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Abstract. A new class of delay-insensitive (DI) codes, called
DI Bus-Invert, is introduced for timing-robust global asyn-
chronous communication. This work builds loosely on an
earlier synchronous bus-invert approach for low power by
Stan and Burleson, but with significant modifications to en-
sure that delay-insensitivity is guaranteed. The goal is to min-
imize the average number of wire transitions per communica-
tion (a metric for dynamic power), while maintaining good
coding efficiency. Basic implementations of the key support-
ing hardware blocks (encoder, completion detector, decoder)
for the DI bus-invert codes are also presented. Each design
was synthesized using the UC Berkeley ABC tool and technol-
ogy mapped to a 90nm industrial standard cell library. When
compared to the most coding-efficient systematic DI code (i.e.
Berger) over a range of field sizes from 2 to 14 bits, the DI
bus-invert codes had 24.6 to 42.9% fewer wire transitions per
transaction, while providing comparable coding efficiency. In
comparison to the most coding-efficient non-systematic DI
code (i.e. m-of-n), the DI bus-invert code had similar cod-
ing efficiency and number of wire transitions per transaction,
but with significantly lower hardware overhead.
1 Introduction

As digital systems grow in complexity, the challenges of
design reuse, scalability, power and reliability continue to
grow at a rapid pace [15]. These parameters are expected to
become major unsolved bottlenecks in less than a decade. A
major focus of recent strategies for organizing such systems
is the use of networks-on-chip (NoCs), which support the or-
thogonalized development of computation blocks (e.g., cores)
and the communication fabric.

One promising direction is to use asynchronous global
communication, to provide flexibility in system integra-
tion, as well as dynamic power which adapts on demand
to the current traffic. Such systems can be entirely asyn-
chronous, or a hybrid of synchronous computation blocks
interconnected by asynchronous channels, thus forming
a globally-asynchronous locally-synchronous (GALS) sys-
tem [20]. Delay-insensitive codes [24] are especially promis-
ing for a timing-robust communication methodology, since
they gracefully tolerate arbitrary skew in the arrival of indi-
vidual bits.

The contribution of this paper is a new class of delay-
insensitive codes, called DI Bus-Invert. The goal is to min-
imize the average number of wire transitions per transaction
(a metric for dynamic power), while maintaining good coding
efficiency (number of bits per wire). An additional goal is to
maintain manageable hardware overheads. Two simpler new
delay-insensitive codes, called Hybrid and Berger Bus-Invert,
are first introduced. Each code is constructed using a distinct
strategy, which are then combined together to form the final
proposed DI Bus-Invert code.

To our knowledge, the DI Bus-Invert code is the first ap-
proach to migrate the core Stan and Burleson bus-invert tech-
nique to delay-insensitive communication. As a first cut, the
proposed approach uses a 4-phase (i.e. return-to-zero (RZ))
communication protocol, which has been widely used in both
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Figure 1. Asynchronous Communication
research [4, 22] and in recent commercial asynchronous de-
signs such as by Philips Semiconductors [10], Fulcrum Mi-
crosystems [11], Silistix [3] and Achronix [21]. This work
can also be a springboard for developing a bus-invert method
for a 2-phase (or non-return-to-zero (NRZ)) protocol [9, 12]
in the future. (These terms will be introduced in detail in Sec-
tion 2.)

The earlier synchronous bus-invert approach by Stan and
Burleson [18] selectively inverts datawords for optimal power,
but it violates delay-insensitivity properties, and therefore
cannot be used for the proposed application. A straightfor-
ward extension of the Stan/Burleson code to support delay-
insensitivity can be easily obtained, as illustrated with the
proposed “Berger Bus-Invert” code. However, this solution is
shown to be inadequate, with significant degradation in cod-
ing efficiency (1-2 extra bits) and mixed results on average
number of wire transitions per transaction (from moderate
degradation of 2.0 to 14.3% to small improvements of 4.1-
15.1%). In contrast, the final proposed “DI Bus-Invert” code
uses a more sophisticated approach to creating the appended
check field, resulting in roughly comparable coding efficiency
to the most optimal DI code (i.e. Berger) yet with significant
reduction in the average number of wire transitions (24.6 to
42.9%).

The new approach makes several fundamental modifica-
tions over the Stan/Burleson approach: (i) an additional field
is appended to ensure delay-insensitivity; (ii) a return-to-zero
protocol is used, where all wires are reset to 0 between trans-
actions; (iii) as a result, each dataword has a unique encoding,
where in the Stan and Burleson approach there are 2 possi-
ble encodings per dataword, depending on the encoding of
the previous transmitted codeword; (iv) the new field is di-
rectly optimized for a cost metric of reduced wire transitions
per transaction, by exploiting the partial order properties of
DI codes.
2 Background and Related Work
Asynchronous Communication. The paper assumes a point-
to-point asynchronous communication channel [4, 24] be-
tween a sender and a receiver.
(a) Asynchronous Communication Channels. Fig. 1(a) gives
an example of point-to-point asynchronous communication.
Abstractly, the sender provides a request output signal (REQ)
to the receiver; the receiver in turn provides an acknowledg-
ment input signal (ACK) to the sender. If the sender passes
actual data to the receiver (rather than providing simple con-
trol synchronization), the REQ is typically replaced by the
encoded data, as shown in the figure. The ACK indicates
data has been received by the receiver and new data can be
sent [24].
(b) Four-Phase Communication Protocol. The most widely-
used protocol is four-phase or return-to-zero (RZ) [4, 24]. As
illustrated in Fig. 1(b), the protocol has two operations: (1)



evaluate and (2) reset. During the evaluate operation, the
sender first indicates the start of an event by issuing a rising
REQ+ to the receiver. Once the data has been received, the re-
ceiver asserts an ACK+. The reset operation then begins: the
sender de-asserts the REQ- and in turn, the receiver de-asserts
its ACK- which is the final event of both the reset stage and
the four-phase transaction.
(c) Delay-Insensitive Codes. When asynchronous communi-
cation is used, as shown in Fig. 1(a), data must be suitably en-
coded so that the receiver can identify when a packet has been
received. Delay-insensitive (DI) codes [2, 24] (i.e. unordered
codes) are used for this purpose [6].1 In an asynchronous sys-
tem, these codes have an inherent timing-robustness, where
data can arrive in any order and at any time, and with ar-
bitrary skew between its bits. Their key property is that no
valid codeword is “covered” by another valid codeword. More
specifically, a codeword y is covered by codeword x if the 1
bits of y are a subset of the 1 bits of x. A pair of codewords is
unordered if x does not cover y and y does not cover x.

There is a direct relationship between this covering prop-
erty and delay-insensitivity: assuming that the communica-
tion channel is reset to all-0 (i.e. spacer) between transmis-
sions, then the receiver can unambiguously identify the ar-
rival of a new valid codeword. In particular, as individual 1
bits arrive (i.e. rising signal transitions), it is never the case
that another valid codeword will be seen transiently during the
transmission, since the 1-bit pattern of each codeword is not
covered (i.e. not a subset) by any other. Formal definitions of
covered and unordered are as follows [7]:
Definition 1 (Covering Relation) A codeword x = x0x1...xn

covers another codeword y = y0y1...yn if and only if, for each
bit position i, if yi = 1 then xi=1. In this case, y is covered
by x, or y ≤ x.

Definition 2 (Unordered Relation) A codeword pair {x, y}
is unordered if x � y and y � x. Two sets of codewords,
X and Y , are unordered if and only if, for each x ∈ X and
y ∈ Y , x � y and y � x.

Example. Given three codewords, x =001, y = 100, z =
011, the only pairwise covering relation is x ≤ z. The pair
x and y form an unordered pair since x � y and y � x.
Likewise, y and z form an unordered pair.

There are two main classes of delay-insensitive codes: sys-
tematic and non-systematic. A systematic code [24] contain
two fields: (1) a data (or information) field which contains
the original data bits, and (2) a DI field. For asynchronous
communication, the DI field provides extra bits to guarantee
that the entire code is delay-insensitive. Potential benefits of
systematic codes over non-systematic codes are: (i) ease of
data extraction, where no hardware decoders are necessary
(unlike in non-systematic codes [4]) since the original data
appears directly in the codeword; and (ii) generally more cod-
ing efficient (i.e., has fewer # of bits per wire), since the DI
field is typically logarithmic in the size of the data field; as a
by-product, the smaller code length often results in improved
transition power (# of wire-flips per transaction).

Fig. 2 illustrates the method for constructing a common
type of systematic code, called a Berger code [5]. The first
step, partitioning, takes a given set of datawords and groups
them into “weight classes,” where all datawords with the same
total number of 1 bits are grouped into a distinct class. The
next step, shown in Fig. 2(b), is to assign a unique DI field
encoding to each weight class. For Berger codes, each weight
class is assigned exactly one DI encoding which is the bi-
nary count of the 0’s within the dataword. The length of the
dataword field is dlog2(k)e, where k is the number of weight
classes. As an example, in Fig. 2(b), a dataword in weight

1Although the terms DI and unordered are used interchangeably, DI refers
to dynamic behavior during transmission in an asynchronous system, while
“unordered” implies a static property of the codes (i.e. they provide error
detection but not correction) in their use in synchronous systems.
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Figure 3. Berger Bus-Invert Construction
class 3 (i.e., 0111) has DI field 001, representing the one 0 in
the dataword.

In contrast, in non-systematic codes [4, 24], data cannot
be directly extracted, since there are no separate data and DI
fields; instead, a single field is used, which captures the data
values and ensures delay-insensitivity. Common examples in-
clude dual-rail (i.e., 1-of-2), 1-of-4 and the general class of
m-of-n codes [24, 4]. To transmit information using an m-of-
n RZ code, exactly m of n wires will transition twice (once
high during evaluate, once low during reset).
Related Work. In the asynchronous domain, there have
been a number of techniques for timing-robust global bus
encoding. Both Smith [17] and Varshavsky [23] develop
the theory for systematic delay-insensitive codes, which in-
cludes the legal requirements for constructing unordered
codes. Delay-insensitive codes have been used in many re-
cent asynchronous systems [3, 4, 11, 21, 16, 22], though most
of these codes are simple and with high overhead, e.g. dual-
rail and 1-of-4. Additional research has been pursued on de-
veloping error-correcting delay-insensitive codes [1], timing-
dependent codes (i.e. non-DI) [14], and completion detector
hardware to identify the receipt of valid DI codewords [2, 8].
However, none of the above approaches addresses transition
power reduction by re-encoding using a bus-invert technique.
3 Berger Bus-Invert Code

The first of two initial delay-insensitive codes is now in-
troduced. Each code offers a distinct strategy which is com-
bined together to form the final DI Bus-Invert code. The
Berger Bus-Invert code uses a straightforward extension of
the Stan/Burleson method to provide delay-insensitivity. It is
a useful starting point for the final method, but will be shown
to have significant penalties.

The code is constructed in three simple steps. Step 1 is to
partition the set of datawords into weight classes. Step 2 is
to encode the datawords using the bus-invert method outlined
by Stan and Burleson [18]. In Step 3, a DI field is appended
using the classic Berger encoding scheme. As with any other
Berger code, the resulting code is unordered.
Step 1: Partitioning. In this first step, the datawords are par-
titioned into weight classes, where each class contains data-
words with the same total number of 1 bits. This step is iden-
tical to partitioning in the Berger approach (i.e., Fig. 2(a)).
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Step 2: Bus-Invert Encoding. Step 2 is illustrated in
Fig. 3(a). The goal of this step is to produce a set of datawords
with a reduced number of wire transitions per transaction (i.e.,
less bits set to 1). In the encoding step, each dataword within
a weight class is assigned the same appended field, which is
an invert bit (i.e. I-bit). Given an n-bit dataword, the I-bit is
assigned as follows:
I-bit(dataword) =

{

1 if dn/2e < # of dataword 1-bits,
0 otherwise

Next, the dataword is re-encoded to its complement when-
ever the I-bit is 1. This method is almost identical to the
Stan/Burleson approach; however, a return-to-zero protocol is
used where all wires are reset to 0 between data transmissions,
hence each dataword has a unique re-encoding. In contrast,
the Stan/Burleson approach assumes successive data trans-
missions, with two possible encodings per dataword, depend-
ing on the encoding of the previous transmitted codeword.
Step 3: Append Berger DI Field. Step 3 is to append a
Berger DI field, as illustrated in Fig. 3(b). This step is identi-
cal to the classic Berger encoding approach, but with one ex-
ception: re-partitioning is performed on the bus-inverted data-
word and I-bit, whereas in Berger, partitioning is performed
on the original dataword. Re-partitioning simply classifies
the new codewords into weight classes considering both the
dataword and I-bit fields, where each weight class has code-
words with the same total number of 1-bits. A key feature of a
Berger Bus-Inverted code is that it is quasi-systematic: since
each dataword field is either inverted or not, it can be extracted
using extremely simple (almost trivial) decoding hardware.

When comparing the Berger Bus-Invert code (Fig. 3) with
the baseline Berger code (Fig. 2) for the 4-bit code example,
there is a significant reduction in the number of 1 bits within
the dataword and I fields. However, this improvement is un-
dercut by an increase in codeword length (1 extra bit), and
an overall increase in average number of wire transitions per
transaction when including the check field (6.50 vs. 6.37, see
Section 7).

4 Hybrid CodeThe second delay-insensitive code is called Hybrid. While
the Berger Bus-Invert method reduced wire transitions in the
dataword field, the Hybrid method keeps the dataword field
intact, but optimally encodes the appended check field by di-
rectly exploiting the partial order requirements of DI codes.
Fig. 4 illustrates a Hybrid code using a 4-bit dataword field.
It is constructed in 2 steps, where the second step optimally
targets a DI field with fewest wire transitions.
Step 1: Partitioning. As shown in Fig. 4(a), datawords are
partitioned into weight classes, using the same approach as
for Berger codes (see Fig. 2(a)).
Step 2: Append Hybrid DI Field. The goal of this step is to
assign DI check fields with fewest overall number of 1 bits.
First, a relation is formed between weight classes. By ob-
serving weight classes, a total order relation exists, where a
weight class with more bits set to 1 covers a weight class with
less bits set to 1. For example, in Fig. 4(a), the total order
covering relation for weight classes W0-W4 is:

W0 ≤ W1 ≤ W2 ≤ W3 ≤ W4 (1)

Algorithm 1: encode-DI-field
1 /∗ input is result of method in Fig. 4a ∗/

input : {(Wi, Si)}
2 /∗ output is set of encoded Si symbols ∗/

output: {(Si, enci)}
3 /∗ N = # of weight classes Wi ∗/
4 N = |{(Wi, Si)}| ;
5 /∗ n = # of bits needed to encode Si symbols ∗/
6 n = dlog2(N)e;
7 /∗ generate all possible n-bit encodings ∗/
8 Avail-Code-Set = generate-all-binary-encodings(n);
9 /∗ initialize set of assigned codes which
follow Eqn. (2) ∗/

10 Assigned-Code-Set= {};
11 /∗ iterate thru Si and assign least-power

unassigned encoding which follows Eqn. (2) ∗/
12 for i = N − 1 downto 0 do
13 Legal-Codes = {x ∈ Avail-Code-Set such that x � Ck, for each

Ck ∈ Assigned-Code-Set };
14 enci = select encoding in Legal-Codes with fewest 1 bits;
15 Assigned-Code-Set = Assigned-Code-Set ∪{enci};
16 Avail-Code-Set = Avail-Code-Set - {enci};
17 return {(Si, enci)}

In turn, to form an unordered code, a symbol (S0, S1, S2, S3,
S4) is associated with a given weight class (W0, W1, W2, W3,
W4). The symbols, which represent the appended DI fields,
will be encoded with a unique binary encoding. The symbol
encodings (enc(Si)) must observe the following relation:

enc(S0) � enc(S1) � enc(S2) � enc(S3) � enc(S4) (2)
Interestingly, Equation 2, proposed by [17, 24], does not re-
quire a “reverse” covering relation on the appended DI field:
enc(S4)≤ enc(S3)≤ enc(S2)≤ enc(S1)≤ enc(S0). This latter
relation would be sufficient to ensure that the resulting codes
are unordered, but is too strong and unnecessary.

The declarative formulation for encoding the DI field be-
gins by assigning the same symbol to each weight class. The
length needed to encode the symbol is dlog2(k)e bits, where
k is the total number of symbols [17]. All symbols of the de-
sired length can be assigned to a weight class. For example,
the possible symbol encodings for the running example are:

{000, 001, 010, 011, 100, 101, 110, 111}

Note that the encodings have a covering relation where an en-
coding with more bits set to 1 covers and an encoding with
fewer bits set to 1 (i.e., 001 ≤ 011). Therefore, the final sym-
bol encodings must be selected such that Equation 2 is satis-
fied.

Algorithm 1 gives the procedure for optimally encoding
the DI field. It assumes that partitioning has already been per-
formed (see Fig. 4(a)). The input is the resulting set of pairs,
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(Wi, Si), where each weight class Wi is associated with a
symbol Si. The minimum DI field size, n, is determined such
that all symbols can be uniquely encoded, and all candidate
encodings are then enumerated (“Avail-Code-Set”). The algo-
rithm then iterates through the symbols, Si, from the one for
the highest weight class (SN−1) to lowest weight class (S0).
For each symbol Si, it identifies all unassigned candidate
codes (“Legal-Codes”) that would ensure delay-insensitivity
with respect to all previous assignments (in “Assigned-Code-
Set”), according to Equation 2, when appended to the data-
words in Wi. Of these, it selects the unassigned candidate
with fewest number of 1 bits (enci), thereby directly targeting
the wire transition metric.

The algorithm easily scales to 15-20 bit encodings, but be-
yond this, has overheads due to explicit candidate codeword
enumeration. Since larger field sizes tend to be impractical
for DI codes, due to hardware support overhead (see Sec-
tion 7), it is more common to partition wide asynchronous
datapaths into subfields which are separately encoded, hence
the approach is sufficient. Improved heuristics and implicit
data structures should allow extensions if desired.

When comparing the Hybrid code (Fig. 4) with the base-
line Berger code (Fig. 2) for the 4-bit example, the new strat-
egy results in the same check field size (3 bits), but with an
improved check field encoding (i.e. fewer 1 bits assigned).
This improvement is a direct result of exploiting the partial
ordering requirement of DI codes in the code assignment.

Example. Fig. 4(b) illustrates the encoding of the DI field.
Symbols S0, S1, S2, S3, and S4 are assigned to 110, 100,
010, 001, and 000, respectively, such that Equation 2 is pre-
served.2 In total, only 5 of the 8 possible encodings are used,
and at maximum, only two of three bits will be set high. For
symbol S0, which corresponds to W0 (i.e., the “most cov-
ered” weight class in Equation 1), a valid option would be to
encode it with 111 which covers all other 2-bit symbol en-
codings. However, Equation 2 provides a weaker constraint:
the encoding of S0 must not be covered by the encoding of
S1 and the encoding of S2. Therefore, 110 can safely be as-
signed to S0 since it is not covered by 100, 010, 001, or 000.
Hence, to target a low number of wire transitions, the algo-
rithm selects 110, a legal encoding option with fewest 1’s.
Theorem 1 (Hybrid Code Delay-Insensitivity) Every Hybrid
code is unordered.
Proof: Delay-insensitivity is ensured by Equation 2. The
equation holds by determining the covering relation between
two datawords, and then assigning the DI fields such that if
dataword X is covered by dataword Y, then the DI field of X
will not be covered by the DI field of Y. Thus, one codeword
will not cover another since the unordered relation for a code
is preserved under field concatenation. �

5 DI-Bus Invert Code
The two codes presented in the previous sections are used

as building blocks for forming the DI Bus-Invert code – the
core contribution of this paper. The DI Bus-Invert code is con-
structed by combining the “Bus-Invert Encoding” step used in
the Berger Bus-Invert approach with the “Append DI Field”
step used in the Hybrid code approach, in three steps.

2Note that the alternative assignments of 101 or 011 for S0 are also pos-
sible.

Step 1: Partitioning. In this first step, the datawords are
partitioned into weight classes, using the same method as in
Fig. 2(a) and Fig. 4(a).
Step 2: Bus-Invert Encoding. This step is identical to that of
the Berger Bus-Invert method. An example of bus-invert en-
coding is shown in Fig. 5(a). The goal is to reduce the number
of wire transitions in the dataword field.
Step 3: Append Hybrid DI Field. The final step is identical
to the Hybrid method where an appended field is added for
delay-insensitivity, as shown in Fig. 5(b). The goal is to ap-
pend a DI field which targets both coding efficiency and wire
transitions.

Figs. 3 and 5 illustrate the key differences between the
Berger Bus-Invert and DI Bus-Invert codes. The DI field for
the Berger Bus-Invert code is length 3, while that of the DI
Bus-Invert code is length 2. The length of the Berger Bus-
Invert depends on the number of zeros in the dataword field
and I-bit, while the length of the DI Bus-Invert code depends
on the number of weight classes in the code, which is always
less than or equal to the number of zeros in the dataword and
I-bit fields. Second, the DI Bus-Invert method generally ap-
pends smaller-weighted DI fields. For instance, for the DI
Bus-Invert code, at maximum, a 1-hot DI field (10 or 01) is
appended, and the all-0’s DI field is allocated to the weight
class with the largest amount of elements (i.e., weight class
2), while the Berger Bus-Invert code has significantly more
1 bits in this field. Finally, the DI Bus-Invert code provides
significant reduction in the number of wire transitions by si-
multaneously targeting both the dataword and check fields.
Theorem 2 (DI Bus-Invert Code Delay-Insensitivity) Every
DI Bus-Invert code is unordered.

Proof: As in Theorem 1, a DI Bus-Invert code is delay-
insensitive since it is constructed by ensuring Equation 2.
6 Hardware Support

There are three key supporting hardware blocks for the DI
Bus-Invert code: an encoder, a completion detector (CD), and
a decoder. It is assumed that the DI Bus-Invert code on the
channel must be converted to single-rail bundled data at the
receiver, and that the sender converts from single-rail bundled
data. Details of control and latching of data at these inter-
faces are not provided, and are beyond the scope of the current
work, but a variety of pipeline methodologies can be used.

(a) Encoder. An encoder design is shown in Fig. 6(a), con-
sisting of an appended field generator and bus-invert unit.
The appended field generator takes in a single-rail unencoded
dataword and produces both appended fields, invert bit (I-bit)
and DI field. It uses combinational logic to implement a sim-
ple look-up table. The second part is the bus-invert unit. The
inputs to the unit are the original dataword and invert bit. The
output is either the true or complemented dataword.

(b) Completion Detector (CD). A CD design is shown in
Fig. 6(b). This particular design is for a 4-bit dataword, as im-
plied by the 16 codewords. A C-element is allocated for each
codeword and is used to detect when a particular codeword
has arrived; therefore, exactly one C-element is asserted high
per transaction.3 Two optimizations are performed on the CD.
The first is to eliminate literals (i.e., inputs to a C-element);
the second is to eliminate a C-element when possible.

3A C-element is a standard storage element, whose output is 0 (1) when
all inputs are 0 (1), and which otherwise holds its value.



Actual
DI Bus-Invert 

Improvement
Actual

DI Bus-Invert 

Improvement

DI Bus-Invert 4.00 0.50 - 2.00 -

Berger Bus-Invert 5.00 0.40 25.0% 4.00 50.0%

Hybrid 4.00 0.50 0.0% 3.50 42.9%

Berger 4.00 0.50 0.0% 3.50 42.9%

1-of-4 4.00 0.50 0.0% 2.00 0.0%

1-of-5 5.00 0.40 25.0% 2.00 0.0%

1-of-6 6.00 0.33 50.0% 2.00 0.0%

DI Bus-Invert 6.00 0.50 - 3.75 -

Berger Bus-Invert 7.00 0.43 16.7% 5.50 31.8%

Hybrid 5.00 0.60 -16.7% 5.00 25.0%

Berger 5.00 0.60 -16.7% 5.00 25.0%

2-of-5 5.00 0.60 -16.7% 4.00 6.3%

2-of-6 6.00 0.50 0.0% 4.00 6.3%

2-of-7 7.00 0.43 16.7% 4.00 6.3%

DI Bus-Invert 7.00 0.57 - 3.88 -

Berger Bus-Invert 8.00 0.50 14.3% 6.50 40.4%

Hybrid 7.00 0.57 0.0% 6.00 35.4%

Berger 7.00 0.57 0.0% 6.37 39.2%

3-of-6 6.00 0.67 -14.3% 6.00 35.4%

2-of-7 7.00 0.57 0.0% 4.00 3.1%

2-of-8 8.00 0.50 14.3% 4.00 3.1%

DI Bus-Invert 8.00 0.63 - 5.56 -

Berger Bus-Invert 9.00 0.56 12.5% 7.19 22.6%

Hybrid 8.00 0.63 0.0% 7.31 24.0%

Berger 8.00 0.63 0.0% 7.63 27.1%

3-of-7 7.00 0.71 -12.5% 6.00 7.3%

3-of-8 8.00 0.63 0.0% 6.00 7.3%

2-of-9 9.00 0.56 12.5% 4.00 -39.0%

DI Bus-Invert 9.00 0.67 - 5.75 -

Berger Bus-Invert 10.00 0.60 11.1% 7.75 25.8%

Hybrid 9.00 0.67 0.0% 8.65 33.5%

Berger 9.00 0.67 0.0% 8.81 34.7%

4-of-8 8.00 0.75 -11.1% 8.00 28.1%

3-of-9 9.00 0.67 0.0% 6.00 4.2%

3-of-10 10.00 0.60 11.1% 6.00 4.2%

DI Bus-Invert 11.00 0.64 - 7.28 -

Berger Bus-Invert 12.00 0.58 9.1% 9.38 22.3%

Hybrid 10.00 0.70 -9.1% 10.00 27.2%

Berger 10.00 0.70 -9.1% 10.00 27.2%

4-of-10 10.00 0.70 -9.1% 8.00 9.0%

3-of-11 11.00 0.64 0.0% 6.00 -21.3%

3-of-12 12.00 0.58 9.1% 6.00 -21.3%

DI Bus-Invert 12.00 0.67 - 7.56 -

Berger Bus-Invert 13.00 0.62 8.3% 10.75 29.7%

Hybrid 12.00 0.67 0.0% 10.71 29.4%

Berger 12.00 0.67 0.0% 11.21 32.6%

4-of-11 11.00 0.73 -8.3% 8.00 5.5%

4-of-12 12.00 0.67 0.0% 8.00 5.5%

3-of-13 13.00 0.62 8.3% 6.00 -26.0%

DI Bus-Invert 13.00 0.69 - 9.09 -

Berger Bus-Invert 14.00 0.64 7.7% 11.83 23.2%

Hybrid 13.00 0.69 0.0% 11.99 24.2%

Berger 13.00 0.69 0.0% 12.42 26.8%

5-of-12 12.00 0.75 -7.7% 10.00 9.1%

4-of-13 13.00 0.69 0.0% 8.00 -13.6%

4-of-14 14.00 0.64 7.7% 8.00 -13.6%

DI Bus-Invert 14.00 0.71 - 9.41 -

Berger Bus-Invert 15.00 0.67 7.1% 12.62 25.4%

Hybrid 14.00 0.71 0.0% 13.24 28.9%

Berger 14.00 0.71 0.0% 13.63 30.9%

5-of-13 13.00 0.77 -7.1% 10.00 5.9%

5-of-14 14.00 0.71 0.0% 10.00 5.9%

4-of-15 15.00 0.67 7.1% 8.00 -17.7%

DI Bus-Invert 15.00 0.73 - 10.91 -

Berger Bus-Invert 16.00 0.69 6.7% 13.59 19.7%

Hybrid 15.00 0.73 0.0% 14.45 24.5%

Berger 15.00 0.73 0.0% 14.77 26.1%

6-of-14 14.00 0.79 -6.7% 12.00 9.1%

5-of-15 15.00 0.73 0.0% 10.00 -9.1%

5-of-16 16.00 0.69 6.7% 10.00 -9.1%

DI Bus-Invert 16.00 0.75 - 11.27 -

Berger Bus-Invert 17.00 0.71 6.3% 14.31 21.3%

Hybrid 16.00 0.75 0.0% 15.61 27.8%

Berger 16.00 0.75 0.0% 15.87 29.0%

6-of-15 15.00 0.80 -6.3% 12.00 6.1%

5-of-16 16.00 0.75 0.0% 10.00 -12.7%

5-of-17 17.00 0.71 6.3% 10.00 -12.7%

DI Bus-Invert 17.00 0.76 - 12.76 -

Berger Bus-Invert 18.00 0.72 5.9% 14.84 14.0%

Hybrid 17.00 0.76 0.0% 16.75 23.8%

Berger 17.00 0.76 0.0% 16.92 24.6%

7-of-16 16.00 0.81 -5.9% 14.00 8.9%

6-of-17 17.00 0.76 0.0% 12.00 -6.3%

5-of-18 18.00 0.72 5.9% 10.00 -27.6%

DI Bus-Invert 18.00 0.78 - 13.14 -

Berger Bus-Invert 19.00 0.74 5.6% 15.25 13.8%

Hybrid 18.00 0.78 0.0% 17.87 26.5%

Berger 18.00 0.78 0.0% 17.96 26.8%

7-of-17 17.00 0.82 -5.6% 14.00 6.1%

6-of-18 18.00 0.78 0.0% 12.00 -9.5%

6-of-19 19.00 0.74 5.6% 12.00 -9.5%

Coding Effiency
# of Wire Transitions / 

TransactionDataword

Field Size

DI Code 

Type
DI Code

Total # 

of Rails

2

Systematic

Non-

Systematic

3

Systematic

Non-

Systematic

4

Systematic

Non-

Systematic

5

Systematic

Non-

Systematic

6

Systematic

Non-

Systematic

7

Systematic

Non-

Systematic

8

Systematic

Non-

Systematic

9

Systematic

Non-

Systematic

10

Systematic

Non-

Systematic

11

Systematic

Non-

Systematic

14

Systematic

Non-

Systematic

12

Systematic

Non-

Systematic

13

Systematic

Non-

Systematic

Table 1. Code Comparison
(c) Decoder. A decoder is used by the receiver to obtain

the original dataword. A general n-bit dataword decoder is
shown in Fig. 6(c). The inputs are a DI bus-inverted dataword
(i.e., dataword and invert bit), and the output is the original
dataword. A two-input XOR gate is allocated for each data-
word bit. When the invert bit is set to 1, the complement of
the data bit is obtained, otherwise the original data bit value
is obtained.
7 Evaluation
(a) Code Evaluation. Table 1 compares the new DI Bus-
Invert code to several other systematic and non-systematic
codes. Two metrics are evaluated, coding efficiency (i.e., #
bits/wire) and a wire transition metric (i.e., average # wire

transitions/bit/transaction), for dataword field sizes ranging
from 2 to 14 bits.4 Since an asynchronous four-phase pro-
tocol is assumed, with all wires initially set to 0, this metric
counts every 1 rail twice: a rising transition (evaluation phase)
followed by a falling transition (reset phase).

Four systematic codes are considered: the three proposed
codes (DI Bus-Invert, Berger Bus-Invert, Hybrid) and a base-
line code (Berger, with optimal coding efficiency). Also, three
non-systematic m-of-n codes are also considered. The first is
the most coding-efficient m-of-n code (i.e. “optimal”), where
the smallest n is selected such that an m-of-n code can cover
the complete set of 2k symbols. The second and third are
used to provide a wider set of comparisons, slightly relaxing
the coding efficiency in an attempt to improve the wire tran-
sition metric. They increase the number of wires to n + 1
and n + 2, respectively; in each case, m is further reduced if
possible, as long as a complete set of 2k symbols can still be
covered by the code. The “Improvement” columns compare
the DI Bus-Invert code against all of these other codes.

Systematic Code Comparison. Overall, the new DI Bus-
Invert code has significant benefits over the other three sys-
tematic codes. In particular, it has substantially better wire
transition metric than Berger codes, with roughly compara-
ble coding efficiency. For all field sizes listed, the new DI
Bus-Invert codes have between 24.6 to 42.9% fewer wire tran-
sitions per transaction, yet maintains the same coding effi-
ciency as Berger (with the exceptions of field sizes 3 and 7).
This latter observation is particularly interesting, since Berger
codes are theoretically the most coding-efficient systematic
DI codes.

In contrast, the two new simpler codes, Hybrid and Berger
Bus-Invert, show at best only modest improvements over
Berger. The Hybrid code always has identical coding effi-
ciency as the Berger code, with only limited reductions in
wire transitions per transaction: up to 5.8% fewer wire transi-
tions per transaction. The Berger Bus-Invert always has worse
coding efficiency than Berger, with codewords requiring an
extra 1-2 bits for each field size. Results for the wire transi-
tion metric with Berger Bus-Invert are mixed. In some cases
the Berger code was better (by 2.0-14.3%), and in other cases
Berger Bus-Invert was better (by 4.1-15.1%).

In summary, the combination of two strategies used in the
DI Bus-Invert code provides much greater benefit than using
them in isolation. These strategies fit together well: the bus-
invert approach produces a code with fewer weight classes
after inversion, thereby allowing the hybrid strategy to use a
smaller DI field with a minimal number of 1 bits.

Non-Systematic Code Comparison. The comparisons
between DI Bus-Invert and the m-of-n codes show complex
tradeoffs for both coding efficiency and reduced wire transi-
tions. However, overall the DI Bus-Invert was competitive.

For coding efficiency, both Berger (theoretically-optimal
for systematic unordered codes) and DI Bus-Invert were sim-
ilar or slightly worse than the best m-of-n code (theoretically-
optimal for non-systematic unordered codes of its type): usu-
ally either identical codeword length or 1 extra wire needed,
resulting in degradation of 5.6 to 11.1%. Conversely, when
compared to the most relaxed non-systematic code using n+2
wires (i.e. 3rd non-systematic row), Berger and DI Bus-Invert
are always more coding-efficient, usually with 1 fewer wire
needed, resulting in improvements from 5.6 to 11.1% for most
field sizes (5-14 bits, with greater improvements for 2-4 bit
field sizes).

For the wire transition metric, when compared to the op-
timal m-of-n code, listed as the first non-systematic row for
each dataword field size, the DI Bus-Invert codes have small
to moderate improvements for most field sizes from 3 to
14 bits, ranging from 5.5 to 9.1% (but with better improve-
ments for two cases, 4 and 6 bit fields). When compared
to the relaxed non-systematic code with n + 2 wires, the DI

4Larger field sizes can be partitioned and encoded by concatenating sev-
eral smaller fields.
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i/o area* delay† i/o area* delay† i/o area* delay† area* delay†

2 2/4 35.28      0.05 4/1 33.84       0.12 3/2 29.64 0.04 98.76      0.21

3 3/6 65.63      0.08 6/1 76.17       0.24 4/3 44.46 0.04 186.26    0.36

4 4/7 86.08      0.08 7/1 88.89       0.33 5/4 59.28 0.04 234.25    0.45

5 5/8 133.37    0.11 8/1 170.71     0.40 6/5 74.10 0.04 378.18    0.55

6 6/9 178.54    0.12 9/1 195.40     0.44 7/6 88.92 0.04 462.86    0.60

7 7/11 275.16    0.14 11/1 299.13     0.49 8/7 103.74 0.04 678.03    0.67

8 8/12 431.10    0.16 12/1 433.16     0.54 9/8 118.56 0.04 982.82    0.74

9 9/13 551.72    0.17 13/1 658.30     0.71 10/9 133.38 0.04 1,343.40  0.92

10 10/14 848.73    0.18 14/1 509.38     0.70 11/10 148.20 0.04 1,506.31  0.92

11 11/15 1,094.18 0.19 15/1 915.84     0.93 12/11 163.02 0.04 2,173.04  1.16

12 12/16 1,724.87 0.21 16/1 1,018.00  0.96 13/12 177.84 0.04 2,920.71  1.21

13 13/17 2,164.38 0.22 17/1 1,397.71  1.08 14/13 192.66 0.04 3,754.75  1.34

14 14/18 3,727.00 0.23 18/1 1,415.40  1.14 15/14 207.48 0.04 5,349.88  1.41

* = area reported in µm2 † =delay reported in ns

TotalDataword

Field Size

Encoder CD Decoder

b. m of n Code Implementations

area*

area

improvement

ratio

delay†

delay

improvement

ratio

2 89.58 0.9 0.17 0.81

3 187.67 1.0 0.32 0.89

4 324.52 1.4 0.50 1.11

5 686.42 1.8 0.59 1.07

6 1,271.16 2.7 0.64 1.07

7 2,850.71 4.2 0.78 1.16

8 5,249.84 5.3 0.79 1.07

9 9,774.60 7.3 0.97 1.05

10 17,718.81 11.8 1.01 1.10

11 31,513.51 14.5 1.12 0.97

12 65,165.26 22.3 1.16 0.96

13 120,132.23 32.0 1.34 1.00

14 245,216.00 45.84 1.63 1.16

Dataword

Field Size

Total Results / Comparision to DI Bus Invert

Table 2. Hardware Evaluation
Bus-Invert codes range from slight improvement (+4.2%) to
greater degradation (-39.0%) for field sizes from 5 to 14 bits.

Two other widely-used non-systematic codes, dual-rail
and 1-of-4 [4, 11, 24], can also be compared to DI Bus-Invert
(not in the table due to space limitations). Both have much
worse coding efficiency for most field sizes (4 and higher):
using 2 wires per bit with 0.5 efficiency, compared to 0.57-
0.78 efficiency for DI Bus-Invert codes. For the wire transi-
tion metric, for most field sizes, dual-rail is much worse than
DI Bus-Invert (two wire transitions per bit, i.e. one 1 rail out
of 2, making a rising/falling transition); and 1-of-4 is slightly
worse (two wire transitions per two bits, i.e. one 1 rail out of
4, making a rising/falling transition).

Overall Trends: Summary. For coding efficiency, the DI
Bus-Invert code is nearly always identical to Berger, which
is theoretically optimal for code length of the systematic
codes. It typically is only slightly worse than the optimal
non-systematic m-of-n code and slightly better than the re-
laxed non-systematic code using n + 2 wires. For the wire
transition metric, an approximation for dynamic power, DI
Bus-Invert is significantly better than Berger (between 24.6 to
42.9%) and slightly better than the optimal m-of-n code (usu-
ally 5.5 to 9.1%, but better for two cases). Compared to the
relaxed non-systematic code with n + 2 wires, it ranges from
slight improvement (+4.2%) to greater degradation (-39.0%).

In summary, for these two metrics, the new DI Bus-Invert
code has substantial benefits over the optimal systematic code,
Berger. It also has complex tradeoffs with the best non-
systematic m-of-n based codes, but is a viable competitor.
However, the next subsection highlights that DI Bus-Invert
codes have a major additional advantage over m-of-n codes,
in terms of hardware overhead.

DI Bus-Invert: Optimal Field Length. Table 1 also pro-
vides a basis to identify the optimal field size for the DI Bus-
Invert code. The trend shows a strong and consistent improve-
ment in coding efficiency as field sizes increase, from 0.50 (2-
bit) to 0.78 (14-bit). For the wire transition metric, the goal
is to assess the “per-bit” efficiency across different field sizes,
that is, the average # of wire transitions per bit per transac-
tion. The table does not include these results directly, but they
can be derived. The range for this metric is fairly narrow and
stable, from 0.94 to 1.12 (except for one outlier, 1.25), with
no clear trend as field size increases. Hence, this latter metric
is not strongly influenced by field size.
(b) Hardware Evaluation. To fully compare the new codes
against its closest competitor, the hardware designs for the DI
Bus-Invert and the m-of-n codes are implemented and eval-
uated. Only the most coding efficient m-of-n code is evalu-
ated, due to the extensive design effort required to generate
these results. It is assumed that hardware overheads for the
two alternative m-of-n codes will be roughly comparable.

Technology-mapped implementations of the supporting DI
Bus-Invert and m-of-n hardware components are synthesized
using the UC Berkeley logic synthesis tool ABC [19]. Each
component is specified in PLA format, then ABC’s delay
script [13] is applied for multi-level logic optimization and
technology mapping using industrial 90nm standard cell li-
brary. Area is reported in µm2 and delay is reported in ns.
Table 2(a) shows results for the supporting hardware of the DI

Bus-Invert code. Hardware overheads for the DI Bus-Invert
code are moderate in area and delay. As expected, both met-
rics increase with larger field sizes. The total area ranges from
98.76 to 5349.88 µm2, and the total delay ranges from 0.21 to
1.41 ns. Table 2(b) shows implementation results for the most
coding efficient m-of-n code. It has significantly greater area
overhead than the DI Bus-Invert code: 4.2x to 45.8x worse for
medium to larger field sizes (i.e., sizes 7-14).
8 ConclusionsA novel class of delay-insensitive RZ codes, called DI Bus-
Invert, is introduced. This work builds on an earlier syn-
chronous bus-invert approach by Stan and Burleson, and to
our knowledge, is the first to provide a bus-invert strategy for
delay-insensitive communication. A preliminary evaluation
shows a substantial reduction in the average number of wire
transitions per transaction over an existing systematic code,
and generally close tradeoffs in wire transitions and coding
efficiency when compared to the best non-systematic codes.
Designs for supporting hardware have been implemented, and
are shown to have substantially lower area overhead when
compared to the most coding efficient m-of-n codes.
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