
Targeting Code Diversity with Run-time Adjustable
Issue-slots in a Chip Multiprocessor

Fakhar Anjam, Muhammad Nadeem, and Stephan Wong
Computer Engineering Laboratory

Delft University of Technology, Delft, The Netherlands
E-mail: {F.Anjam, M.Nadeem, J.S.S.M.Wong}@tudelft.nl

Abstract—This paper presents an adaptable softcore chip
multiprocessor (CMP). The processor instruction set architecture
(ISA) is based on the VEX ISA. The issue-width of the processor
can be adjusted at run-time (before an application starts). The
processor has eight 2-issue cores that can run independently from
each other. If not in use, each core can be taken to a lower power
mode by gating off its source clock. Multiple 2-issue cores can
be combined at run-time to form a variety of configurations
of very long instruction word (VLIW) processors. The CMP
is implemented in the Xilinx Virtex-6 XC6VLX240T FPGA. It
has a single ISA and requires no specialized compiler support.
The CMP can target a variety of applications having instruction
and/or data level parallelism. We found that applications/kernels
with larger instruction level parallelism (ILP) performs better
when run on a larger issue-width core, while applications with
larger data level parallelism (DLP) performs better when run on
multiple 2-issue cores with the data distributed among the cores.

I. INTRODUCTION

To exploit the instruction level parallelism (ILP)1, very long
instruction word (VLIW) processors are utilized to increase
the performance beyond single issue-width processors [1].
While single issue-width processors can only take advan-
tage of temporal parallelism (by utilizing pipelining), VLIW
architectures can additionally take advantage of the spatial
parallelism by utilizing multiple functional units (FUs) to
execute several operations simultaneously. In addition, VLIW
processors are simpler in design when compared to their
more complex (out-of-order) reduced instruction set computer
(RISC) counterparts.

When a chip multiprocessor (CMP) is implemented in
application-specific integrated circuit (ASIC), the configura-
tion and issue-width of the available cores are fixed at design
time. Therefore, the issue-width of the available cores and
the combination of these cores cannot be adjusted to suit
a different set of applications after fabrication. A softcore
VLIW processor can be implemented in an FPGA, and its
organization can be changed easily by loading a new bitstream.
Design-time reconfigurability requires full configuration of the
whole FPGA if a certain parameter of the FPGA-implemented
processor is to be changed. In literature, all of the avail-
able softcore VLIW processors [2][3][4][5][6][7] only provide
some form of design-time and not run-time reconfigurability.

1In this paper, “instruction” in ILP refers to RISC instructions. These are
similar to the operations in the VLIW. When referring to VLIW instruction,
this will be explicitly mentioned.

In order to change the issue-width or any other parameter of
the processor, a new full bitstream is to be downloaded to
configure the whole FPGA and all other circuits in the FPGA
have to be stopped.

We implemented a softcore CMP that is run-time reconfig-
urable/adjustable. In [8][9], the implementation of an open-
source parameterized and extensible softcore VLIW processor
(ρ-VEX) is presented. In this paper, we utilized this processor
as a base processor for our CMP design. The advantage of
utilizing a softcore VLIW processor is that its parameters
can be changed. After the processor is implemented in an
FPGA, it can adjust its issue-width while other circuits in
the FPGA are running. A set of external signals control
the configuration/adjustment of the issue-slots. The CMP has
eight 2-issue cores each of which can be run independently
and multiple (up to four) cores can be combined to form
a larger issue-width core or split vice versa. Hence, before
an application starts executing, the machine’s organization
can be changed/adjusted to suit the application. Applications
with more fine-grain (instruction level) parallelism can be run
on the larger issue-width core for better performance, and
applications with more coarse-grain (data level) parallelism
can be run on the multiple 2-issue cores with the data divided
among the cores for faster execution.

The remainder of the paper is organized as follows. Related
work is discussed in Section II. Section III describes the VEX
system. The ρ-VEX VLIW processor is briefly introduced
in Section IV. Section V presents the design of our run-
time adjustable/reconfigurable CMP. Results are discussed in
Section VI. Finally, conclusions are presented in Section VII.

II. RELATED WORK

In literature, the available softcore VLIW processors
[2][3][4][6][7][5] either do not have a complete toolchain,
or they are based on some proprietary softcore processors
(Xilinx MicroBlaze or Altera NIOS-II), which are not open-
source. We utilized the ρ-VEX VLIW processor [8], which is
open-source and has a complete toolchain (compiler, simulator,
and assembler). Softcore multiprocessor systems as found in
literature are mostly based on either the Xilinx MicroBlaze
[10][11][12][13] or the Altera NIOS-II softcore processors
[14][15]. The main drawback of all these designs is that they
are utilizing proprietary softcores which are not open-source.
In addition, the NIOS-II and MicroBlaze are single issue-width

978-3-9810801-7-9/DATE11/ © 2011 EDAA



processor cores and cannot exploit ILP as can be exploited by
a VLIW processor core. Since these multiprocessor systems
do not have multi-issue cores, they do not have the ability
to change their issue-width composition for an incoming
application at run-time.

TRIPS [16] is a reconfigurable architecture that enables
the available out-of-order processing cores and the on-chip
memory system to be configured and combined in different
modes for instruction, data, or thread-level parallelism. TRIPS
implements a custom ISA and microarchitecture, and relies
heavily on compiler support for scheduling instructions to ex-
tract ILP. Smart memories [17] is a reconfigurable architecture
capable of merging in-order RISC cores to form a VLIW
machine. The two configurations are not ISA-compatible, and
the VLIW configuration requires specialized compiler support.
Core fusion [18] provides mechanisms to combine small out-
of-order cores to make larger issue-width cores at run-time and
does not require specialized compiler support. Core fusion is
implemented in a simulator. On the other hand, we provide a
design in which small 2-issue in-order cores can morph at run-
time to make a larger issue-width core and hence can handle
instruction and data level parallelism. Our architecture sticks
to a single ISA, and requires no specialized compiler support.
We implemented our design in an FPGA, where we have the
additional advantage of tuning our 2-issue base core as well
as the whole CMP compared to an ASIC design.

III. THE VEX SYSTEM: ISA AND TOOLCHAIN

The VEX stands for VLIW Example [19]. The VEX is
developed by Hewlett-Packard (HP) and STMicroelectronics.
The VEX instruction set architecture (ISA) is a 32-bit clustered
VLIW ISA that is scalable and customizable to individual
application domains. The VEX ISA is loosely modeled on
the ISA of the HP/ST Lx (ST200) family of VLIW embedded
cores [1]. Based on trace scheduling, the VEX C compiler is
a parameterized ISO/C89 compiler. A flexible programmable
machine model determines the target architecture, which is
provided as input to the compiler. A VEX software toolchain
including the VEX C compiler and the VEX simulator is made
freely available by the Hewlett-Packard Laboratories [20].

IV. THE ρ -VEX VLIW PROCESSOR

The ρ-VEX is a configurable (design-time) open-source
VLIW softcore processor [8]. The ISA is based on the VEX
ISA [19]. Different parameters of the ρ-VEX processor, such
as the number and type of functional units (FUs), number of
multiported registers (size of register file), number and type
of accessible FUs per syllable, width of memory buses, and
different latencies can be changed at design time. Figure 1
depicts the organization of a 32-bit, 2-issue ρ-VEX VLIW
processor implemented in an FPGA. The ρ-VEX processor
consists of fetch, decode, execute, and writeback units. The
fetch unit fetches a VLIW instruction from the attached
instruction memory, and splits it into syllables that are passed
on to the decode unit. Here VLIW instructions are decoded and
register contents used as operands are fetched from the register

Instruction
Memory

Data
Memory

PC

DecodeFetch WritebackExecute

GR CTRL

BR MEM

ALU

ALU MUL

MUL

Figure 1. 2-issue ρ-VEX VLIW processor

file. The actual operations take place in either the execute
unit, or in one of the parallel branch or control (CTRL)
or load/store or memory (MEM) units. Arithmetic logic unit
(ALU) and multiplier (MUL) operations are performed in the
execute unit. All jump and branch operations are handled
by the CTRL unit, and all data memory load and store
operations are handled by the MEM unit. All write activities
are performed in the writeback unit to ensure that all targets
are written back at the same time. The write targets could be
the general register (GR) file and/or the branch register (BR)
file. The instruction and data memories for the processor are
implemented with BRAMs. The ρ-VEX processor supports
reconfigurable operations, as the VEX compiler supports the
use of custom VLIW operations via pragmas inside the appli-
cation code. The implementation of custom operations for our
CMP design is out of scope of this paper.

V. RUN-TIME ADJUSTABLE CMP DESIGN AND

IMPLEMENTATION

In this section, we present the design and implementation
details of our run-time adjustable CMP. We utilize the 2-issue
ρ-VEX VLIW processor as the base core for our design. Our
CMP is composed of eight (8) such cores. These cores can be
combined or split at run-time to form larger or smaller issue-
width cores respectively. Figure 2 depicts the general view of
our run-time adjustable CMP system.

At maximum, four 2-issue cores can be combined together
to form an 8-issue core. Following are the possible configu-

core core core core core core core core

Figure 2. General view of the run-time adjustable CMP



rations with these eight cores: (1) two 8-issue cores, (2) one
8-issue and two 4-issue cores, (3) one 8-issue, one 4-issue and
two 2-issue cores, (4) four 4-issue cores, (5) three 4-issue and
two 2-issue cores, (6) two 4-issue and four 2-issue cores, (7)
one 4-issue and six 2-issue cores, and (8) eight 2-issue cores.
Each 2-issue core has two ALUs and two multiplier units
(MULs). There is also a load/store or memory unit (MEM)
as well as a branch or control unit (CTRL). A 4-issue core
has double the resources of a 2-issue core except that only
one of the CTRL units is utilized when two 2-issue cores are
combined. An 8-issue core has double the resources of a 4-
issue core except that only one of the CTRL units is utilized
when four 2-issue cores are combined.

A. Mechanism of Issue-width Adjustment

Each of the eight 2-issue cores has an input signal called
run. When the run signal for a core is at logic ’one’, the
core starts fetching its VLIW instructions. When this signal
is at logic ’zero’, the program counter (PC) for that core is
stopped. The run signal for a core is also utilized to clock gate
the source clock for the core. If any of the 2-issue cores is not
executing any application, it can be taken to a lower power
mode by gating off its source clock, and hence, the dynamic
power of that core is reduced resulting in a reduced total power
consumption of the system. When a core finishes its execution,
it raises its done signal. The done signal is utilized in order to
schedule new code on a core. Another group of external signals
called the issue_ctrl controls the organization and issue-width
of the cores. For example, when the issue_ctrl signal is at logic
’zero’, the system behaves as eight 2-issue cores. Different
cores can be combined or split by utilizing this signal. The
issue_ctrl signal controls the PCs for cores that are combined
to form a larger issue-width core and drives them in lock-step.
It additionally controls the organization of the register files. In
order to group or ungroup certain cores to change the issue-
width, the selected cores are first stopped utilizing their run
signals. In the next cycle, the issue_ctrl signal is changed to
adjust the issue-width of the resulting core/cores. In the next
cycle, the run signals are asserted and the cores start fetching
their VLIW instructions. The signals issue_ctrl, run, and done
can be controlled and monitored by higher level controller or
scheduler, which are out of scope of this paper and therefore,
not discussed here.

We divided our CMP system into two sections namely
frontend and backend. The frontend consists of the modules
which need reconfiguration/adjustment in order to combine or
split the issue-slots. It includes the fetch and decode units,
and the multiported general-purpose register (GR) file and
the branch register (BR) file. The backend consists of the
writeback and execution units which do not require reconfig-
uration/adjustment when multiple 2-issue cores are combined
to form larger issue-width cores or split the larger issue-width
cores back to the base 2-issue cores.

B. Frontend

The frontend of the CMP requires reconfigura-
tion/adjustment for changing the issue-width of the cores.
The signals issue_ctrl and run are utilized to combine or split
the issue-slots. Here we discuss all modules of the frontend.

1) Fetch Unit: A 2-issue fetch unit simply splits the incom-
ing long instruction into two syllables (instructions (32-bit) for
individual execution units), and then passes them to the decode
unit. Therefore, multiple 2-issue fetch units can be stacked
together to form a combined fetch unit to behave like a larger
issue (up to 8-issue) fetch unit. Each 2-issue fetch unit has a
program counter (PC). The only sub-unit of a fetch unit that
needs to be altered/reconfigured is the PC. If multiple fetch
units are combined to form a larger issue-width core, only one
of the PC is running and other PCs in that specific core are
stopped. The signal issue_ctrl is utilized for this purpose.

2) General-Purpose Register File: The VEX ISA specifies
a 32-bit 64-element multiported general-purpose register (GR)
file for a multi-issue VLIW core. For 2-issue, 4-issue, and
8-issue cores, we require register files with 2-write-4-read
(2W4R) ports, 4-write-8-read (4W8R) ports, and 8-write-16-
read (8W16R) ports, respectively. We implemented our register
file with BlockRAMs (BRAMs) based on the design presented
in [21]. We designed our register file such that a single register
file can handle an 8-issue core or two 4-issue cores or one 4-
issue and two 2-issue cores or four 2-issue cores at the same
time. The register file is depicted in Figure 3.

The register file is designed utilizing the 18 Kbytes embed-
ded BRAMs. Each BRAM is configured in simple dual port
(SDP) mode with 1 read and 1 write port. In order to provide
multiple ports, the BRAMs are organized into multiple banks
and data is duplicated across various BRAMs. In this design,
the number of write ports defines the number of banks and

R0-R255
0

R0-R255
1

R0-R255
15

R0-R255
0

R0-R255
1

R0-R255

R0-R255
0

1

7

Bank-0

Bank-1

Bank-7

Write Port 0

Write Port 1

Write Port 7

Read Port 0

Read Port 1

Read Port 15

R0-R255

R0-R255

1

Direction Table

All Write Ports

All Read Ports

issue_ctrl

15

15

Figure 3. 256 × 32-bit 8W16R ports register file



the number of read ports defines the number of BRAMs per
bank. The register file has 8 write and 16 read ports utilizing
128 BRAMs each providing a 256×32-bit register. Table I
presents the utilization of this register file for different types
of cores it can serve. Each port has 6-bit address to access
64 registers, but each BRAM has 8-bit address to provide 256
registers. The signal issue_ctrl is utilized inside the register
file to generate the 7th and the 8th bits for the BRAMs. We
utilize two such register files in our design as we have a total
of eight 2-issue cores.

3) Branch Register File: The VEX ISA specifies a 1-bit
8-element multiported branch register (BR) file for a multi-
issue VLIW core. For 2-issue, 4-issue, and 8-issue cores, we
require branch register files with 2W2R ports, 4W4R ports,
and 8W8R ports, respectively. Since the size of the branch
register file is small, it is implemented utilizing the FPGA’s
slice registers and slice look-up tables (LUTs) instead of
BRAMs. We implemented a 32×1-bit register file with 8 write
and 8 read ports. Utilizing the issue_ctrl signal, we share the
register file among the configured cores. The utilization of this
register file is similar to that of the general-purpose register
file. We utilize two such register files in our design as we have
a total of eight 2-issue cores.

4) Decode Unit: Multiple 2-issue decode units can be
stacked together to form a decode unit for a larger issue-
width processor. The branch/CTRL unit which calculates the
offset and the branch target addresses is included in every
2-issue decode unit, but only one branch unit is working
when multiple 2-issue decode units are combined. Each 2-issue
decode unit decodes its own long instruction (64-bit) and raises
high its own done signal when the last VLIW instruction in the
program (STOP instruction) is executed and the last result is
written back. When a core is configured as a larger issue-width
core, the combined decode unit provides only one branch unit
and one done signal. The other done signals are tied to logic
low. The signal issue_ctrl controls this mechanism.

C. The Backend

The backend is that part of the system which remains fixed
and does not change when the issue-width is changed. Eight
2-issue writeback units are stacked together. Each writeback
unit can serve a 2-issue core and multiple writeback units can
make a writeback unit for a larger issue-width core. Each lane

Table I
UTILIZATION OF THE 8W16R PORTS REGISTER FILE

Processor Type Write Ports Read Ports Registers

One 8-issue 0 - 7 0 - 15 0 - 63

Two 4-issue
0 - 3
4 - 7

0 - 7
8 - 15

0 - 63
64 - 127

One 4-issue and
two 2-issue

0 - 3
4 - 5
6 - 7

0 - 7
8 - 11
12 - 15

0 - 63
64 - 127

128 - 191

Four 2-issue

0 - 1
2 - 3
4 - 5
6 - 7

0 - 3
4 - 7

8 - 11
12 - 15

0 - 63
64 - 127

128 - 191
192 - 255

of the writeback unit can write to its corresponding port on
the general-purpose register file and/or the branch register file.
Since these register files can handle the processor issue-width
by themselves, the writeback unit does not need to take care
of that, and hence, does not need reconfiguration/adjustment
in order to combine or split the issue-slots. Backend consists
of all the execution units. There are 16 ALUs, 16 MULs, and
8 MEM units which make up the backend. Every issue-slot
has an ALU and a MUL unit and every two issue-slots have a
MEM unit. The backend is the most resource-hungry part of
our CMP.

VI. RESULTS AND DISCUSSION

A. Implementation Results

There are a total of eight 2-issue cores which can be
combined to form larger issue-width cores. At maximum, four
2-issue cores can be combined together to form an 8-issue
core. From these eight 2-issue cores, two 8-issue cores or a
combination of 8-issue + 4-issue, 8-issue + 4-issue + 2-issue,
8-issue + 2-issue, or 4-issue + 2-issue cores can be built. The
instruction and data memories are implemented with BRAMs.
Each 2-issue processor or any larger issue-width processor in
our design can run up to a maximum clock frequency of 107
MHz on a Virtex-6 XC6VLX240T-1FF1156 FPGA available
on the Xilinx ML605 development board. Table II presents
the resource utilization for our run-time adjustable CMP for
the same FPGA. The values in the brackets in the last row
in Table II represent the percentage resource utilization of the
whole FPGA.

We tested our CMP with different applications. We utilized
two benchmark suites. One benchmark suite represents the
MiBench benchmark [22]. The other benchmark suite is a col-
lection of different applications/kernels mostly of processing
intensive types. For presentation purpose in this paper, we
simply call the second benchmark suite Benchmark 2.

B. Benchmark 1: MiBench

The MiBench benchmark suite [22] is a set of freely-
available embedded programs for benchmarking purposes.
It consists of different embedded applications divided into
six suites with each suite targeting a specific area of the
embedded market. The six categories are Automotive and
Industrial Control, Consumer Devices, Office Automation,
Networking, Security, and Telecommunications. All the pro-
grams are available as standard C source code. MiBench
is portable to any platform that has compiler support. We
took 8 applications representing different MiBench suites. We

Table II
RESOURCE UTILIZATION FOR THE RUN-TIME ADJUSTABLE CMP

Module Slice
Registers

Slice
LUTs DSP48E1s 18 kB

BRAMs

Register File 2 × 820 2 × 5887 0 2 × 128
Backend 2 × 692 2 × 8108 2 × 112 0

8-cores CMP 5720
(1%)

31267
(21%)

256
(33%)

256
(31%)



executed these applications with three different configurations
of our processor system, i.e., 8-issue, 4-issue and 2-issue cores.
Figure 4 depicts the execution cycles for the three types of the
processor systems. The execution cycles are normalized to that
for an 8-issue core.

C. Benchmark 2

Benchmark 2 is a self-made benchmark suite consisting
of the following 9 embedded applications: Finite impulse
response (FIR) filter, integer division, factorial of a small
number, factorial of a large number, Floydwarshall graph,
matrix transpose, matrix multiplication, integer square root,
and a discrete Fourier transform (DFT) kernel. We executed
these applications with three different configurations of our
processor system, i.e., 8-issue, 4-issue and 2-issue cores.
Figure 5 depicts the execution cycles for the three types of
the processor systems. The execution cycles are normalized to
that for an 8-issue core.

D. Performance Analysis

We consider two use cases in order to show the effectiveness
of our system.

1) Use case 1: In this case, the application is such that
its data cannot be easily divided to be able to run on more
than one cores. This scenario corresponds to applications
with large instruction level parallelism (ILP) such as FIR
filter, matrix multiplication, matrix transpose, DFT kernel,
factorial, square root, bitstring, secure hash algorithm (SHA)
etc. Generally, these kernels are part of some larger applica-
tions like H.264/MPEG audio/video, etc., and these kernels
are executed multiple times while the application is running.
Therefore, running such applications/kernels on a larger issue-
width core can provide more performance compared to a
smaller issue-width core. By combining multiple 2-issue cores
to form a larger issue-width core (4-issue or 8-issue), we
can exploit the available ILP in a better manner. Figure 6
depicts the instructions per cycle (IPC) for these applications.
It can be observed that running these applications/kernels on
a larger issue-width core can improve the performance of
these applications/kernels. On the other hand, running these
applications on a 2-issue core can benefit from the lower power
consumption as the other 2-issue cores can be taken to a lower
power mode, if these are not executing any other application.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

ASCII_
to

_in
t

Bits
tri

ng

CRC32
SHA

Stri
ng

se
ar

ch

ADPCM
_e

nc/d
ec

Rijn
dae

l_e
nc

Rijn
dae

l_d
ec

Applications

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 C
yc

le
s 2-issue

4-issue

8-issue

Figure 4. Normalized execution cycles for Mibench benchmark

0
0.5

1
1.5

2

2.5
3

3.5
4

FIR
_f

ilte
r

Divi
sio

n

Fac
to

ria
l_s

mall

Fac
to

ria
l_l

ar
ge

Floy
dw

ar
sh

all

M
at

rix
_tra

ns
po

se

M
at

rix
_multip

lic
ati

on

Squ
ar

e_
ro

ot

DFT_ke
rn

el

Applications

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 C
yc

le
s

2-issue

4-issue

8-issue

Figure 5. Normalized execution cycles for Benchmark 2

2) Use case 2: In this case, the application is such that
its data set can be easily divided and can be run on more
than one cores. This scenario corresponds to applications
with large date level parallelism (DLP) such as the Rijndael
encryption/decryption algorithm and the adaptive differential
pulse-code modulation (ADPCM) encode/decode application.
A matrix multiplication program can also get benefit by
running on multiple independent cores with its data divided
among the cores.

As a test case, we took the Rijndael algorithm. It is one
of the most widely used encryption/decryption algorithms in
cryptography. The Rijndael algorithm takes an input data of
128 bits and a key of 128, 196 or 256 bits and produces
an encrypted output data of 128 bits. For decryption the
same key is utilized as was used in the encryption process.
We utilized a 128 bits key version of this algorithm. We
encrypted and decrypted back a text of 2048 bytes using
the Rijndael encryption/decryption algorithms. Initially, we
run the application as a whole with 2048 bytes on a single
8-issue core. We then run the same application on two 4-
issue cores with the data divided among the two cores. Each
core encrypts/decrypts its own 1024 bytes of data. In the
third experiment, we run the same applications on four 2-
issue cores providing 512 bytes of data to each core. The
individual encrypted/decrypted data can later be combined.
Figure 7 depicts the execution cycles for the three types of
the processor systems. The execution cycles are normalized to
that for the four 2-issue cores. It can be observed from Figure
7 that applications with larger data level parallelism execute
faster when run on multiple smaller issue-width cores with

0

1

2

3

4

5

6

7

FIR
_f

ilte
r

Fac
to

ria
l_s

mall

Fac
to

ria
l_l

ar
ge

M
at

rix
_tra

ns
po

se

M
at

rix
_multip

lic
ati

on

Squ
ar

e_
ro

ot

DFT_ke
rn

el

Bits
tri

ng
SHA

Applications

In
st

ru
ct

io
ns

 p
er

 C
yc

le
 (I

P
C

) 2-issue

4-issue

8-issue

Figure 6. IPC for the higher ILP applications



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rijndael_encrypt Rijndael_decrypt

Applications

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 C
yc

le
s

Four 2-issue cores

Two 4-issue cores

One 8-issue core

Figure 7. Normalized execution cycles for Rijndael algorithms

the input data divided among them compared to running the
application on one larger issue-width core with all the input
data.

E. Power Analysis

We calculated the dynamic power consumption in our CMP.
We designed our CMP such that each core clock is run by
a separate controlled clock buffer [23]. By controlling each
clock buffer, we can start and stop the clock running each
core. The clock to a core is controlled by its run signal. If
the run signal for a core is at logic low, the clock to that core
is gated off. We utilized the Xilinx XPower Analyzer tool for
the power calculation for the Xilinx Virtex-6 XC6VLX240T-
1FF1156 FPGA. We found that turning a 2-issue core off
can reduce the dynamic power consumption of the whole
system by about 9%. Hence, if any of the 2-issue cores is not
executing an application, it can be turned off and the system
can be taken to a lower power mode.

VII. CONCLUSIONS

In this paper, we presented the design of a run-time
adjustable chip multiprocessor (CMP) implemented in an
FPGA. The processor instruction set architecture (ISA) is
based on the VEX ISA. Our processor design is dynam-
ically adjustable/reconfigurable. The processor has eight 2-
issue cores, each of which can be run independently. If not
in use, each core can be taken to a lower power mode by
gating off the source clock. Multiple 2-issue cores can be
combined at run-time to form larger issue-width VLIW cores.
The CMP can target a variety of applications, and requires
no additional programming effort or specialized compiler
support. We showed that applications with larger instruction
level parallelism (ILP) performed better when run on a larger
issue-width core. While applications with larger data level
parallelism (DLP) performed better when run on multiple 2-
issue cores with the data distributed among the cores.

REFERENCES

[1] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood, "Lx:
A Technology Platform for Customizable VLIW Embedded Processing",
in 27th Annual International Symposium of Computer Architecture
(ISCA ’00), pp. 203 - 213, 2000.

[2] C. Iseli and E. Sanchez, "Spyder: A Reconfigurable VLIW Processor
using FPGAs", in FPGAs for Custom Computing Machines (FCCM ’93),
pp. 17 - 24, 1993.

[3] M. Koester, W. Luk, and G. Brown, "A Hardware Compilation Flow
for Instance-Specific VLIW Cores", in 18th International Conference
on Field Programmable Logic and Applications (FPL ’08), pp. 619 -
622, 2008.

[4] A.K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, "An FPGA-
based VLIW Processor with Custom Hardware Execution", in 13th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’05), pp. 107 - 117, 2005.

[5] A. Lodi, M. Toma, F. Campi, A. Cappelli, and R. Canegallo, "A
VLIW Processor with Reconfigurable Instruction Set for Embedded
Applications", in IEEE Journal on Solid-State Circuits, vol. 38, no. 11,
pp. 1876 - 1886, 2003.

[6] V. Brost, F. Yang, and M. Paindavoine, "A Modular VLIW Processor",
in IEEE International Symposium on Circuits and Systems (ISCAS ’07),
pp. 3968 - 3971, 2007.

[7] M.A.R. Saghir, M. El-Majzoub, and P. Akl, "Customizing the Datapath
and ISA of Soft VLIW Processors", in High Performance Embedded
Architectures and Compilers (HiPEAC ’07), LNCS 4367, pp. 276 - 290,
2007.

[8] S. Wong, T. van As, and G. Brown, "ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor", in IEEE International Conference
on Field-Programmable Technologies (ICFPT ’08), pp. 369 - 372, 2008.

[9] S. Wong and F. Anjam, "The Delft Reconfigurable VLIW Processor",
in 17th International Conference on Advanced Computing and Commu-
nications (ADCOM ’09), pp. 244 - 251, 2009.

[10] G.G. Mplemenos and I. Papaefstathiou, "MPLEM: An 80-processor
FPGA based Multiprocessor System", in 16th International Symposium
on Field-Programmable Custom Computing Machines (FCCM ’08), pp.
273 - 274, 2008.

[11] S. Xu and H.P. Smith, "A Multi-MicroBlaze based SOC System:
From SystemC Modeling to FPGA Prototyping", in 19th IEEE/IFIP
International Symposium on Rapid System Prototyping (RSP ’08), pp.
121 - 127, 2008.

[12] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, "An FPGA-based Soft
Multiprocessor System for IPv4 Packet Forwarding", in 15th Interna-
tional Conference on Field Programmable Logic and Applications (FPL
’05), pp. 487 - 492, 2005.

[13] M. Hubner, K. Paulsson, and J. Becker, "Parallel and Flexible Multipro-
cessor System-On-Chip for Adaptive Automotive Applications based on
Xilinx MicroBlaze Soft-Cores", in 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS ’05), pp. 149a - 149a, 2005.

[14] A. Hung, W. Bishop and A. Kennings,"Symmetric Multiprocessing on
Programmable Chips Made Easy", in Design, Automation and Test in
Europe Conference and Exhibition (DATE ’05), vol. 1, pp. 240 - 245,
2005.

[15] P. Huerta, J. Castillo, J.I. Martinez, and V. Lopez, "A MicroBlaze based
Multiprocessor SoC", in WSEAS Transactions on Circuits and Systems,
vol. 4, no. 5, pp. 423 - 430, 2005.

[16] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, "Exploiting ILP, TLP, and DLP wiith
the Polymorphous TRIPS Architecture", in International Symposium on
Computer Architecture (ISCA ’03), pp. 422 - 433, 2003.

[17] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
"Smart Memories: A Modular Reconfigurable Architecture", in Interna-
tional Symposium on Computer Architecture (ISCA ’00), pp. 161 - 171,
2000.

[18] E. Ipek, M. Kirman, N. Kirman, J.F. Martinez, "Core Fusion: Accommo-
dating Software Diversity in Chip Multiprocessors", in ACM SIGARCH
Computer Architecture News, pp. 186 - 197, vol. 35, Issue 2, 2007.

[19] J.A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann,
2004.

[20] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/.

[21] C.E. LaForest and J.G. Steffan, "Efficient Multi-ported Memories for
FPGAs", in 18th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’10), pp. 41 - 50, 2010.

[22] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, "MiBench: A Free, Commercially Representative
Embedded Benchmark Suite", in 4th IEEE International Workshop on
Workload Characterization (WWC ’01), pp. 3 - 14, 2001.

[23] Xilinx, Inc. 2010. User Guide UG362: Virtex-6 FPGA Clocking Re-
sources, http://www.xilinx.com.


