
Abstract State Machines as an Intermediate
Representation for High-level Synthesis

Rohit Sinha
Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

rsinha@uwaterloo.ca

Hiren D. Patel
Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

hdpatel@uwaterloo.ca

Abstract—This work presents a high-level synthesis method-
ology that uses the abstract state machines (ASMs) formalism
as an intermediate representation (IR). We perform scheduling
and allocation on this IR, and generate synthesizable VHDL.
We have the following advantages when using ASMs as an IR:
1) it allows the specification of both sequential and parallel
computation, 2) it supports an extension of a clean timing
model based on an interpretation of the sequential semantics,
and 3) it has well-defined formal semantics, which allows the
integration of formal methods into the methodology. While
we specify our designs using ASMs, we do not mandate this.
Instead, one can create translators that convert the algorithmic
specifications from C-like languages into their equivalent ASM
specifications. This makes the hardware synthesis transparent to
the designer. We experiment our methodology with examples of a
FIR, microprocessor, and an edge detecteor. We synthesize these
designs and validate our designs on an FPGA.

I. INTRODUCTION

High-level synthesis (HLS) addresses the challenge of gen-
erating hardware designs from algorithmic specifications. The
popular choice of language used for algorithmic specification
is either C or some C-like variant. The reason for this choice
is a pragmatic one: most designers can program using C,
which means they do not need to learn a new language to
use a HLS methodology. This allows designers with a wide
spectrum of expertise to design hardware without the laborious
tasks involved in traditional RTL methodologies. Examples of
some C-based HLS frameworks are PICO [1], Handel-C [2],
AutoPilot [3], SPARK [4], Catapult C, and SynphonyC.

Although C-like languages are the preferred language for
algorithmic specifications, they have also been criticized as not
being suitable for hardware designs [5], [6]. We find that there
are three major criticisms. The first major criticism is that C-
like languages impose sequential semantics whereas hardware
is inherently parallel. Therefore, synthesis tools need to auto-
matically extract parallelism from the sequential specifications,
which is equivalent to automatic software parallelization [7].

The second criticism is that C-like languages do not provide
mechanisms to control the timing behaviour [6] of a design.
That is, the time at which an output is available cannot be
clearly defined or easily deciphered. This is a considerable
concern for designers that are building hardware components

978-3-9810801-7-9/DATE11/ c©2011 EDAA

of a larger system that must behave with specific timing
behaviours. The third criticism is that formal methods and
verification are not integrated into HLS methodologies. As a
result, existing tools and methods for model-checking, auto-
mated testbench generation and equivalence checking cannot
be leveraged.

In response to these criticisms, there are several efforts that
extend C-like languages with constructs to express parallel
computation [2], [7], timing models [2] and the integration
of formal methods [8]. For example, Handel-C extends C
with a par construct for explicit parallelism, and Kiwi [7]
leverages the concurrency mechanism in .NET for parallel
specifications. These constructs allow the designer to explicitly
make space and time tradeoffs, and expose parallelism that
would otherwise be difficult to extract. Another innovation by
Handel-C is its simple timing model; each assignment takes
one clock cycle. This enables designers to clearly specify the
timing requirements of their design. Many other C-based HLS
methodologies do not provide a timing model. In addition,
seamless integration with formal methods also largely remains
absent.

We find that it is essential for an HLS methodology to
address the above three criticisms for its further success.
Given that C-like languages are the language of choice for
algorithmic specification, language extensions to allow parallel
specifications and control over timing are becoming more
prevalent [7]. As a result, our objective with this work is to
propose an intermediate representation (IR) that incorporates
and supports such extensions. In particular, we want to 1) sup-
port the specification of sequential and parallel computation,
2) introduce a timing model, and 3) integrate formal meth-
ods into our HLS methodology. Our HLS methodology uses
abstract state machines (ASMs) as an IR to accomplish these
objectives. Note that we do not require the initial algorithmic
specification to be described in ASMs. Instead, translators can
convert the algorithmic specification into ASMs, which we
can then analyze, optimize and synthesize into hardware. This
makes the ASMs transparent to the designers.

ASMs are a form of concurrent state machines that are
straightforward for both software and hardware engineers
to understand. They also have formal operational semantics.
This means that all ASM specifications are executable, which



is necessary for simulation. Furthermore, we can leverage
existing tools and methods to incorporate formal methods,
verification and automated testbench generation to the HLS
methodology. ASMs allow specifying both sequential and
parallel computation with clear definition of their composition.
This is necessary for hardware designs because the IR can
naturally represent the parallel computation to be performed
in hardware. In addition, the execution semantics of ASMs
ensure that race conditions on shared states for parallel com-
putation blocks caused by simultaneous conflicting updates are
identified.

A. Main Contributions

The main contributions of this work are listed below:
• An ASM-based IR for a HLS methodology that supports

the specification of parallel computation, and a timing
model.

• A synthesis back-end that generates synthesizable VHDL
from ASMs.

II. RELATED WORK

In recent years, we have seen a surged interest in HLS
methodologies [5] with various academic and commercial HLS
methodologies and tools emerging. We focus on a subset of
the HLS methodologies based on C-like languages.

The Handel-C [2] methodology extends the C language
with extensions to support parallel computation via the par
construct and it includes a timing model. The par construct
allows designers to specify parallel computation, which oth-
erwise would be difficult to automatically extract from a pure
sequential specification. The timing model is simple: each
assignment synthesizes to a cycle in hardware. The abilities
to specify parallel computation, and the timing behaviour are
important characteristics for a hardware design.

The Kiwi framework takes a similar approach to Handel-C
in that it incorporates system-level concurrency abstractions
into its HLS methodology. However, Kiwi is based on the
C# language [7], and it uses threads, monitors and mutexes
(concurrency mechanisms in C#) to specify parallel com-
putation. While the idea of presenting parallel computation
in the specification is valuable, Kiwi lacks the ability to
specify timing behaviours. In addition, both Kiwi and Handel-
C provide no evidence that formal methods can be easily
integrated.

The Program-In, Chip-Out (PICO) [1] system presents a
framework based on the Kahn process network (KPN) for-
malism, and an architecture template. The KPN semantics
allows the compiler to represent parallel behaviour as a set of
processes implementing a sequential algorithm interconnected
with unbounded FIFOs. PICO also implements facilities for
testbench generation, and software generation. However, one
of the fundamental challenges in generating hardware from
KPNs is bounding the size of the infinite FIFOs between pro-
cesses. Currently, PICO requires the user to define constraints
on each of the FIFOs, which is similar to defining the bounds
on memory usage.

AutoPilot [3] and Forte’s SystemC Cynthesizer support
synthesis from SystemC algorithmic specifications. This ad-
dresses the lack of concurrency in C-like languages, but the
requirement to learn the discrete-event semantics for algorith-
mic specification is time consuming for non-hardware experts.
Once again, there is limited integration of formal methods and
verification into their methodologies.

III. BACKGROUND

A. Abstract State Machines
The ASM model of computation comprises of a set of

transition rules that describe the evolution of the state. A
transition rule (or simply called a rule) is of the form:

if Guard then Updates
where Guard evaluates a Boolean expression and Updates is
a finite set of assignments. An update is of the form:

f(a1, a2, ..., an) := a0

where a0 to an are arguments and f supplied with its
corresponding arguments denotes the location to update with
the value of argument a0. A step in this model of computation
first evaluates the arguments a0 to an for their values, which
we denote as v(a0) to v(an). Once the values are evaluated,
the assignments in the Updates set are computed. Therefore,
f(v(a1), v(a2), ..., v(an)) gets the value of v(a0).

When the Guard of multiple transition rules evaluate to
true, the assignments in the Updates set are applied simul-
taneously. This is known as a run of an ASM. Notice that
simultaneous updates to the same location result in conflicts.
A conflict is a result of a conflicting Updates set. This occurs
when the same location is scheduled to receive two different
values. For example, the Updates set {f(v(a1), , ..., v(an)) :=
v(a0), f(v(a1), ..., v(an)) := v(a1)} such that v(a0) 6= v(a1)
is a conflicting update set.

A basic ASM contains a set of rules, where each rule pro-
duces a Updates set. In the synchronous model of execution,
all rules in the ASM specification are scheduled to execute in
a step. This union of Updates (of all rules) indicates the next
state values of the ASM.

B. CoreASM Engine
CoreASM [9] is a Java-based open-source framework for

modeling and simulating ASM specifications. It is designed
with a plugin-based software architecture that makes extending
the framework simple. Aside from its support for multiple
schedulers for synchronous and asynchronous ASMs, it also
has a plug-in for the formal verification of ASM specifications.
CoreASM’s software architecture has four components: the
parser, the abstract storage, the interpreter, and the scheduler.
Each of these components can be extended. This includes
extending CoreASM with scheduling policies, datatypes and
a type system, back-end code generators, and syntactical
and semantical additions. The extensible nature of CoreASM
makes it an ideal candidate upon which we create our HLS
tool. In particular, we make minor extensions to the language,
and we implement a back-end that generates synthesizable
VHDL from ASM specifications.



c2asm

hc2asm

ASM IR

Translated
ASM 

Specification Supporting Tools

Model-checking
Automated testbench

GenerationSimulator

RTL

Synthesizable
VHDL

Hardware Synthesis

Scheduling, Allocation, and
Optimizations

Algorithmic 
Specification

C

Handel-C

...

asm2vhdl

Fig. 1. Design Flow of the Proposed HLS Methodology

IV. DESIGN FLOW USING COREASM

Figure 1 shows our HLS methodology. The first stage
in our methodology involves the algorithmic specification in
either a C-like language or in ASMs. While translators can
automatically convert the specifications from C-like languages
into the ASM IR, we currently write our specifications directly
using ASMs. We extend the CoreASM [9] framework with the
synthesis back-end that performs scheduling and allocation,
and generates synthesizable VHDL. We also make extensions
to the language to support timed sequential blocks, which
provide a timing model for the synthesis.

V. SYNTHESIS FROM ASMS

Our back-end supports the core constructs of ASMs as
implemented by CoreASM [9]. We include support for ba-
sic datatypes such as Boolean, numbers, enumerations and
function elements. We are currently implementing datatypes
to support bit-wise arithmetic as well.

Statements Syntax

Block par statement1 ... statementn endpar
seqblock statement1 ... statementn endseqblock
tseqblock statement1 ... statementn endtseqblock

Forall forall element in domain with guard do statement
Conditional if guard then statement1 else statement2
Macro Rule rule(a1,...,an)
While while (guard) statement
Update function(arguments) := value

Case

case var of {
a1 : statement1
an : statementn
}

TABLE I
SYNTHESIZABLE STATEMENTS

A. Synthesis

Table I shows the set of synthesizable statements. A state-
ment can itself be defined using statements. For example, the
conditional statement has two possible branches: the taken
and the not taken. The behaviour of each of these branches
is also defined using statements. Note that a statement can
nest multiple statements. These are typically denoted using
the seqblock and par block statements. Each block statement
produces an Updates set, and based on the type of block
statement, the Updates set are combined. We now describe

some of the important statements, and their synthesis to
hardware.

1) Enumerations: Enumeration (enums) elements in ASMs
are used for arguments and return values. Functions that return
enums must store the binary representation of the elements
in FPGA registers. Our synthesis tool incrementally assigns
numeric values to the enumeration elements starting from
0. Since enums may also be used as function arguments,
and functions define state of the design, their numeric value
must be non-negative to allow indexing the array of registers
synthesized for functions.

2) Functions: State is denotationally defined using function
declarations in ASMs. The function declaration denotes the
domain and range for which the state is defined. For example,
the two functions in ASM Spec. 1 describe the states for a reg-
ister of size 8 bits unsigned (x), and an array addressed using
8 bits unsigned that stores 32-bit words signed (weights).
We synthesize these functions as an array of registers, which
can then be placed onto block ram cells or logic cell flip-flops
depending on the memory/state mapping optimization.

ASM Spec. 1 Example of Function Declarations.
1 function x:→ UNSIGN NUMBER8
2 function weights : UNSIGN NUMBER8→ SIGN NUMBER32

3) Parallel Block Statement: The par block statement con-
tains statements that describe parallel computation. For the
example in ASM Spec. 2, each statement produces an Updates
set. The Updates set of the par block statement is computed
as the union of the Updates of its constituent statements. For
this example, the Updates set for the par statement is {(x,5+c),
(y,6+c)}.

ASM Spec. 2 Example of par Block Statement.
1 par
2 x := 5 + c
3 y := 6 + c
4 endpar

During synthesis, these statements generate parallel hard-
ware. The synthesis of this example generates two adders. The
first adder computes 5+ c and stores the result in state x, and
the second adder computes 6+ c and writes the result to state
y. Note that c is a constant. Both these additions happen in
the same clock cycle.



4) Forall Statement: The forall statement also describes
parallel computation. It does this by enumerating over all the
elements in the domain (refer to Table I) and evaluating the
statements within the forall statement with these enumera-
tions. For the example shown in ASM Spec. 3, the follow-
ing statements are evaluated in parallel: medfilt(0,0),
medfilt(0,1), ..., medfilt(639,479). This allows
designers to concisely represent a hardware design that con-
tains replicated blocks for performing the same operation.
Several discrete filter designs and image processing algorithms
leverage replication to maximize throughput. Our example
computes the median filter for each pixel in an input image
of size 640 by 480.

ASM Spec. 3 Example of the forall Statement.
1 forall row in [0 .. 639] do {
2 forall col in [0 .. 479] do {
3 medfilt(row,col)
4 }
5 }

Our synthesis of the forall statement essentially performs
loop unrolling such that the median operation for each pixel
occurs in parallel. We take the statement after the do key-
word and generate an instance of that statement for each
enumeration. The generated HDL contains dedicated hardware
computing medfilt() for each pixel data. This is useful in
SIMD type hardware designs. Note that medfilt() is an
invocation of another rule, which are called macro rules. We
explain macro rules in Section V-A5.

5) Macro Rule Call: A macro rule call is a statement that
invokes another rule. Macro rules enable modular design by
1) treating each rule as a component of a top-level design
and 2) allowing component reuse across design entities. The
invocation of medfilt(...) is an example of macro rule
call. The computation inside the macro rule is scheduled
as any other statement. The type of enclosing block (either
par or seqblock/tseqblock) governs whether the macro rule
code executes sequentially or in parallel with respect to other
statements. Our synthesis inlines the behaviour in the macro
rules at the location of their use in the ASM specification.
The primary reason for inlining is that it enables scheduling
algorithms to make better optimization decisions by analyzing
a larger fraction of the program.

6) Sequential Block Statement: A sequential block state-
ment executes statements in program order. ASM Spec. 4
shows an example using the seqblock statement. In this
example, the statements on lines 2 and 3 produce a combined
Updates set of {(x,1), (y,1)}. The statement on line 4 updates
the value of x to 2 resulting in {(x,2),(y,1)}. Therefore, at the
end of an ASM step, the sequential block yields {(x,2), (y,1)}
as the Updates set.

A sequential specification such as the above has no well-
defined timing model. As a result, analysis techniques ex-
tract data dependencies to create a partial order amongst
the operations. Scheduling of these operations give the clock
cycle at which the operations occur. This is followed by

ASM Spec. 4 Example of seqblock Statement.
1 seqblock
2 y := 1
3 x := 1
4 x := 2
5 endseqblock

resource allocation and binding. There are several well-known
techniques such as ASAP, Force Directed Scheduling, etc. that
we support with the sequential block statement.

7) Timed Sequential Block Statement: Timed sequential
block statements have the same semantics as seqblock state-
ments with the exception that we incorporate a timing model
for synthesis. The timing model is simple: each update to a
state takes one clock cycle unless embedded with a parallel
statement. Consider ASM Spec. 4 with tseqblock instead of
seqblock. In this modified example, the sequential block yields
a combined Updates set of {(y,1,0),(x,1,1),(x,2,2)}. Notice
that the tuple now contains a cycle time value at the end.
For instance, (y,1,0) means that y := 1 happens in clock
cycle 0. With a well-defined timing model, a timed sequential
block is subject to time-constrained scheduling such as force-
directed scheduling. Next, we synthesize tseqblock statements
as a finite state machine (FSM). This FSM schedules each
assignment to consecutive clock cycles.

8) Parallel Block with Timed Sequential Block Statements:
A caveat of specifying parallel computation is the potential
for data races. The Updates set of the par block statement
is computed as the union of the Updates of its constituent
statements. However, an inconsistent Updates set for the
par block surrounding tseqblock statements occurs if and
only if the same state elements are written with different
values in the same clock cycle. Consider this definition for
a cycle-accurate ASM Spec. 5. In this example, the individual
Updates sets for the two tseqblock statements would be
{(x,1,0),(y,2,1)} and {(z,3,0),(x,4,1)}, respectively. The sur-
rounding par block composes these Updates sets to form
{(x,1,0),(z,3,0),(x,4,1),(y,2,1)}. Notice that there is no conflict
in this specification as x gets written by parallel statements in
different clock cycles.

ASM Spec. 5 Example of par with tseqblock.
1 par
2 tseqblock
3 x := 1
4 y := 2
5 endtseqblock
6 tseqblock
7 z := 3
8 x := 4
9 endtseqblock

10 endpar

9) Parallel Sequential and Timed Sequential Blocks: Up-
dates produced by seqblock statements are not associated
with any time value. A surrounding par block considers an
Updates set as inconsistent if and only if parallel seqblock
computations write different values to the same state element.
As an example, let us replace the second tseqblock in ASM
Spec. 5 with seqblock. The individual Updates sets for the



two blocks would then be {(x,1,0),(y,2,1)} and {(z,3),(x,4)},
respectively. The Updates set for the seqblock does not define
when the operations occur; thereby, allowing them to occur at
any clock cycle. Therefore, the union of these Updates set is
in conflict.

10) Preserving Sequential Composition of Updates: Recall
that states are updated at the end of a step of an ASM run.
Therefore, with parallel composition of sequential blocks, we
must prevent one seqblock from affecting others.

ASM Spec. 6 Example for Temporary Registers
1 par
2 // Assume x, y are initially 0, 0 respectively
3 seqblock
4 x := 1
5 y := y + 1
6 endseqblock
7 seqblock
8 y := 2
9 endseqblock

10 endpar

For our example in ASM Spec. 6, the end of a step
happens when all parallel statements within the par block
are evaluated. Therefore, we expect the assignment in line
5 to produce a partial Updates set {(y,1)}. However, each
seqblock statement updates the same instance of state y (i.e.
the same register). Now, assume that the framework schedules
each operation within a seqblock to consecutive clock cycles
of the FSM. When the execution reaches line 5, y evaluates
to 3 because line 8 modified its value in the previous clock
cycle of the FSM. The assignment in line 8 has incorrectly
become visible before the end of the ASM step.

To preserve the ASM semantics, we must ensure that the
assignments within the sequential blocks do not immediately
update the global state. As a result, we introduce intermediate
states to hold these values before computing the updates to the
global state. At the point where the execution flow splits into
the parallel statements, the current state is registered into the
temporary state. Each statement in the parallel block operates
on its local states. Then, at the end of the parallel block
statement, the consistency check logic combines the updates
from each of the statements. This is a semantically correct
implementation of the ASM consistency check semantics.

B. Checking for Consistent Updates

In order for us to detect potential data races, we generate
hardware that checks for the consistency of updates at runtime.
During execution, if an inconsistent update is identified, the
hardware asserts a signal identifying that a conflict occurred.
Note that this is only required during verification and debug-
ging of the hardware design. Therefore, we provide a setting
that disables the generation of the consistency check hardware.

Algorithm 1 details the internals of consistency check logic
for a statement S. Consistency check logic introduces another
set of signals, hereafter referred to as check bits. In this
algorithm, W denotes the set of functions being written by
Statement S. Set B contains the statements nested within

Algorithm 1: generateCC(S)

/* Initial declarations */
W ← functions written by S1
B ← nested statements within S2
if (type(S) = par) then3

preserve(W )4
foreach statement ∈ B do5

generateCC(statement)6
end7
compose(W )8

end9
if (type(S) = tseqblock) then10

foreach statement ∈ B do11
addClockTag(statement)12
generateCC(statement)13

end14
end15
if (type(S) = Update) then16

generateCheckBit(W )17
end18
return19

S. In addition to executing the specification, the first cycle
registers the global state into temporary registers for every
parallel statement (preserve). For each block statement,
the algorithm only generates temporary registers for functions
in W that are also in the W of at least one other statement.
The algorithm then recursively generates the consistency check
logic for each statement. The recursion guarantees that the
algorithm works for nested par statements. For each function
in W, GenerateCC replaces each access of that function
inside the statement to use the temporary register instead
of global state. The read operations must access temporary
registers because the temporary state may evolve inside a
sequential block statement. A tseqblock has the added respon-
sibility of tagging each constituent update with a clock count
value. Additionally, GenerateCC generates a check bit via
generateCheckBit for each update statement. We only
generate check bits if the function being updated is present in
the W set of at least one other statement.

Different parallel statements can update the same state (line
5 and 8 in ASM Spec. 6). For such cases, we allocate multiple
check bits for that state and assert them if the corresponding
updates do take place (they could be guarded). The check bits
for each state function in W are represented as a bit vector. The
compose step generates hardware to detect if the bit vector
contains more than one asserted bit, which denotes a conflict.
compose must also check for the cycle count tags based
on the consistency semantics described earlier. We adhere to
the timing constraints imposed by tseqblock by doing the
checks simultaneously with last assignment of the par block.
Instead of asserting a check bit in the last cycle, we drive
the consistency check hardware with the same guards as the
Update statement. Thus, we remove the need for consuming
another cycle for consistency check.

Table II shows an execution of ASM Spec. 6 with the
consistency check (CC) hardware. Notice that we use two
check bits for y because two parallel statements modify it.
Since all three assignments take place, the executes results



cycle i cycle i+ 1
y0:=y
y1:= y
x:=1 y0:=y0+1
y1:=2

check x:=1 check y(0) := 1
check y(1):=1

pow2(check y)

TABLE II
EXECUTION WITH CONSISTENCY CHECK

in conflicting updates for state y. We identify this by the 2
asserted bits in check_y bit vector. Our implementation for
identifying multiple set bits is to determine if check_y bit
vector is a power of two as follows: conflict = not (
(check_y & check_y - 1) = "00").

VI. EXPERIMENTS

We present a case study of an 8-tap FIR design using our
HLS methodology. ASM Spec. 7 shows the ASM IR. The
function declarations from line 1 to line 5 define the states of
the hardware design. The Tap rule defines the operation of
the filter, and the ShiftRightOne shifts the input window
right by one in parallel. The DoFIR rule performs the actual
FIR operation by first performing the shift, which is followed
by eight tap operations in parallel.

ASM Spec. 7 A Parallel Specification of FIR
1 function i :→ UNSIGN NUMBER8
2 function z :→ UNSIGN NUMBER8
3 function y : UNSIGN NUMBER8→ SIGN NUMBER32
4 function window : UNSIGN NUMBER8→ SIGN NUMBER32
5 function weights : UNSIGN NUMBER8→ SIGN NUMBER32
6 derived weights sz = 8
7 derived window sz = 8
8

9 rule Tap(a, x, yv, o) = {
10 o:= x * a + yv
11 }
12

13 rule ShiftRightOne(firstInput) = {
14 forall i in [1 .. window sz] do {
15 window(i + 1) := window(i)
16 }
17 window(1) := firstInput
18 }
19

20 rule DoFIR(newInput) = {
21 tseqblock
22 ShiftRightOne(newInput)
23 forall z in [1 .. weights sz] do {
24 Tap(weights(z), window(z), y(z), y(z))
25 }
26 endtseqblock
27 }

Figure 2 shows a block diagram of the hardware generated
using our HLS methodology. Notice that the forall statements
in lines 14 and 23 generate parallel hardware. The tseqblock
mandates that the shift operation occurs in a cycle prior to the
tap computation.

VII. RESULTS

We target our example designs onto an Altera DE2 FPGA.
Table III shows the results. CC refers to designs that have

... window(8)window(1)firstInput

state = state1

window(2)

clk

state = state2

Y(1) Y(2) Y(8)

+/x

...

+/x +/x

weights(1) weights(2) weights(8)
...

Fig. 2. Block Diagram of Generated Hardware for FIR
the consistency check enabled. We also present results of
the generated hardware when we disable the CC. The area
measurement includes logic cells for the ASM scheduler
implementation.

With CC Without CC
Designs LUTS FFs MHz LUTS FFs MHz
Microprocessor 7771 6303 98.1 180 101 121.4
SequentialFIR 17,752 12,257 83.7 293 153 91.4
ParallelFIR 243 139 88.1 168 90 101.3
FourPlaceQueens 224 131 146.8 87 48 154.1
Loop Unroll 123 58 163.1 105 54 163.1

TABLE III
SYNTHESIS RESULTS OF EXAMPLE DESIGNS

VIII. CONCLUSION

In this paper, we propose using ASMs as an IR for the
specification of parallel computation, an extension of the
sequential semantics for a timing model, and incorporating
formal methods into the methodology. We describe the core
constructs, and its synthesis to hardware. We evaluate our
methodology with a variety of examples. Currently, we are
investigating optimization opportunities across multiple paral-
lel block statements, and the inclusion of sets and lists as data
structures for synthesis.

REFERENCES

[1] V. Kathail, S. Aditya, R. Schreiber, B. Rau, D. Cronquist, and M. Sivara-
man, “PICO: automatically designing custom computers,” Computer, pp.
39–47, 2002.

[2] Mentor Graphics, “Handel-c high-level synthesis,”
http://www.mentor.com/products/fpga/handel-c/.

[3] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong, “AutoPilot: a
platform-based ESL synthesis system,” High-Level Synthesis, pp. 99–112,
2008.

[4] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-Level
Synthesis Framework For Applying Parallelizing Compiler Transforma-
tions,” 2003.

[5] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and
Future,” IEEE Design & Test of Computers, pp. 18–25, 2009.

[6] S. Edwards, “The challenges of synthesizing hardware from C-like
languages,” IEEE Design and Test of Computers, vol. 23, no. 5, pp. 375–
386, 2006.

[7] S. Singh and D. Greaves, “Kiwi: Synthesis of FPGA circuits from parallel
programs,” in Proceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines. IEEE Computer
Society, 2008, pp. 3–12.

[8] S. Kundu, S. Lerner, and R. K. Gupta, “Translation validation of high-
level synthesis,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 29, no. 4, pp. 566–579, 2010.

[9] R. Farahbod, V. Gervasi, and U. Glasser, “CoreASM: An extensible ASM
execution engine,” Fundamenta Informaticae, vol. 77, no. 1, pp. 71–103,
2007.


