in semiconductor industry, as pre-
dicted by Moore’s Law, has enabled today’s FPGA manu-
facturers to significantly increase the amount of resources in
their devices. But with an increasing amount of resources,
the bitstream size grows proportionally, so does the time to
configure the device. Therefore, even with medium-sized FP-
GAs, it is not possible to meet the start-up timing specification
using low-cost configuration solutions. Figure 1 shows the

configuration time for different Spartan-6 FPGAs using the
low-cost SPI/Quad-SPI configuration interface. Even when
using a fast configuration solution (i.e., Quad-SPI running at
40MHz configuration clock) only the small FPGAs meet the
100ms start-up timing specification.
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Fig. 1. Logarithmic illustration of calculated Spartan-6 configuration times

This paper tackles this problem of increasing configuration
time in modern FPGAs. The paper explains a new con-
figuration method called Fast Start-up, where the FPGA is
configured in two-steps, instead of using a single (monolithic)
full device configuration. In this novel approach, only the
timing-critical modules are loaded at power-up using the first
high-priority bitstream, while the non-timing critical modules
are loaded afterwards. This approach minimizes the initial
configuration data, and thus minimizes the FPGA start-up time
for the timing-critical design.

Therefore, this paper features the following key novel
contributions:

• It introduces the first available tool flow for dynamic
partial reconfiguration on Spartan-6 FPGAs. Currently,
available design tool-flow only supports Virtex families.

• The paper describes a complete new method to create
partial initial bitstreams for Fast Start-up on FPGAs with
2-dimensional configuration memory architectures (e.g.,
Spartan-6, Virtex-6). The previous existing method only
works for FPGA families with 1-dimensional configura-
tion memory architectures (i.e., Spartan-3E, Virtex-II).

• The proposed design tool flow and techniques have been
applied to a CAN-based automotive application. The
design flow and techniques have been verified/tested in978-3-9810801-7-9/DATE11/ c©2011 EDAA



hardware using a SP605 Spartan-6 development board.
The paper is organized as follows: Section II gives an

introduction into the existing tool-flows for dynamic and par-
tial reconfiguration of Xilinx FPGAs, followed by presenting
existing techniques to reduce the configuration time of FPGAs.
In section III after introducing Fast Start-up, a tool flow to
build the necessary configuration bitstreams for Fast Startup
using Spartan-6 FPGAs is presented. Section IV describes the
implementation of an example use case for Fast Start-up and
presents measurements of the configuration time for a Spartan-
6 FPGA when using different configuration techniques. The
paper is closed in section V by the conclusions.

II. RELATED WORK

A. Dynamic Partial Reconfiguration for Xilinx FPGAs

Dynamic Partial Reconfiguration describes the technique
to change the configuration data for a specific part of a
reconfigurable device, while the other parts stay operative. The
high-end FPGA family from Xilinx, Virtex, supports Dynamic
Partial Reconfiguration for quite a long time now. There also
have been successful implementations of Dynamic Partial
Reconfiguration for Spartan-3 FPGAs (see [2]), however the
low-cost Spartan family never officially supported Dynamic
Partial Reconfiguration.

The oldest methods from Xilinx to build partial bitstreams
are realized by two options of BitGen, the low-level tool of
Xilinx to produce bitstreams. The first of those options is
called Partial Mask. It allows determining which configuration
columns will be included in the bitstream and which will be
rejected. This feature enables a designer to cut out modules
of a full design, if the exact location of this module is known.
The option is well documented in the Virtex-2 Pro User Guide
[3], but since the introduction of Virtex-4, this option is not
available anymore. The other Partial Reconfiguration related
BitGen option is about Difference-based Partial Reconfigura-
tion [4]. It was created in order to be able to capture small
design changes. Therefore, the typical flow is to generate small
changes to a design by hand using the FPGA Editor, followed
by using the BitGen program to produce a bitstream that only
includes the differences between the original and the new
design. This allows switching the configuration of a module
from one implementation to another.

The first full tool flow for Partial Reconfiguration of Xil-
inx, the Early Access Partial Reconfiguration (EAPR) flow,
introduced some new features like providing a graphical user
interface using the PlanAhead software [5]. The flow is module
based and available as a patch for the ISE design tools but was
dropped with ISE 10.1.

With the release of ISE version 12.1, Xilinx introduced a
new flow for Partial Reconfiguration. This flow is based around
partitions and it provides several improvements over the old
flow like timing analyses for nets which cross PR-borders.
Again PlanAhead supports this flow and provides a graphical
user interface. The new flow supports Virtex-4, Virtex-5 and
Virtex-6 devices, but it does not support the Spartan-6 family.
For more information see [6].

B. Reducing FPGA configuration

The problem of increasing configuration times has been
tackled by several research groups (see [7] and [8]), whereby
the usual approach was to decrease the amount of data which
has to be transferred to the FPGA by compression. Therefore
different kind of algorithms have been analyzed and compared
in order to find a good compromise of compression rate and
resource requirements for the decompression module which
has to be inside the FPGA. However, since these approaches
would need dedicated data-decompression logic inside the
FPGA these methods cannot be used for the initial config-
uration without changes in the FPGA fabric.

III. FAST START-UP FOR SPARTAN-6

A. Fast Start-up

Fast Start-up is a two-step configuration technique which
enables an FPGA design to start critical design parts as fast
as possible, much faster than they can be made available using
a standard full configuration technique.

Although Fast Start-up is using Dynamic Partial Recon-
figuration, there are differences compared to the traditional
concepts of this technique. While the concept of Dynamic
Partial Reconfiguration intends a full design to be used as
initial configuration which can be modified during runtime,
Fast Start-up already uses a partial bitstream in order to
only configure a specific part of the FPGA for start-up. In
this first configuration, only those parts of the full FPGA
design are contained, which have a high priority to be up
and running quickly. The not yet configured parts of the
FPGA can be accessed later during runtime by using Dynamic
Partial Reconfiguration. The different concepts are illustrated
in Figure 2.
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Fig. 2. Comparison of Traditional Partial Reconfiguration and Fast Start-up

The concept of Fast Start-up was introduced in [9] focusing
on Spartan-3E FPGAs. Since the implementation techniques
used in [9] are not supported by the newest FPGAs anymore,
the following sections describe a new way to perform Fast
Start-up on those devices by focusing on Spartan-6.



B. Fast Start-up tool flow overview

In order to implement the two step configuration of the
Fast Start-up technique, the first step is to partition the
complete FPGA design into two parts, one initial part and
one for the second configuration. For both of those parts a
partial configuration bitstream has to be built, but while the
second bitstream would be a standard bitstream for Partial
Reconfiguration, the first one needs to meet some special
requirements, like including the configuration of the global
clock resources.

Since there is no support for Spartan-6 by any of the
available Partial Reconfiguration tool flows, both creation
processes afford a non-standard procedure. The basic concept
of this flow can be seen in figure 3. In order to get a partial
initial bitfile which is holding the initial design configuration,
first a full bitstream of the initial design is created (A). This
full bitstream (A) is edited on a binary level to remove the
configuration data which is not required what gives you the
partial initial bitstream (C).

In order to get the partial bitstream for the Dynamic Partial
Reconfiguration of the second design, it is possible to use
the BitGen option ”-r” for Difference-based Partial Reconfig-
uration which is still available for Spartan-6. Applied on a
full design (B), using the full bitstream of the initial design
(A) as reference, this option produces a partial bitstream (D)
containing only the configuration data of the second design.
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Fig. 3. Basic approach to create the partial bitstreams for Fast Start-up

C. Generation of the initial partial bitstream

As mentioned before, in order to get the initial partial bit-
stream (C) all redundant configuration data of a full bitstream
has to be removed. This affords a deep knowledge of the
configuration memory structure and the bitstream composition.
The following low level information about bitstream composi-
tion and configuration procedure is based on the configuration
user guides like [10] or [11].

The configuration of a Xilinx FPGA is organized in several
configuration rows each consisting of multiple columns of
resource elements like e.g. the Configuration Logic Blocks
(CLBs). Such a configuration column can be broken down
into several configuration frames which are the smallest ad-
dressable segments of the configuration memory space and

therefore an operation always affects a whole frame. A con-
figuration frame can be thought of as a one bit wide column
which spans a whole configuration column. Thus one frame
holds only little configuration data of one specific resource
element but therefore it holds this information for all the
resources in the corresponding configuration column.

In order to reduce the configuration bitstream size, the
compress option of the Xilinx BitGen tool can be used. This
option avoids writing similar frames multiple times into the
FPGA. Instead, it writes this frame one time into the FDRI
and afterwards the combination of updating the Frame Address
Register (FAR) with the first of the corresponding addresses
for the frame and triggering a Multiple Frame Write follows.
A Multiple Frame Write (MFW) is a special configuration
command which uses the actual frame inside the FDRI to
configure the configuration memory addressed by the actual
value of the FAR. After some No-operation commands, the
procedure of updating the address and triggering an MFW
gets repeated until all addresses for the frame are written.

Because of that it is possible to replace multiple simi-
lar frames of an ordinary bitstream, which for example for
Spartan-6 usually contain 65 configuration words, with a
sequence of 4-5 configuration words. The efficiency of the
compress option therefore obviously depends on the amount of
similar frames in a design. For Xilinx FPGAs the configuration
data for resources which are not used in a design are only
zeros. Thus an FPGA design which only uses a small amount
of logic of the FPGA contains a lot of frames only consisting
of zeros and therefore using compress with such a design will
decrease the configuration bitstream size significantly.

However, all the memory addresses, the Multiple Frame
Write commands and the No-operation words are still in-
side the bitstream. But for Zero-frames this is redundant
information, because after the house cleaning process, all
configuration memory should be initialized with zero anyway.
While for an ordinary configuration bitstream removing the
entire configuration data of resources which are not used and
adding the necessary address updates by hand is very hard,
this is much easier for a compressed bitstream. This is because
the compressed bitstream structure already separates the Zero-
frames by putting them into Multiple Frame Writes. Therefore
the Zero-frames can be removed easily from the bitstream
by removing all Multiple Frame Writes of Zero-frames. A
comparable approach was used in [12] to decrease the amount
of non-volatile memory for an initial configuration bitstream
using Virtex 4.

D. Dynamic Partial Reconfiguration for Spartan-6

While it is possible for Virtex architectures to use a stan-
dard Partial Reconfiguration tool flow in order to create the
partial bitstream for the second configuration, Spartan-6 is
not supported by Xilinx for Partial Reconfiguration. Never-
theless, with the right combination of standard implementation
techniques and the BitGen option for Difference-based Partial
Reconfiguration it is possible to create partial bitstreams which
were successfully used for Dynamic Partial Reconfiguration.



As mentioned before and shown in Figure 3, the difference
based BitGen option can be used to extract the difference of
the full design (B) and the initial design (A). Therefore, the
key element of the flow is to create those two designs in a
way which ensures, the initial design part doesn’t change. This
makes sure the partial bitstream for the second configuration
only contains information of the second design part.

Keeping the initial design part from changing during the two
implementations can be achieved by design preservation using
partitions [13]. Those Partitions create logical boundaries
between hierarchical modules and thus make it possible to
reuse the implementation information of partitions already
implemented in a previous design. To preserve the complete
routing of the initial design, all IO buffers which are driven
by signals from this design part should be instantiated inside
the corresponding hierarchical sub-module.

For nets which leave a logical module of the initial design
part in order to build a connection to the second design part,
the strategy is to route them through an interface logic which
is placed outside of the area of the initial design part but
belonging logically to the initial design part module and thus
to the preserved partition. This can be used to make sure no
frames in the area with the first design part are reconfigured
when the Dynamic Partial Reconfiguration adds the second
design and the connection to the mentioned interface logic.
This logic should also provide an enable signal which makes
it possible to disable the connection. This is used to avoid
glitches, resulting from the configuration of the second design,
to reach the first design part. In order to avoid the nets from
the second partition to get routed through the area of the first
design part the ”contained route” constraint should be used
for the partition of the second design.

E. Summary of the Fast Start-up Tool Flow for Spartan-6

Figure 4 visualizes the tool flow. It is composed by two
runs, one of them is creating the full design (B) and the other
run builds the initial design only (A).

In a partition based flow there is always a toplevel partition
and at least one sub-level partition. For the Fast Start-up
approach the second design part is implemented as the sub-
level partition. In order to use partitions in a design, a valid
partition description file called ”xpartition.pxml” has to be
located in the implementation directory to be to be recognized
by the frontend tool of the implementation flow (Ngdbuild),
compare (2) in the figure. Information on the structure and
syntax for such a file can be found in [13]. During the first
of the two runs, both partitions are implemented as new
partitions.

For the second run, the toplevel partition gets reused (3)
but the sub-level partition gets replaced by an empty dummy
module (1) and implemented again. By doing so, everything,
including the initial design part, gets reused but the second
design part. The dummy module is needed since it is not
allowed to have empty partitions.

Whenever ncd-files for both designs are available, the
method described in section III-C can be used in (5) in order
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Fig. 4. Fast Start-up flow for Spartan-6

to create the partial bitstream of the initial design part (C), the
BitGen option ”-r” is used (4) to create the partial bitstream
for the second design part (D).

Beside the custom program which was written to automate
the removal of the Zero-frames of the initial bitstream, the flow
uses standard Xilinx tools only. The approach is not limited
to Spartan-6, it can for example also be used for Virtex-5/6.
However, when using the Virtex devices we would recommend
using the officially supported Partial Reconfiguration Flow to
generate the bitstream for the second design part.

IV. EXPERIMENTS AND RESULTS

A. Use case scenario

In order to verify the Fast Start-up technique for Spartan-6
a realistic industrial scenario from the automotive domain was
chosen. In today’s automotive Electronic Control Units (ECU),
sometimes FPGAs are used to implement custom functionality
and thus support the main application processing sub-system.
Beside the main application sub-system there is usually also a
system controller sub-system which handles communication
and coordination tasks. Although the FPGA could easily



also implement this system controller using already existing
IP-cores, fast start-up requirements add extra system cost
therefore inhibiting adoption.

The major reason for these requirements is the need for
a very deep sleep mode to meet the tight power budget. The
sleep mode is realized by disconnecting almost all components
of the ECU, including the system controller, from power.
When waking up the system controller has only a limited
amount of time to boot and be ready to process the first com-
munication data. For ECUs using the CAN bus for communi-
cation this boot-time limit is typically 100ms. As illustrated in
Figure 1, it is hard to beat this time limit using a big Spartan-
6 with a low cost configuration interface like (Quad-)SPI,
but using a faster and therefore more expensive configuration
interface is inacceptable in the automotive domain.

B. Measurement setup

The measurement setup is presented in Figure 5. On the
left side there is an X1500 automotive platform based on a
Spartan-3 implementing a Traffic Generator for the CAN bus,
which is able to send and receive CAN messages and measure
time between messages using hardware timers. On the right
side of Figure 5 is the target platform, a Spartan-6 SP605
Evaluation Kit, which is not connected directly to the CAN
bus but uses the CAN transceiver from an additional custom
board. Besides providing a CAN PHY the mentioned custom
board also controls the power supply of the target board.
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Fig. 5. Measurement setup

C. FPGA design

Figure 6 shows a block diagram of the full FPGA design.
A multiplexer is used to separate the designs and implement
a defined interface.
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Fig. 6. Block diagram of the full FPGA design

The first design part on the right hand side includes all
components of a typical automotive ECU system controller:
A Microblaze microprocessor, interfaces to volatile and non-
volatile memory, a CAN core for communication and other
common EDK modules. A simple register was used to control
the enable pin of the multiplexer and the status of the external
CAN PHY. Beside the multiplexer the other custom core used
in the design is an interface to the ICAP primitive used for
configuring the second part of the design. With this the ICAP
can be accessed through the PLB bus and can be run with a
slower clock than the rest of the system. This was necessary
in order to avoid a slow system frequency because running
the Spartan-6 ICAP is only specified for a maximum clock
frequency of 20 MHz. To create these designs and to run the
tool-flow the System Edition version 11.5 of the Xilinx ISE
Design Suite was used.

The operating system RTA-Osek from ETAS was run on
the Microblaze. RTA-OSEK is a real-time operating system
suitable for applications in all areas of automotive ECU design.
Different tasks were implemented to process CAN messages,
start the configuration for the second design part or start a
software application which uses the second design part.

Fig. 7. FPGA Editor view of the initial (left side) and the full (right side)
FPGA design. The system clock is highlighted in yellow

As second design an UART core, an Ethernet core and
a hardware timer were implemented and connected to the
system controller sub-system using a PLB bus. In order to
be extendable easily and additionally have a clean separation
of the designs a PLB to PLB Bus Bridge was used, which
also minimized the nets crossing the border of the two design
parts. The second design part is clocked with the same system
clock as the first design part. The FPGA editor view of both,
the initial design on the left and the full design on the right
is illustrated by Figure 7.



D. Measurement process
The procedure to measure the configuration time starts with

the Traffic Generator in idle status, the CAN transceiver on
the CAN PHY board in sleep mode and therefore the SP605
disconnected from power. In the next step the Traffic Generator
starts a hardware timer and sends a CAN message. The activity
on the CAN bus is recognized by the CAN PHY which awakes
from sleep mode and reconnects the SP605 to the power
supply. The FPGA then starts to load the initial bitstream
from SPI flash. Because there is no receiver acknowledging
the message send by the Traffic Generator, the message will be
resent immediately until the FPGA finished its configuration
and also configured the CAN core with the valid baud rate.
Whenever the message gets acknowledged by the CAN core
of the Spartan-6 design, the CAN core of the Traffic Generator
triggers an interrupt which stops the hardware timer. This
timer is now holding the boot time for the SP605 design.
Measurements, which included an additional hardware timer
inside the SP605 design, have shown that when executing
the software to configure the CAN core from internal BRAM
memory, the software start-up time is negligible.

E. Results
The resource consumption for each partition is presented in

table I. The percentage information refers to the total amount
of available resources of the used XC6S45LXT device.

TABLE I
OCCUPIED FPGA RESOURCES

Resource Partition
Type 1st design part % 2nd design part %

Flip-flop 3480 6% 1941 4%
LUT 3507 13% 1843 7%
IO 58 20% 20 7%

RAMB 12 10% 2 2%

Table II shows the results of the configuration time measure-
ments. For these measurements, a standard bitstream of the
full design, a compressed bitstream of the full design and the
Fast Start-up technique using a partial initial bitstream were
implemented and compared. The table lists the configuration
times for different SPI bus width’s and different Config Rate
(CR) settings. The Config Rate is an option to determine the
target configuration clock frequency in MHz. As expected the
configuration times are proportional to the bitstream sizes.
Because using a fast configuration clock does not affect the
house cleaning process the ratio in percentage stays not the
same for high Config Rate settings. Also keep in mind that
those numbers are measured and not worst case!

V. CONCLUSION

In this work the first available design tool flow for Dy-
namic Partial Reconfiguration on Spartan-6 FPGAs has been
introduced. This tool flow enables the novel Fast Start-up con-
figuration mechanism for modern FPGA’s with 2-dimensional
configuration memory architectures.

TABLE II
CONFIGURATION TIMES

Configuration Technique
Configuration Traditional Compressed Fast Start-up
Interface 1450 KB 920 KB 314 KB
SPIx1 CR2 5297 ms 3382 ms 1157 ms
SPIx1 CR40 292 ms 196 ms 85 ms
SPIx2 CR2 2671 ms 1699 ms 596 ms
SPIx2 CR40 161 ms 113 ms 58 ms
SPIx4 CR2 1348 ms 872 ms 311 ms
SPIx4 CR40 97 ms 73 ms 45 ms

Fast FPGA Start-up, which configures the device in two
steps (i.e., prioritized FPGA start-up), is essential to address
the challenge of increasing configuration time in modern
FPGAs, which in other case, would prevent the use of FPGAs
in many modern applications, like PCI-express or CAN-based
automotive applications. A method to create the high-priority
initial configuration was proposed and verified in hardware.

Finally, the developed tool flow and methods for Fast Start-
up have been used and tested to implement a CAN-based
automotive ECU on a Spartan-6 evaluation board (i.e., SP605).
By using this novel approach, it was possible to decrease
the initial bitstream size, and hence, achieve a configuration
time improvement of up to 78% when compared to a standard
configuration solution.
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