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Abstract: 
A novel policy for allocating reconfigurable fabric resources in multi-
core processors is presented. We deploy a Minority-Game to 
maximize the efficient use of the reconfigurable fabric while meeting 
performance constraints of individual tasks running on the cores. As 
we will show, the Minority Game ensures a fair allocation of 
resources, e.g., no single core will monopolize the reconfigurable 
fabric. Rather, all cores receive a “fair” share of the fabric, i.e., their 
tasks would miss their performance constraints by approximately the 
same margin, thus ensuring an overall graceful degradation. The 
policy is implemented on a Virtex-4 FPGA and evaluated for diverse 
applications ranging from security to multimedia domains. Our 
results show that the Minority-Game policy achieves on average 2x 
higher application performance and a 5x improved efficiency of 
resource utilization compared to state-of-the-art. 

1. Introduction and Motivation 
Advancements of FPGAs have led to the emerging trends of run-time 
reconfigurable multi-core processors [1][4][22] that integrate several 
cores (RISC, VLIW, etc.) with reconfigurable fabrics. These proces-
sors deliver high computing performance while considering the 
following run-time-varying system dynamics: 
a)  The mapping of tasks which depends upon the status of available 

processor cores, the state of the multi-core processor (e.g., due to 
thermal effects), the user behavior, etc. 

b)  Changing task requirements (for obtaining reconfigurable fabric) 
due to changing performance constraints, etc. 

c)  Varying workload characteristics of the applications. 

 
Fig 1. Two trends in reconfigurable multi-core processors 
(a) Dedicated fabric (like [1]), (b) shared fabric (like [4]) 

Depending upon the coupling of the fabric1 to the core processor, 
there are two architectural categories of reconfigurable multi-core 
processors (as shown in Fig 1): 
(a) Reconfigurable multi-core processors with a dedicated fabric 
(Fig 1a) comprise core processors and their individual fabrics. An ex-
ample is RAMPSoC [1] where each core represents a reconfigurable 
instruction-set processor (e.g., [2] or [3]). However, such an architec-
ture, scenarios may arise where one core fully utilizes its fabric (and 
probably could require even more than that), while another core may 
only partially or not at all use its fabric. This may result in overall in-
efficient fabric utilization (i.e., the speedup per available fabric). 
(b) Reconfigurable multi-core processors with shared fabric over-
come the above-mentioned deficiencies by coupling several core pro-
cessors with one rather large fabric [4] (Fig 1b, such an architecture 
may be realized on the Xilinx’s upcoming 7 series FPGAs where sev-
eral ARM/Microblaze cores share the same fabric [21][22]). As target 
                                                 

source, in our case fabric) and tend to                                                 
1 For brevity, the term “fabric” is used when we mean to say “reconfigurable fabric”. 

applications, Xilinx envisions mobile devices (with audio, video, 4G, 
games), 3D multimedia, medical image processing, software defined 
radio, Wireless LTE, etc. [21]. In processors with shared fabric, dif-
ferent cores may place their accelerators on the same shared fabric2. 
Therefore, these multi-core processors may provide a higher efficien-
cy by allocating less or more fabric to individual cores depending 
upon their respective computational properties. Consequently, differ-
ent cores compete for a share of the fabric to expedite their tasks. 

The challenging problem that arises is: “To determine which share 
of the fabric should be allocated to which core at which time in order 
to i) optimize the fabric utilization and ii) meet the performance con-
straints of individual tasks under varying system dynamics”. This in-
stantiates the need for an adaptive fabric resource allocation policy. 

1.1. Motivation for a Minority-Game-based Allocation Policy 
Fig. 2 shows different allocation policies [14][15] where the fabric is 
shared among three tasks (A, B, C) executing in parallel on different 
cores. The system dynamics like priorities and performance con-
straints of these tasks change at run time (as denoted by t0-t3 on the 
timeline, Fig. 2). The demand denotes the number of reconfigurable 
containers a task requires to meet its performance constraint. 
The following policies are analyzed: 
• Equal Distribution (ED) provides an equal share to all tasks irres-
pective of their priorities and performance constraints. This results in 
an inefficient utilization of the fabric in certain cases (see Fig. 2). 
• First Come First Serve (FCFS) favors the first tasks demanding the 
fabric. It ignores the priority and demand of the subsequently arriving 
tasks. Therefore, it may lead to a situation where a low priority task ar-
riving first (see Task A in Fig. 2) may monopolize the entire fabric. 
Consequently, a high priority task that arrives afterwards (see Task B in 
Fig. 2) does not get a share from the fabric for acceleration. This may 
lead to task degradation or even to malfunction of system services, etc. 
• Highest Priority First (HPF) fulfills the demands of tasks in the or-
der of their priorities. It may lead to situations where the task with the 
highest priority may monopolize the entire fabric whereas other tasks 
are not considered (see Fig. 2). Similar to FCFS, this may also lead to 
task degradation or even to malfunction of system services, etc. 

Summarizing: each policy is favorable in a certain scenario but no 
single policy performs efficient allocation (in terms of satisfying the 
demands of all the tasks) in multiple of the scenarios as occurring 
when the system dynamics change at run time. 

A reconfigurable multi-core processor with unpredictable con-
straints is a complex dynamic system where typically no equilibrium 
(i.e., a fixed fabric allocation decision) is reached during the run time 
of an application. Moreover, run-time reconfiguration and varying 
dynamics of the system lead to a situation where reaching an equili-
brium is no longer critical since from now on adaptivity is the key to 
handle the dynamic nature of a multi-core system. Therefore, a low-
overhead run-time adaptive resource allocation policy for reconfigur-
able multi-core processors is desirable. 

Minority Games [13] – inspired by the El Farol bar problem [20] – 
provide an ideal solution for complex dynamic systems where several 
selfish entities compete for resources and the system dynamics conti-
nuously change during the run time of a system [12][13]. Minority 
Games provide a means for multivariable optimization and give a 
near-to-optimal solution [18][19] (as shown by our results in Section 
6.2). All entities tend to be selfish (i.e., tend to monopolize the re-

place themselves into the so- 
2 The fabric is partitioned into rectangular containers that are reconfigured at 

run time to contain different accelerators. 
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called minority group irrespective of other entities (see details in Sec-
tion 3). In absence of a unique best way to proceed, the entities have 
no choice but to adapt their strategy and learn over time with respect 
to the behavior of other entities, after the result of a game is an-
nounced [18]. As a result, they behave less-selfish across the games, 
although they may be selfish within a single game. 

The key difference to the above-discussed and other optimization 
techniques (like in [4]) is that Minority Game does not go for max-
imizing a certain benefit function (e.g., performance) of ONE certain 
entity. Rather it collectively considers the demands of all entities and 
provides a fair distribution [5][6]. In this way, the participating entities 
drive towards a state where their own performance improves, such 
that, the demands of all players are close to be fulfilled. Due to its 
properties and dynamics, Minority Games promise (nearly) satisfying 
the demands of all entities while maximizing the global efficiency 
(which is desirable in our fabric allocation problem). Therefore, our in-
spiration has its origin in the prominent Minority-Game-based ap-
proaches [5][6] for resource allocation and sharing in distributed com-
puting systems that use Prospect Theory [7] to achieve emergence of 
cooperation among selfish entities while providing adaptivity. Howev-
er, the solutions of [5][6][7] cannot be directly applied to the reconfi-
gurable multi-core processors, as the system model of a dynamically 
reconfigurable processors is different the system model of [5][6]. One 
of the key challenges is modeling the system and the corresponding 
adaptive resource allocation problem as a Minority Game, such that a 
game-theoretic paradigm can be employed to obtain a fair solution. 

Our novel contribution is as follows: 
A Minority-Game-based adaptive policy for resource allocation in re-
configurable multi-core processors considering run-time varying sys-
tem dynamics (task mapping, task priority, etc.); In particular we: 
•  formulate the system model of a reconfigurable multi-core pro-

cessor with shared fabric and the corresponding adaptive resource 
allocation problem as a Minority-Game (Section 5.2) 

•  devise a decision function for determining the minority side and 
for fabric allocation in each round of the game (Section 5.2) to 
maximize the efficiency of fabric utilization in an adaptive way; 
the proposed decision function jointly considers priority, perfor-
mance constraints, and the history of allocation decisions 

The paper organization: Section 2 discusses related work. Section 3 
presents an overview of the Minority Games. Section 4 provides our 
system model, while Section 5 presents our novel fabric allocation 
policy followed by the results in Section 6. Section 7 concludes. 

2. Related Work 
Resource allocation is a well-studied problem in distributed compu-
ting, especially within Grid collaborations [5][6][15] where adaptivity 
and less-selfishness are important design constraints. 

Resource sharing and allocation policies in high-performance re-
configurable computing deploy a compile-time fixed partitioning of 
FPGAs, one for each microprocessor. The basic idea is to enlarge the 
FPGA virtually (from the applications’ point of view) to enable shar-
ing of an FPGA among concurrently executing task [8][9]. In case of 

contention, tasks wait for the availability of the virtual FPGA. Anoth-
er drawback is that the same amount of fabric is allocated to each pro-
cessor, i.e., analogous to the processors with dedicated fabric like 
RAMPSoC [1] (as shown in Fig 1 a). Consequently, the tasks with va-
riable demands for fabric cannot be accommodated efficiently. 

Fig. 2: Scenarios show various resource allocation policies at work when task priorities and performance constraints change

Recently, resource sharing has been emerged in reconfigurable 
multi-core processors with a shared fabric [4]. The policies in [4] use 
a fixed partitioning (in power of 2) of the fabric. Furthermore, they 
only target statically mapped tasks on certain cores with compile-time 
prepared groups of tasks with low and high demand of fabric. The 
tasks in the same group are mapped on the neighboring cores and they 
are allowed to share a partition. Such a static grouping performs inef-
ficiently under run-time varying system dynamics. In contrast, our 
policy allocates the fabric in an adaptive and less-selfish way to avoid 
monopolization and to maximize the efficiency of fabric utilization, 
while considering the run-time varying system dynamics. 

Before proceeding further, we will briefly present the basics of 
Minority-Game for better understanding of the paper. 

3. Background: Overview of Minority Game 
A complete Minority Game (MG) consists of several rounds. In each 
round, all players (i.e., the entities) play to obtain a certain part of the 
(limited) resource. Once the resource is completely allocated, the 
game is finished. There are two main categories of MG, single-choice 
games and multi-choice games [6]. In a single-choice game, each 
player has to choose one out of two options, i.e., the player decides to 
use or not to use the resource. In contrast, players in a multi-choice 
game have more than two options like, which and how much share of 
the resource to use. After all players have made their decisions, the 
minority side (i.e., the side with lesser number of players) is declared 
the winning side and the players of this side receive their demanded 
resource share. A history of the winning sides is kept for the previous 
rounds. In the subsequent rounds, the players make their 
decision by considering a set of entries in the history. During a game, 
players do not know the decisions of the other players. At the end of 
each game, the allocation result of the game is broadcasted which 
may be used by the players to adapt their strategy. This enables a less-
selfish behavior across different games. 

In the following, we explain the basic terminology that is used in 
game-based algorithms [5][6]: 
• Payoff: the performance benefit that the demanding entity achieves 

by using the demanded resource (e.g., in our case, it is the fabric) 
• History: a record of the winning sides for the previous rounds 
• Attitude: it is defined as the tendency to obtain the resource; it is 

typically given as the weighting factors for the payoff and the histo-
ry, as inspired by the Prospect Theory [7] 

• Attractiveness: a joint function of payoff, attitude, and history as a 
behavioral predictor, for making a decision on the resource usage 

Kindly note that we follow the above terminology for consistency 
reasons with conventional game-based algorithms [5][6]. The formu-
lation of Payoff, Attitude, and Attractiveness is different in our case 
compared to that in [5][6] due to different system dynamics and a dif-
ferent system model. 



4. System Modeling 
4.1. Processor Model 
In order to efficiently allocate and optimize the utilization of several 
fabrics within a reconfigurable multi-core processor, we devise the 
concept of Groups-of-Cores (GOCs, Fig 3). Each GOC is a coalition 
of NC cores (RISC, VLIW, etc.) that share one fabric (Fig 3) for acce-
lerating their respective application tasks. GOCs make their sharing 
decision independent of other GOCs, as the fabric is only shared 
among the cores of a GOC. A GOC can be formalized as: 

J K PRCs CGOC { PRC } { C },  J [1,N ],  K [1,N ]= + ∈ ∈  
where, the fabric is partitioned into NPRCs Partially Reconfigurable 
Containers (PRCs). They can be reconfigured at run time to contain 
accelerators. The cores are connected to each other via a Network-on-
Chip whereas the PRCs are connected with segmented buses [16]. 
Each shared fabric is equipped with a central playground to host the 
game. It is a dedicated entity that is attached to the shared fabric re-
source where the players of the game dispatch their demands. In our 
case, it is a dedicated IP-core (a static non-reconfigurable soft core on 
the FPGA) attached to the PRCs (see Section 6.4 for area results). 

 
Fig 3. Reconfigurable multi-core processor with multiple GOCs; 

NC cores of a GOC share one fabric (with several PRCs) 

4.2. Application Model 
There are NT independent and autonomous application tasks3 executing 
on the reconfigurable multi-core processor, where each task has a 
priority and performance constraint. We consider tasks with soft per-
formance constraints (i.e., a deadline miss is acceptable and considered 
as quality of service degradation). Application tasks are denoted by: 

T TA { A } ,  T [ 1 , N ]= ∈  
Only one task AT executes on a particular core Ck of a GOC at an in-
stant. The task mapping may change at run time. Hence, after a task 
mapping is fixed, the resource allocation policy always needs to re-
allocate the number of PRCs to a core and its task. Since each core has 
its own task (that efficiently utilizes its allocated PRC resource) and the 
duration of tasks is typically much longer (in multiples of seconds or 
minutes), the reconfiguration latency is typically negligible compared to 
the task duration. The demand Dtk of core Ck denotes the total number 
of PRCs that Ck requires to expedite task AT for meeting its performance 
constraint. Note, depending upon the number of available PRCs, a task 
may execute slower or faster due to the realization of Custom Instruc-
tions (composed of hardware accelerators reconfigured in PRCs) in a 
more or less parallel mode. Such a case has already been exploited by 
the authors in [2]. Therefore, each task exhibits a certain latency im-
provement (Lsaving) for a given number of allocated PRCs compared to 
its execution without using the PRCs. A task AT requires a number of 
PRCs (DStepTCk) for a performance improvement of ∆LsavingTCk. Note, 
DStepTCk is not a constant value as it may change in each round of the 
game depending upon the number of the obtained PRCs in previous 
rounds. The efficiency of PRC utilization is defined as: 

PCk = ∆LsavingTCk / DStepTCk (1) 
The priority of task AT is expressed by the weighting factor apCk. Note 
that the task priorities and the task mapping are handled by the operat-
ing system and are considered as a given and available information 
(i.e., not part of the scope of this paper). 
                                                 
3 In the scope of this paper, we do not consider dependent tasks. Authors in 

[17] used task criticality to adapt multi-core hardware for dependent tasks. 

5. Minority-Game-based Resource Allocation Policy 
5.1. The Policy in Overview 
The players of the policy-implementing game are the cores of a GOC. 
PCk and ∆LsavingCk information (obtained by offline profiling and up-
dated at run time), PRC demands, and core attitudes for application 
tasks are provided to the policy. Since these parameters may change 
at run time due to a change in the system dynamics, the policy adapts 
its PRC allocation decision accordingly (Section 5.2). Fig 4 shows the 
execution flow of our policy (see algorithm in Section 5.3). The follow-
ing two rules need to be satisfied for starting a game: 
Rule-1: If the total number of PRCs in the fabric (NPRCs) is equal to or 
greater than the total demand of all participating cores then the game 
is skipped and the requirements are just fulfilled. 

kk C P R C sC C D N∀ ∈ ≤∑  
Rule-2: If only one core is playing the game, all PRCs may be allo-
cated to this core and the game is skipped. 

 
Fig 4. Execution Flow of the Policy  

In each round of the game, all cores play for their task’s demanded 
PRCs. First, the attractiveness of all cores as a decision function is 
computed which is a joint function of the efficiency of PRC utiliza-
tion and the history of PRC allocations (see Section 5.2). The decision 
about the winning cores is made depending upon the attractiveness 
value (Section 5.2 & 5.3). The winning core receives its correspond-
ing number of PRCs for which it was playing. Then, the PRC alloca-
tion history is updated which helps preventing monopolization. All 
cores should receive a 'fair share of fabric'. We consider it a fair allo-
cation, for instance, if tasks would miss their performance constraints 
by approximately the same margin, which would help to ensure an 
overall graceful degradation. 

A game is completed once the demands of all participating cores 
are fulfilled or the available PRC resource is entirely allocated to the 
cores. The result of a game (i.e., the allocated PRCs and the unful-
filled demands) is transmitted to all cores within a GOC. The goal is 
to maximize the efficient use of the fabric while meeting the perfor-
mance constraints of individual task running on the cores. 
5.2. Modeling Resource Allocation as a Minority-Game 
NC cores {CK} with CK [ 1,N ]∈  (players of the game) in a GOC 
compete for the PRCs in the fabric {PRCJ} with PRCsJ [ 1,N ]∈ . A 
game consists of r [ 1,R ]∈  rounds. A round represents a situation 
where a core Ck wins DStepTCk number of PRCs (Fig 4). Since each 
player has the possibility to make different choices regarding the 
number of PRCs, it is a multi-choice game [6]. A core Ck receives a 
payoff P  for its DStep  number of PRCs (see Eq. 1). Ck TCk

Following the Minority-Game, the history H of the winning side is 
consulted for making a choice. Inspired by the ideas of behavioral 
predictors [6], we use the following attitudes: 

k kH C p C k Ka , a [ 0 ,1 ]  ,   C { C }∈ ∀ ∈  
where, aHCk and apCk represent the ‘attitudes of a core Ck towards 
winning’ for the history-based and payoff-based decisions, respec-
tively. apCk is derived from the priority of the task AT. If apCk is zero, 
the PRC allocation is purely based on the history. In this case, all 
cores have an equal probability to win the PRCs, which is somewhat 
similar to the Equal Distribution policy (Section 1.1). Alternatively, 
if aHCk is zero, the PRC allocation is purely based on the priority and 
the payoff (i.e., similar to the Highest-Priority First policy but consi-
dering a performance constraint, thus performance-seeking). A core 



may adapt its attitudes (thus adapting the strategy) for the next game 
depending upon the result of the preceding game to favor other 
cores. The payoff, the history of the winning side, and the attitudes 
are used to compute the attractiveness of a core’s choice (i.e., its be-
havioral predictor for making a choice) for winning the PRC re-
source. The attractiveness is computed as: 

Adaptive Resource Allocation Through Minority Game 
INPUT:  
C, NC : Set and Total Number of all participating cores in the game 
NPRCs : Total Number of PRCs shared by the cores of a GOC 
D[NC], DS[NC][ ]: List of Demands and all DSteps for tasks 
P[NC][ ]: List of avg. case Payoffs for each DStep, updated at run time 
ap[NC]: List of Payoffs attitudes for all cores, may change w.r.t. priority. 
H, aH : Size of the History and History attitude for all cores 
TRD: Total PRC demand of all participating cores 
OUTPUT:   S[NC] : PRC share of each participating core 

BEGIN: 
1. If Rule-1 or Rule-2 is satisfied Then // Section 5.1 
2.  ∈ C }  = ∀S [ C ] D [ C ], C {k k k K

3.  return;  // D[NC] is fulfilled for all cores and the game is skipped 
4. End If 
5. remPRCs = NPRCs; Hist[H] = Ø; S[NC] = Ø; 

// Start Game 
6. While (remPRCs > 0) Do  // Loop over all rounds of the game 
7.  Pmax = findMax(P[Nc][ ]);    AttHigh = 0; 
8.  For all cores C }  Do ∀ ∈C {k K

9.   P(H, Ck) = (firstRound) ? 0, FindOccurences(Ck, Hist[H]); 
10.   IDSCk = getCurrentDStepIndex(DS[Ck][ ]); 
11.   AttrCk = aH*(1-P(H, Ck)/H) + ap[Ck]*(P[Ck][IDSCk]/Pmax); 
12.   If (AttrCk > AttHigh)Then 
13.    AttHigh = AttrCk; Cwinning = Ck; 
14.   End If 
15.  End For 
16.  DStepHigh  = getDStep(DS[Cwinning]); 
17.  remPRCs  = remPRCs - DStepHigh; 
18.  D[Cwinning] = D[Cwinning] - DStepHigh; 
19.  S[NC] = S[NC] + DStepHigh; 
20.  updateHistory(Cwinning, Hist[H]); 
21.  moveToNextDStep(Cwinning); 
22.  If (D[Cwinning] ≤ 0) Then  
23.   {CK}  {CK} \ Cwinning; //Demand of a core is fulfilled 
24.  End If 
25. End While 
END 

Fig 5. Pseudo-code for Resource Allocation 

= − +k k kC HC k pC NCkAttr [ a * ( 1 P( H ,C )) a * Payoff ]  (2) 
where P(H, Ck) and PayoffNCk are normalized to 1. PayoffNCk is the 
normalized payoff with respect to the highest payoff (Eq. 3). P(H, Ck) 
is the history information that how many times the core Ck won the 
PRC resource in previous rounds: P(H, Ck)=WinningCountCk / H. 

∀ ∈k k k kN C C C C C=P a yo ff P / m a x ( P )  (3) 
The core Ck with the highest attractiveness wins DStepTCk number of 
PRCs. All other cores on the losing side have a higher probability to 
win in the subsequent rounds due to their history. Our policy is a spe-
cialization of a Minority-Game where the winning side always con-
tains exactly one player4. 
5.3. Adaptive Resource Allocation Policy 
Fig 5 shows the pseudo-code of the policy and the inputs. Since the 
performance of tasks may vary (for a given number of PRCs), the en-
tries in the compile-time prepared average case payoff lists are up-
dated accordingly. 

A performance constraint is conveyed through the demand of a core 
(D[NC]). Two rules for starting the game are checked in lines 1-4. The 
total rounds of the game depend upon the total PRC demand of all 
cores and the total number of PRCs (NPRCs, line 6). The maximum 
payoff is computed in Line 7. It is later used for normalizing the 
payoffs in line 11. For computing the attractiveness, a history of the 
winning side is obtained in line 9. In the first round of the game, all 
cores have an equal selfishness to compete for the fabric (lines 9 & 
11). As a result, the decision is dominated by the priority and payoff. 
Then the core attractiveness is computed in line 11. It is checked for 
the highest attractiveness in lines 12-14 and a decision on the winning 
core is declared. After each round, the share of the winning core, the 
corresponding variables, and the history are updated (lines 16-21). The 
game continues until demands of all cores are fulfilled or the total 
number of PRCs is exhausted (i.e., distributed through allocation). 

The worst case complexity of computing the attractiveness is 
O(#PRCs x #Cores) for all DSteps=1. A typical game includes cores 
executing tasks with both low and high PRC demands. Once the total 
demand of a task on a competing core is fulfilled (line 22), that core 
no longer participates in the game (line 23). Moreover, DSteps > 1 
typically holds. Therefore, the expected run time of the policy is less 
than the worst-case run time. 

6. Results and Evaluation 
6.1. Experimental Setup 

Application 
Tasks 

Max. PRC 
Demand 

# CIs 
used 

 Application 
Tasks 

Max. PRC
Demand 

# CIs 
used

H.264 Encoder 20 12 Susan 20 3 
H.264 Decoder 18 7 ADPCM Encoder 2 1 
JPEG Encoder 18 3 ADPCM Decoder 2 1 
JPEG Decoder 20 3 SHA 2 1 
AES Encrypt 5 1 CRC 1 1 
AES Decrypt 4 1    
Table 1: Max. PRC demands and number of CIs for all tasks 

For evaluation, we have engaged various application tasks including an 
entire H.264 video en/decoder [10] and various application tasks from 
the MiBench suite [11] with different performance constraints and 
mapping combinations. Due to their diverse processing behavior, these 
tasks vary in their PRCs demand (see Table 1). The PRCs host hard-
ware accelerators to implement Custom Instructions (CIs) that are dep-
                                                 
4 Due to exactly one player in the minority side, there is no ambiguity in the 

decision. Therefore, our proposed MG model is applicable for both odd and 
even number of players (as it is also used in the extended version of the Mi-
nority Games in [5] and [6]) without any ambiguity. 

loyed to expedite a task. In order to simulate run-time varying scena-
rios, we have validated our policy for more than 300 different task-
mapping scenarios. These scenarios include combinations of simple 
(CRC, SHA, ADPCM) and complex (H.264, Susan, JPEG, AES) 
tasks. We have used four SPARC V-8 cores in a GOC. From our 572 
different experiments, we have determined that the attitude for history 
aH = 0.6 provides the highest performance saving for various sizes of 
the fabric. For all experiments, we use a 100 MHz frequency. 

6.2. Comparison with State-of-the-Art 
Fairness of Comparison: We compare our Minority-Game-based pol-
icy with state-of-the-art reconfigurable multi-core processors [1][4] 
and different allocation policies (see Section 1.1). The comparison 
with [1] is analogous to the comparison with the Equal Distribution 
policy as all cores have the same amount of (dedicated) fabric. The 
processor in [4] uses fixed-sized fabric partitions and Statically 
Mapped Application tasks (denoted as SMA for ease of further dis-
cussion). Considering all this, an approach like SMA is unable to 
react to run-time varying scenarios. However, for a fair comparison, 
we have considered the best case where the SMA approach knows the 
mapping and the difference between our policy and SMA is purely 
due to the sharing policy. For further fairness, we have provided the 
same set of hardware accelerators and CIs as well as the same amount 
of memory bandwidth and the same task mapping to all approaches. 

Fig 6 shows the box plot summary of improvement in efficiency of 
PRC utilization (Eq. 4) and speedup of our policy compared to recon-
figurable multi-core processors with a dedicated fabric (e.g., RAMP-
SoC [1]) such that each core has a same-sized fabric. 
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Fig 6 shows that on average our policy exhibits a 2x higher average 
utilization compared to RAMPSoC. There are some special cases 
where our policy achieves an improvement of up to 40x. It is the case 
of 7 PRCs for task mapping scenario of {CRC, SHA, Susan, ADPCM 
encoder}, where our policy allocates {1, 1, 3, 2} PRCs to each of the 
corresponding task. On the contrary, RAMPSoC [1] (due to same 
number of PRCs in each core) requires at least 12 PRCs (out of which 
5 PRCs are unused) to handle the above-mentioned scenario. There-
fore, the major improvement of our policy is achieved in cases of 
fewer PRCs where more fabric is allocated to complex tasks and less 
fabric to less-complex tasks (as demonstrated in detail by Fig 7). 
Overall, for the same given number of PRCs, our policy achieves a 5x 
improved efficiency of PRC utilization (Eq. 4) and a 2x higher perfor-
mance compared to RAMPSoC.  
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Fig 6. Summary of performance and efficiency of PRC utilization 

comparison with RAMPSoC [1] 
Fig 7 and Fig 8 show a detailed comparison with state-of-the-art for 
total execution time and the efficiency of PRC utilization for shared 
fabrics of different sizes. The task-mapping scenario is {CRC, 
ADPCM encoder, AES encrypt, H.264 encoder}. For comparison 
with the Highest Priority First (HPF) policy, we provide two priority 
cases here (tasks named left-to-right have priority from high-to-low):  
P1) {H.264 encoder, AES encrypt, ADPCM encoder, CRC} 
P2) {AES encrypt, ADPCM encoder, H.264 encoder, CRC}  

We discuss these comparison of Fig 7 and Fig 8 as follows:  
• Compared to RAMPSoC and SMA, our policy achieves a per-

formance improvement of up to 1.96x and 1.57x (avg. 1.65x and 
1.21x) and up to 24.4% and 24.7% (avg. 16.3% and 10%) improved 
efficiency of PRC utilization, respectively. The major advantages of 
our policy can be achieved for an amount of 9-14 PRCs. Thereby, 
PRCs=8 is a very special case, as all four cores in the SMA ap-
proach have PRCs in power of 2 and each core in RAMPSoC also 
has 2 PRCs. However, our policy still performs better in this case 
due to its flexibility of the allocation decision. 

• Compared to the First Come First Serve (FCFS) policy, our policy 
provides always a better efficiency of PRC utilization. For less than 9 
PRCs, the efficiency of FCFS is significantly low as it gives PRCs to 
“CRC”, “AES encrypt”, and “ADPCM encoder” first and ignores the 
fact that “H.264 encoder” has a higher priority and efficiency. 

d to the HPF policy with P1 sequence (HPF_P1), our pol-
G_P1) provides an equal efficiency of PRC utilization for 

s. Afterwards, HPF_P1 starts loosing as “H.264 encoder” 
hest priority and it monopolizes the entire fabric. Contrari-

ly, ourMG_P1 gives PRCs first to “H.264 encoder” and later due to 
the history information, it avoids the monopolization. 
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Fig 7. Performance comparison with state-of-the-art reconfigurable
multi-core processors and various allocation policies

Fig 8 : Efficiency of fabric utilization: comparison
with state-of-the-art processors & allocation policies

 

• Compared to the HPF policy with P2 sequence (HPF_P2), our 
policy (ourMG_P2) provides a better efficiency of PRC utilization 
up to an amount of 12 allocated PRCs. This is due to the fact that 
after 8 PRCs the remaining ones are allocated to “H.264 encoder”. 
After “H.264 encoder” gets more than 4 PRCs, the relative speedup 
is less compared to the case of a lesser number of PRCs. 

• Compared to the Optimal5 policy, our policy with priority case P1 
(ourMG_P1) suffers from an efficiency degradation of up to 9.2% 
(avg. 1.89%). The main difference between optimal and ourMG_P1 
occurs for less than 10 PRCs. In these cases, the optimal policy 
gives all PRCs to “H.264 encoder” that has the highest efficiency of 
PRC utilization among all other tasks. However, ourMG_P1 allo-
cates PRCs to other tasks, too. This is because of the consideration 
of history for fair allocation (see Section 5.2). Overall, it shows that 
our policy achieves a near-to-optimal efficiency of PRC utilization. 

Summary: the above comparison illustrates that our policy is better 
than state-of-the-art in all cases and it is close to an optimal solution. 
However, compared to the optimal policy, our policy achieves on av-
erage 2% (worst case 9%) lower performance. 

Now, we will present the results of different games under different 
system dynamics to show the adaptivity of our policy. 
6.3. Analysis of Adaptivity under Varying System Dynamics 
Fig 9 presents an in-depth analysis using an excerpt of five different 
games (out of 572) on the time line (t1-t5). In these games a fabric of 
12 PRCs is shared between 4 cores (represented by different colors) of 
a GOC. Furthermore, the task mapping scenarios (matrices) along with 
their corresponding target speedup (obtained from the performance 
constraint) and actually achieved speedup (bar graphs) are shown. 
(t1) Competing Game: four tasks are mapped on 4 cores. “Susan” 

misses its performance constraint by 8% due to lack of one PRC. 
(t2) Performance Constraint Changed: the performance constraint 

of the “H.264 decoder” is increased to CIF@25fps (from 
CIF@10fps). Here, one PRC is taken from “CRC” and it is al-
located to “H.264 decoder”. However, since “Susan” and 
“H.264 decoder” have the same priority, “Susan” does not re-
lease its PRCs. Due to this, both “Susan” and “H.264 decoder” 
tasks miss their deadlines by 8% and 17%, respectively, due to 
the lack of 1 PRC each. Note that our policy tends to keep the 
degradation by the same amount (each task lacks 1 PRC). 

(t3) Priority Changed: the priorities of “H.264 decoder” and “CRC” 
are increased and the priority of “Susan” is decreased. Due to its 
high priority, the “H.264 decoder” wins more PRCs to meet its 
performance constraints. Due to a low priority, “Susan” misses 

 
5 An optimal policy is realized by a Branch and Bound algorithm ignoring its run-

time overhead to fix an upper limit of achievable efficiency of fabric utilization. 



9. References its performance constraint by 59%. However, it is acceptable as 
the priorities of “CRC” and “H.264 decoder” are high. 
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