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Abstract—The field of Wireless Sensor Networks (WSNs)
is now in a stage where serious applications of societal and
economical importance are in reach. For example, it is well-
known that the global climate change dramatically influences
the visual appearance of mountain areas like the European Alps.
Very destructive geological processes are triggered or intensified,
affecting the stability of slopes and possibly inducing landslides.
Up to now, however, the interactions between these complex
processes are poorly understood. To significantly advance the
knowledge of these interactions, we advocate the use of wireless
sensing technology as a new scientific instrument for environmen-
tal monitoring under extreme conditions. Large spatio-temporal
variations in temperature and humidity, mechanical forces, snow
and ice coverage, and unattended operation play a crucial role
in long-term, high-altitude deployments. Despite these challenges,
we argue that in order to reach the set out goals it is inevitable
that WSNs be created as a high-quality scientific instrument with
known and predictable properties, rather than as a research toy
delivering average observations at best. In this paper, we present
key techniques for achieving highly reliable, yet resource-efficient
WSNs based on our longstanding experience with productive
WSNs measuring permafrost processes in the Swiss Alps.

I. INTRODUCTION

X-SENSE (successor to PERMASENSE [2]) is a joint, inter-
disciplinary project that has the ambitious goal of developing
wireless sensing technology as a new scientific instrument for
environmental monitoring under extreme conditions in terms
of temperature variations, humidity, mechanical forces, snow
coverage as well as unattended operation that are needed for
long-term deployments.

In 2008 we started to deploy Wireless Sensor Networks
(WSNs) to collect environmental data related to permafrost at
the Matterhorn and Jungfraujoch. Each deployment consists of
around 20 sensor nodes, a base station, and extra equipment
such as weather stations and video cameras to remotely
monitor on-site operation. To this date, after more than two
years of continuous operation, we have collected about 100
million data samples. The extensive experience gained with
all aspects of operating these WSNs provides the X-SENSE
project with the background necessary to extend the work
performed, and develop a set of environmental sensors for the
observation of ground-based terrain movement in high-alpine
regions. Further leveraging familiarity with ultra low-power
sensors used for monitoring steep bedrock permafrost [5], we
are currently designing a set of more capable sensors. With
respect to rather simple sensors developed for PERMASENSE,
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Figure 1. The Matterhorn field site.

which display constant, and low sampling and data rates, the
X-SENSE nodes are targeted at more complex sensors, having
higher, and variable data rates, require user-interaction, or in-
network data fusion.

In this paper we review our past experience with design-
ing the existing low data-rate sensor network. Keeping the
X-SENSE goals in mind, we present key findings, and discuss
elements of the design methodology used. The paper concludes
with an outlook on ongoing and future work in which we
try to circumvent the process of continuously refining and
optimizing a target architecture in numerous iterations until
a satisfactory result is achieved. Instead, by means of larger-
scale prototypes deployed in the field, we try to assess pa-
rameters that influence architectural and procedural decisions.
By doing so, the prototypes are exposed to the conditions
of the target application site and yield representative sensor,
and behavioral trace data. The sample data produced during
the design process is used to assess the reaction of system
design decisions, tradeoffs, and parameterization, and drive
early steps in data analysis – all in all critical insights that are
unlikely to be satisfied by the use of formal models alone.

II. SYSTEM ARCHITECTURE

WSNs for environmental monitoring applications [1], [8],
[9] typically employ a three-tiered system architecture. On the
first tier, a set of low-power sensor nodes constitutes the heart
of the system. These sensor nodes form an ad-hoc wireless
network, jointly relaying sensed data over multiple hops to one
or more sink nodes (base stations), which comprise the second
tier. Sink nodes are usually equipped with more powerful
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Figure 2. A multitude of sensor types as well as the fusion of information
from different time and space scales are used for the detailed analysis of rock
glacier terrain movement in the Swiss Alps.

hardware and connect the remote WSN to the Internet. Finally,
on the third tier, servers and additional backend infrastructure
provide storage and processing capabilities, and interfaces for
users to interact with the network and perform maintenance
tasks.

We have adopted this architectural approach in the
X-SENSE project. In particular, the Shockfish TinyNode [4], a
16-bit micro-controller platform with a low-power ISM-band
radio, is used as the sensor node core. It is augmented by
the custom-built sensor interface board (SIB), which integrates
power supply, a number of in-system monitoring components
such as temperature, humidity, voltage, and current moni-
tors [2], and extended data storage (SD card). The complete
node electronics is boxed in a solid enclosure to protect from
water penetration and moderate rock fall.

The sensor nodes run a customized version of the Dozer [3]
multi-hop networking protocol, which allows collection of data
(sampled every two minutes) with an average power footprint
below 200 µA. A base station (see Figure 8), composed of a
more capable Embedded Linux platform, aggregates all data
on the field site. Using a local buffering and synchronization
mechanism, data are relayed to a database server and published
on our web servers, see Section IV. While there are several
options for long-haul point-to-point communication, including
cellular networks, satellite phones, and custom wireless links,
a directional WiFi to link on-site base stations to access points
located in the valley appeared to be superior in terms of energy
efficiency, bandwidth and reliability.

New challenges found in the X-SENSE project ask for
instrumentations at higher sampling and data rates than the
previous PERMASENSE data acquisition architecture was de-
signed for. The new architecture, shown in Figure 2, evolved
through extension of the existing architecture. The former first
tier is no longer implemented using low-power sensor nodes
alone; instead, it now also includes more powerful devices,
capable of processing large amounts of data (e.g., raw images
taken with a high-resolution camera). As an alternative to only
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Figure 3. Temporal and spatial temperature variations.

using low-power ISM-band communication on a deployment
site, a WiFi link supporting high data rates now enhances
the first tier. System extensions further include numerous
integration efforts: Existing ISM-band communication now
also acts as a management plane, allowing the control (e.g.,
switching on and off) of complex and power-hungry devices
such as GPS sensors. To facilitate the integration of more
complex sensors, base and host stations need are extended
with additional control logic. Moreover, the backend data
management must be provisioned to cater both old and new
classes of sensors.

III. CHALLENGING PHYSICAL ENVIRONMENTS

The X-SENSE system is designed to operate autonomously
over several years. However, the environmental conditions at
high-altitude areas of more than 3,500 meters are extremely
severe. The possibilities of lightning, avalanches, periods of
prolonged ice or snow cover, and strong solar radiation repre-
sent significant system reliability challenges.

Alpine environments experience extreme climatic variations.
In winter, temperatures can drop below -20 ◦C, while the
radiation from direct sunlight during a summer day can heat
up a system in an enclosure to +60 ◦C. Depending on the
locations of nodes, temperature variations show a distinctive
pattern and therefore, affects their operation in significantly
different ways. For example, sensors on the north side, or those
buried in snow, are less exposed to temperature dynamics than
sensors on the south with direct exposure to sunlight. Figure 3
shows an example of the temporal and spatial variability of
ambient temperature experienced by three sensor nodes over
a week. During the day, temperature readings among different
nodes can vary by more than 20 ◦C; at some nodes it can even
change by this amount within a few hours.

System components need to be carefully designed and tested
in order to ensure a reliable operation under such harsh
conditions. Temperature and humidity stress electrical com-
ponents, leading to phenomena like spurious short-circuits,
memory errors, degradation of battery capacity, additional
current consumption of electrical components, and decreasing
accuracy of sensors and analog-to-digital converters (ADC).
These changes in electrical properties can have a direct impact
on network lifetime and data quality. Moreover, the end-to-end
performance of the system is affected by all components, rang-
ing from data generation at the sensors to analysis tools applied
to diverse datasets. The main challenge is thus to ensure a
proper interaction among these components, so that the whole



communication and processing chain from sensors to the data
storage results in a reliable and predictable functionality in
terms of data quality, data yield and network lifetime.

In the following, we address the most important challenges
presented by alpine environments. We further discuss our
design choices to counteract these issues, and briefly explain
the underlying testing methodology.

A. Clock drift

Temperature, power quality, and system design choices
affect the stability of oscillators that provide the heartbeat of
digital systems. Instability of the local clock subsystem has
several detrimental consequences. For instance, the accuracy
of an ADC may be affected, which can lead to lower quality
of the sensed data. Furthermore, performance of other digi-
tal components, such as processors and memories may also
decrease due to the clock degradation. Spatial and temporal
variations of temperature lead to different clock drifts for
different nodes. Time synchronization is thus required to make
nodes share a common knowledge of time to permit energy
efficient communication.

In order to evaluate the resilience of a system to harsh envi-
ronmental conditions, it is inevitable to perform a continuous
transition from simple system tests under ideal environmental
conditions, via extensive test under conditions that are as close
as possible to the expected deployment environment (outdoor
or climate chamber), to the final deployment at the field sites.
Such a continuous process has been installed and used in the
described project, see also Section III-D.

For example, in order to create artificial temperature varia-
tions, and test system components under extreme conditions,
we make use of a climate chamber. First, we evaluate the clock
drift, that is the deviation of the oscillator frequency from its
nominal value as a function of temperature. With temperatures
ranging between -30 ◦C and +40 ◦C, the frequency of a crystal
drifts from its nominal value to a maximum of -70 parts per
million (ppm). We exploit the temperature sensors equipping
each node to correct oscillator frequency errors based on
the findings during the climate chamber experiments. The
processor periodically triggers a reading from the temperature
sensors, whose readings are used to compensate for the
estimated clock drift. Tests with the climate chamber show
that clock drift is significantly reduced with this approach,
and always lies within bounds of ±5 ppm. This is important,
as more stable clocks allow significant reduction of the guard
time duration, which are used by the wireless communication
protocol to tolerate possible synchronization errors among
sensor nodes. As a result, the amount of time the wireless
radio is turned on is drastically reduced, leading to a higher
energy efficiency of the system.

We further conduct experiments with the climate chamber
to analyze how temperature affects the timing behavior of
important operations executed by a sensor node. This may
include, but is not limited to data acquisition (DAQ) from a
sensor, and storage of data into the flash memory. Figure 4
shows results from a 14-hour experiment in the climate
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Figure 4. Effects of temperature variations on the duration of operations.

chamber. Starting with room-temperature (25 ◦C), we decrease
the temperature to roughly -40 ◦C over the period of an
hour, after which we leave it stable for four hours. Then we
increase it to +45 ◦C, and let it stay at that value for four
more hours. The time required to store data into the flash
memory indicates a strong dependency on temperature, and
varies between 70 ms and 150 ms. Moreover, the time required
to acquire a value from a sensor has a strong temperature
correlation, and ranges between 10 and 30 seconds. When
there is no compensation for the clock drift, strong tem-
perature variations lead to system malfunctioning: Figure 4
shows several system resets caused by the watchdog timer.
These temperature-related pre-deployment experiments prove
to be extremely important; they allow proper tuning of timing
dependent operations executed by the processor. Without this
a-priori knowledge, the temperature-related effects might be
underestimated and possibly lead to system malfunction.

B. Real Batteries and Power Draw

Sensor nodes in the field are powered by real batteries, not
by steady laboratory power supplies (e.g., USB cords). Since
batteries deplete faster under cold conditions, this necessitates
the selection of suitable cells based on the expected peak
current consumption, temperature constraints, and lifetime
requirements [2], [8]. Furthermore, the ultra low-power con-
sumption on the order of µAs is close to the self discharge
of common batteries, which complicates the estimation of
remaining capacity and lifetime. Considering the deviation of
battery models from reality due to these influences, batteries
affect both power quality and yield that the system can expect.

In addition to hardware considerations, we have to ensure
that our networking protocols operate correctly and at an
acceptable energy-efficiency. To this end, we have developed
a comprehensive testing environment including indoor and
outdoor WSN testbeds [11], a supportive testing methodology
and framework [13], and techniques based on formal analy-
sis to automatically identify incorrect behavior using power
measurements [12].

For instance, Figure 5 plots power traces obtained from
a single node during one of our daily, automated test runs.
In a disconnected setting, illustrated in Figure 5, the node
repeatedly turns on its radio 〈1〉 to scan for beacons from other
nodes. As it never receives any beacon, it steadily reduces the
listening time to the minimum 〈2〉. Every two minutes 〈3〉 the
node powers up the SIB, reads out the sensors, switches off
the SIB, and writes a record of the sampled data to the external
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Figure 5. Disconnected operation of an isolated node.

SD card. The node never attempts to send any beacons or data
packets unless it discovers neighboring nodes.

Such detailed power traces are essential in finding power
leaks due to software bugs. Moreover, they demonstrate the
(correct) protocol behavior under exceptional conditions, such
as when a node is disconnected from the rest of the network.

C. Transient Links and Disconnected Operation

Highly variable link quality is a common phenomenon in
wireless systems, and can cause transmission errors and bursty
packet loss [14]. In addition, snow and ice cover on antennas
can lead to long-term network disconnects, and so do rock
fall, avalanches, riming, permanent water damage, vandalism
or theft. As a result, the system design must account for
phases during which parts of the network are incapable of
communicating with, or unreachable by neighboring nodes.
Besides external influences, such exceptional situations may
also arise due to node reboots caused by software bugs [7] or
brown, and black-outs. Depending on the severity, nodes may
be disconnected for only a few minutes (e.g., during a reboot)
or several months (e.g., until the covering snow melts).

Since the system design can generally not prevent external
influences from causing a node to be disconnected, it needs
to prepare for such situations by taking into account the
consequences. For example, if a node detects that it can no
longer communicate with its parent, the routing or topology
control protocol first needs to commence searching for an
alternative parent among the node’s neighbors. If this fails,
and the node discovers itself completely disconnected, it then
needs to store the precious sensor readings locally (e.g., on
a SD card) to prevent packet queue overflows. The size
of this memory must be large enough to accommodate all
data generated during a disconnected phase, defined by the
requirements specification (in our case six months). Given the
sampling rate and the size of each sample, one can calculate
the minimum memory size needed to cater for reliable data
logging during phases of disconnected operation.

In general, long term disconnections lead to large devia-
tions of absolute local clock readings which poses additional
difficulties to correctly time-stamp and to correctly order
sensor data. For example, packets are not timestamped at
the source node in X-SENSE. Instead, the packet dwell times
at intermediate nodes along the routing path to the sink are
accumulated as the packet travels through the network. Using
the total traveling time and the time of reception, the sink
computes the packet’s generation time at the source node.
These accumulated time values are subject ot large absolute
inaccuracies in case of long term disconnections. In addition,

if a node gets disconnected for several months, the dwell times
of packets held by that node may exceed the maximum value
reserved in the packet header. In such a case, packets that are
stored longer cause overflows, and the sink is no longer able
to determine the packet generation time.

D. Transition from Lab to Deployment Site

To verify correct system behavior during disconnects, we
regularly simulate isolated nodes in our lab, as discussed
in Section III-B. Additionally, we have installed an outdoor
testbed of sensor nodes on the roof of the university building,
exposing the WSN to all kinds of weather phenomena, ap-
proaching the conditions at the deployment site. The impact of
extreme temperature variations not experienced in our outdoor
testbed are examined with climate chamber experiments (see
Section III-A).

However, despite the efforts to replay the system inter-
actions on the deployment site in our lab environment, the
transition from one to the other is still a challenging task. For
example, a disconnected scenario on one of our deployment
site, caused by radio interference, went undetected until we
discovered that we no longer received any data from the
network nodes. Analysis revealed that, since nodes were
temporarily unable to communicate with the base station, the
output power of the Global System for Mobile Communication
(GSM) antenna was set too high for the nodes to communicate
with one another, or the base station via the low-power radio.
After disabling the GSM, the nodes resumed delivery of
data. This unfortunate interplay was not detected prior to
deployment only because we did not test the full system
beforehand; while the WSN-related components had been
tested individually, the seamless coexistence with GSM had
not. Consequently, we decided to always test the full system
by enhancing our local rooftop and indoor testbeds to replicate
our deployments as close as possible.

IV. DATA ACQUISITION AND MANAGEMENT

Artifacts on data retrieved from sensor nodes are common
in WSNs [1], e.g., due to the intrinsic unreliability of wire-
less communication. Concerns such as clock drift, incorrect
temporal system behavior, packet duplication, and packet loss
decrease the overall quality of the sensor data. In Section III,
we discuss how harsh environments aggravate these issues,
and how reliable system operation can be achieved by proper
design and testing. However, the data retrieved from the
network will still contain artifacts. Meeting qualitative and
quantitative data requirements therefore becomes a challenging
task. Domain experts ask for data that 1) can be associated
with a unique origin, 2) provide a reliable acquisition time,
3) come from a properly operating sensor, and 4) are in
chronological order with respect to acquisition time.

In X-SENSE, we have to deal with data that originate from
three distinct classes of sensors: weather stations, visual sen-
sors, and geophysical sensors. These classes generate different
data streams that vary in several orders of magnitude with
respect to the size of a sample, the sampling rate, and the
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Figure 6. Collected raw data is firstly cleaned by involving a formal model of
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sampling window. For instance, the size of one high-resolution
image taken once per hour is in the order of 10 MB, whereas
a sensor node only generates five packets every two minutes,
totaling in a few tens of bytes.

Before domain experts can analyze the data, extensive
cleaning, conversion, and mapping operations need to take
place. On a high level, data handling consists of four tasks:
data collection comprises all steps for transporting raw output
data from a sensing system to the backend database server. The
data stream is then cleaned from artifacts introduced by the
transmission system, i.e., packet duplicates, erroneous read-
ings, etc. Third, raw values, e.g., ADC readings, are converted
into physical units. Converted and cleaned data with verified
and known properties are published on the public data front-
end (http://data.permasense.ch/). Domain experts are then able
to use this publicly available data and apply further filtering
and aggregation steps that suit their applications.

The goal of data cleaning is to generate a stream that
contains duplicate-free data that are in the correct chrono-
logical order of data acquisition and contain information
about the acquisition time, e.g. a time interval that provides
safe bounds. Additionally, data that does not conform to
system specifications is removed. We achieve this cleaning
by analyzing application packet headers, such as sequencing
information and dwell time in the network. A formal model
allows us to verify packet streams, remove packet duplicates,
and reconstruct the correct chronological order.

In addition, a large amount of meta-data is needed to allow
tracing and converting sensor data. This includes conversion
functions, calibration data, mappings of analog channels,
unique device identifiers, and other information. Using this
meta-data, collected data is cleaned in multiple dimensions. A
stream-based data backend allows the repetition of conversion
and filtering steps multiple times by applying filters and
algorithms on raw data. Raw sensor data is of high value
and never removed or modified; the results of the conversion
process are stored in databases.

Gathering data under the extreme influences of the environ-
ment may be hard, but handling and managing data requires
just as much attention. Having collected about 100 million
data samples from the WSN deployments, even mundane
problems such as server performance and storage issues arise.
Experience with real-world deployments have shown that
a reliable and scalable back-end is extremely important to
sustain a level of quality that enables geoscientists to derive
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(a) Conventional design approaches (waterfall-model) increase system com-
plexity and feature-sets iteratively (and possibly cyclical).
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(b) The proposed approach employs a powerful, generic node (see Figure 8)
that provides validation data for system design based on real deployment data.

Figure 7. (a) Conventional design approach, in which a design step represents
addition of new features; (b) Proposed design approach, in which superfluous
features are removed.

or validate geological models, and hence provide insight into
high-alpine microclimates.

V. DESIGNING FOR EXTREMES

In this section, we briefly address the design space of WSNs
for environmental monitoring, and discuss how we envision its
exploration. The ambitious long-term goal is to devise system-
atic design principles, applicable to system development for
diverse application scenarios that require highest possible data
quality and yield, while maintaining system controllability,
and observability at lowest possible cost. Because of the early
stage, and space considerations, we will only be able to point
into the direction of our investigations.

Conventional Design Flow. The prevalent design paradigm
followed by many WSN research communities has a strong
computer science background. On a high level, this approach
consists of incremental, iterative design stages that transform
a specification into a marketable product (see Figure 7(a)).
However, we have observed that this approach may not be
optimal for hardware/software co-design with many, highly
stochastic parameters because of three main factors. First,
missing system parameter specifications due to insufficient
knowledge of the target environment require assumptions that
may not apply, and therefore lead to complicated and costly
re-design phases. Second, continuously extending a system
– if at all possible – is complicated and likely increases
development cost while reducing system efficiency. Finally,
limited visibility into embedded systems severely complicates
debugging and design verification, making the design stages
prone to errors. Therefore, a top-down (in terms of complexity)
design process (see Figure 7(b)), versus the conventional
approach, may lead to more efficient design flows [10] that
allow cost-efficient design of optimized systems, featuring
only the functionality needed to serve the purpose.

Revised Design Flow. Experience with all aspects of operating
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Figure 8. CoreStation: The motherboard provides extensive power control,
system monitoring, and interface circuitry (e.g., to a GPS module). Interfaces
to several communication links (WiFi, GSM modem, TinyNode radio) allow
remote observation and control.

heterogeneous WSNs in extreme environments has shown that
the deployment site dynamics dominate design choices. To
circumvent this complication, and expose remote observability
of both the environment and the system under real-world
conditions, we argue that as a first step in designing new
nodes, few, but feature-rich nodes should be deployed. Such
an over-provisioned test-deployment then allows to observe,
experiment, and learn on-site. Not only does this give the pos-
sibility to draw from actual deployment experience and clearly,
and close to exhaustively, define the design possibilities within
the application’s requirement specification, but also permits
profiling of system performance before the first application-
specific prototype is even built. Hence, continuous hardware
refinement, as is necessary with the conventional approach,
can be largely omitted. The system’s “unlimited” resources
provide the researchers with experimentation opportunities
beyond what is possible in artificial lab, or even outdoor
testbed simulations. Having such an on-site testbed can bring
forth insights into diverse environmental interactions with the
equipment that could otherwise only be provisioned for with
approximations. Leveraging the knowledge gained by domain
experts and system designers over an exploration period could
lead to fewer optimization steps in which experience directs
design choices (see Figure 7(b)).

To facilitate such an investigative approach, we use an
over-provisioned “node”, a tried and tested, highly flexible
CoreStation, of which a block-diagram is shown in Figure 8.
This platform, together with a user configurable software
framework, permits design space exploration of low-power
network nodes, specialized XL sensors (GPS, Camera, etc.),
or base stations under real-world conditions.

Our over-provisioned node of course has its price. The
powerful hardware architecture imposes high development,
and component cost. Furthermore, the lack of application-
specific optimizations also affects the power budget; despite
extensive software control over power-hungry components, the
energy requirements of our CoreStation are orders of magni-

tude higher when compared to standard low-power nodes. This
implies that component duty-cycling, energy scavenging, and
appropriately dimensioned buffers are an absolute necessity.
Finally, due to increased size, weight, and energy requirements
of the system, deployment cost increases correspondingly.
However, the main challenge of our proposed approach lies in
substantial redesign (and related verification) to map resource
and software to the final target platform. Despite the overhead,
and potential difficulties arising in the translation process,
initial experimentation with specialized, resource intensive
sensors have produced insights that can facilitate definition
of design principles and system models for new and improved
sensor node architectures that permit sensing in extreme envi-
ronments.

VI. CONCLUSIONS

More than a decade ago, researchers envisioned “smart
dust” as networks of numerous tiny, cheap sensor nodes [6].
We observe instead that applications such as early warning
systems of natural hazards (e.g., rockfalls or landslides) require
feature-rich, dependable node platforms, delivering correct and
reliable data over long periods. Our experience stems from
developing WSN systems for environmental monitoring under
extreme conditions. To cater for the arising challenges, we
propose a novel design approach that targets highly optimized,
reliable systems based on extensive on-site design exploration.
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